

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(4-Ethoxycarbonyl-5-methyl-1*H*-1,2,3triazol-1-yl)acetic acid monohydrate

Gai-Gai Wang and Hong Zhao*

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: zhaohong@seu.edu.cn

Received 20 October 2010; accepted 27 October 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.066; wR factor = 0.189; data-to-parameter ratio = 16.8.

The title compound, $C_8H_{11}N_3O_4 \cdot H_2O$, was synthesized by reaction of 2-azidoacetic acid and ethyl acetylacetate. In the crystal packing, molecules are linked by strong intermolecular $O-H \cdot \cdot \cdot N$ and $O-H \cdot \cdot \cdot O$ hydrogen bonds into double layers parallel to the *ab* plane.

Related literature

For the biological activities of triazole derivatives, see: Olesen *et al.* (2003); Tian *et al.* (2005). For the synthesis, see: El Khadem *et al.* (1968). For related structures, see: Lin *et al.* (2008); Xiao *et al.* (2008); Zhao (2009).

Experimental

Crystal data

$C_8H_{11}N_3O_4$ · H_2O
$M_r = 231.21$
Monoclinic, $C2/c_{\perp}$
a = 18.6082 (15) Å
b = 8.2295 (15)Å
c = 14.986 (2) Å
$\beta = 92.050 \ (5)^{\circ}$

 $V = 2293.4 (6) Å^{3}$ Z = 8 Mo K\alpha radiation \(\mu = 0.11 mm^{-1}\) T = 295 K 0.35 \times 0.32 \times 0.28 mm 10958 measured reflections

 $R_{\rm int} = 0.051$

2490 independent reflections

1536 reflections with $I > 2\sigma(I)$

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\rm min} = 0.960, T_{\rm max} = 0.970$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ 148 parameters $wR(F^2) = 0.189$ H-atom parameters constrainedS = 1.09 $\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$ 2490 reflections $\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1F\cdots O2^{i}$	0.93	1.84	2.759 (3)	176
$O1W - H1E \cdot \cdot \cdot N3^{ii}$	0.92	1.96	2.879 (3)	173
$O1-H1\cdots O1W^{iii}$	0.82	1.75	2.558 (3)	167

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x - \frac{1}{2}$, $y + \frac{1}{2}$, z; (iii) x, y - 1, z.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL/PC*.

This work was supported by financial support from Southeast University for young researchers (grant No. 4007041027).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2507).

References

El Khadem, H., Mansour, H. A. R. & Meshreki, M. H. (1968). J. Chem. Soc. C, pp. 1329–1331.

- Lin, J. R., Yao, J. Y. & Zhao, H. (2008). Acta Cryst. E64, o1843.
- Olesen, P. H., Sorensen, A. R., Urso, B., Kurtzhals, P., Bowler, A. N., Ehrbar, U. & Hansen, B. F. (2003). J. Med. Chem. 46, 3333–3341.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646–1652.

Xiao, J., Wang, W. X. & Zhao, H. (2008). Acta Cryst. E64, o2085.

Zhao, H. (2009). Acta Cryst. E65, o1258.

supporting information

Acta Cryst. (2010). E66, o3001 [https://doi.org/10.1107/S1600536810043813]

2-(4-Ethoxycarbonyl-5-methyl-1H-1,2,3-triazol-1-yl)acetic acid monohydrate

Gai-Gai Wang and Hong Zhao

S1. Comment

Triazole derivatives have attracted considerable attention due to their biological activities (Olesen *et al.*, 2003; Tian *et al.*, 2005). Recently, we have reported the crystal structures of a few triazole compounds (Lin *et al.*, 2008; Xiao *et al.*, 2008; Zhao, 2009). As an extension of our work on the structural characterization of triazole derivatives, the crystal structure of the title compound is reported here.

In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The crystal packing is stabilized by strong intermolecular O—H···N and O—H···O hydrogen bonds involving the triazole and water molecules (Fig. 2; Table 1) forming double layers parallel to the *ab* plane.

S2. Experimental

The title compound was prepared from 2-azidoacetic acid according to the reported method (El Khadem *et al.*, 1968). Colourless prismatic crystal suitable for X-ray analysis were obtained by slow evaporation of a 95% ethanol/water solution.

S3. Refinement

The water H atoms were located from a difference Fourier map but not refined $[U_{iso}(H) = 1.5U_{eq}(O)]$. All other H atoms were fixed geometrically and treated as riding with C—H = 0.96–0.97 Å, O—H = 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C, O)$ for methyl and carboxy H atoms.

Figure 1

The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Packing diagram of the title compound, showing the structure along the c axis.

2-(4-Ethoxycarbonyl-5-methyl-1H-1,2,3-triazol-1-yl)acetic acid monohydrate

Crystal data

 $C_{8}H_{11}N_{3}O_{4} \cdot H_{2}O$ $M_{r} = 231.21$ Monoclinic, C2/c Hall symbol: -C 2yc a = 18.6082 (15) Å b = 8.2295 (15) Å c = 14.986 (2) Å $\beta = 92.050 (5)^{\circ}$ $V = 2293.4 (6) \text{ Å}^{3}$ Z = 8

Data collection

Rigaku SCXmini	10958 measured reflections
diffractometer	2490 independent reflections
Radiation source: fine-focus sealed tube	1536 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.051$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.7^\circ$
CCD_Profile_fitting scans	$h = -23 \rightarrow 23$
Absorption correction: multi-scan	$k = -10 \rightarrow 10$
(CrystalClear; Rigaku, 2005)	$l = -19 \rightarrow 19$
$T_{\min} = 0.960, \ T_{\max} = 0.970$	
Refinement	
Refinement on F^2	Secondary atom site location: diff

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from
$wR(F^2) = 0.189$	neighbouring sites
S = 1.09	H-atom parameters constrained
2490 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0861P)^2 + 0.6922P]$
148 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.28$ e Å ⁻³
direct methods	$\Delta ho_{ m min} = -0.20$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 976

 $\theta = 2.7 - 27.5^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

Prism. colourless

 $0.35 \times 0.32 \times 0.28 \text{ mm}$

T = 295 K

 $D_{\rm x} = 1.339 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2099 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1	1	• , •		• 1 /	• • •	1. 1		,	18	21
Fractional	atomic	coordinates	and	isofronic	or	eauivalent	isofronic	displac	ement	narameters	IA^{\prime}	-)
1 / 401101141	aronne	coordinates		isonopie	01	equivalent	isonopie	anspiac	cincin	parameters	(**	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.81442 (14)	-0.2524 (3)	0.37722 (19)	0.0552 (6)
C2	0.87508 (14)	-0.2098 (3)	0.44180 (18)	0.0611 (7)
H2A	0.8554	-0.1835	0.4991	0.073*
H2B	0.9059	-0.3041	0.4502	0.073*

C3	0.90266 (14)	0.0868 (3)	0.41202 (18)	0.0557 (6)
C4	0.83230 (16)	0.1554 (4)	0.4359 (3)	0.0936 (12)
H4A	0.7981	0.1402	0.3871	0.140*
H4B	0.8376	0.2694	0.4481	0.140*
H4C	0.8156	0.1012	0.4880	0.140*
C5	0.96537 (13)	0.1568 (3)	0.38496 (18)	0.0542 (6)
C6	0.98182 (15)	0.3313 (3)	0.3765 (2)	0.0631 (7)
N1	0.91816 (11)	-0.0742(2)	0.41279 (14)	0.0552 (6)
N2	0.98618 (12)	-0.1025 (3)	0.38793 (17)	0.0658 (6)
N3	1.01479 (11)	0.0386 (2)	0.37055 (17)	0.0629 (6)
O1	0.77303 (11)	-0.3646 (2)	0.41090 (13)	0.0687 (6)
H1	0.7401	-0.3861	0.3750	0.103*
O2	0.80534 (12)	-0.1933 (3)	0.30435 (15)	0.0828 (7)
O3	0.93857 (12)	0.4367 (2)	0.38956 (19)	0.0963 (8)
O4	1.04841 (10)	0.3565 (2)	0.35401 (16)	0.0787 (7)
O1W	0.66222 (12)	0.5429 (3)	0.31857 (17)	0.1016 (9)
H1E	0.6157	0.5328	0.3366	0.152*
H1F	0.6724	0.4673	0.2751	0.152*
C7	1.07274 (18)	0.5254 (4)	0.3491 (3)	0.0975 (13)
H7A	1.0559	0.5733	0.2931	0.117*
H7B	1.0531	0.5877	0.3975	0.117*
C8	1.1478 (2)	0.5300 (5)	0.3554 (4)	0.1357 (19)
H8A	1.1645	0.4680	0.4063	0.204*
H8B	1.1635	0.6406	0.3620	0.204*
H8C	1.1669	0.4846	0.3022	0.204*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0569 (15)	0.0444 (13)	0.0649 (16)	-0.0084 (11)	0.0111 (12)	-0.0044 (12)
C2	0.0590 (16)	0.0525 (15)	0.0720 (17)	-0.0113 (12)	0.0030 (13)	0.0027 (13)
C3	0.0483 (14)	0.0482 (14)	0.0705 (16)	-0.0026 (11)	0.0034 (12)	-0.0085 (12)
C4	0.0614 (19)	0.068 (2)	0.154 (3)	-0.0031 (16)	0.031 (2)	-0.017 (2)
C5	0.0462 (14)	0.0448 (13)	0.0713 (16)	-0.0019 (11)	-0.0012 (12)	-0.0070 (12)
C6	0.0556 (16)	0.0482 (14)	0.085 (2)	-0.0050 (13)	-0.0067 (14)	-0.0044 (13)
N1	0.0482 (12)	0.0445 (11)	0.0729 (14)	-0.0073 (9)	0.0042 (10)	-0.0021 (10)
N2	0.0493 (13)	0.0470 (12)	0.1013 (18)	-0.0040 (10)	0.0066 (12)	0.0008 (12)
N3	0.0462 (12)	0.0470 (12)	0.0956 (17)	-0.0039 (9)	0.0059 (11)	-0.0033 (11)
01	0.0652 (12)	0.0675 (12)	0.0739 (12)	-0.0251 (10)	0.0078 (9)	-0.0006 (10)
O2	0.0906 (16)	0.0848 (15)	0.0724 (13)	-0.0321 (12)	-0.0074 (11)	0.0157 (12)
03	0.0744 (15)	0.0479 (11)	0.167 (2)	0.0032 (11)	0.0108 (15)	-0.0080 (13)
O4	0.0532 (11)	0.0499 (11)	0.1330 (19)	-0.0134 (9)	0.0037 (11)	0.0032 (11)
O1W	0.0557 (13)	0.122 (2)	0.128 (2)	-0.0154 (12)	0.0168 (13)	-0.0639 (16)
C7	0.075 (2)	0.0488 (17)	0.168 (4)	-0.0179 (15)	-0.011 (2)	0.014 (2)
C8	0.095 (3)	0.094 (3)	0.216 (5)	-0.049 (2)	-0.031 (3)	0.050 (3)

Geometric parameters (Å, °)

C1—02	1.202 (3)	C6—O3	1.204 (3)	
C1-01	1.315 (3)	C6—O4	1.312 (3)	
C1—C2	1.502 (4)	N1—N2	1.352 (3)	
C2—N1	1.450 (3)	N2—N3	1.307 (3)	
C2—H2A	0.9700	O1—H1	0.8200	
C2—H2B	0.9700	O4—C7	1.465 (3)	
C3—N1	1.356 (3)	O1W—H1E	0.9194	
C3—C5	1.375 (3)	O1W—H1F	0.9251	
C3—C4	1.481 (4)	C7—C8	1.396 (5)	
C4—H4A	0.9600	С7—Н7А	0.9700	
C4—H4B	0.9600	С7—Н7В	0.9700	
C4—H4C	0.9600	C8—H8A	0.9600	
C5—N3	1.361 (3)	C8—H8B	0.9600	
С5—С6	1.475 (3)	C8—H8C	0.9600	
02—C1—O1	124.6 (3)	O3—C6—C5	123.0 (3)	
O2—C1—C2	124.7 (2)	O4—C6—C5	112.1 (2)	
01—C1—C2	110.7 (2)	N2—N1—C3	111.5 (2)	
N1-C2-C1	113.4 (2)	N2—N1—C2	118.9 (2)	
N1—C2—H2A	108.9	C3—N1—C2	129.4 (2)	
C1—C2—H2A	108.9	N3—N2—N1	107.1 (2)	
N1—C2—H2B	108.9	N2—N3—C5	108.7 (2)	
C1—C2—H2B	108.9	C1—O1—H1	109.5	
H2A—C2—H2B	107.7	C6—O4—C7	117.3 (2)	
N1—C3—C5	103.2 (2)	H1E—O1W—H1F	111.4	
N1-C3-C4	124.1 (2)	C8—C7—O4	109.4 (3)	
C5—C3—C4	132.7 (2)	С8—С7—Н7А	109.8	
C3—C4—H4A	109.5	O4—C7—H7A	109.8	
C3—C4—H4B	109.5	C8—C7—H7B	109.8	
H4A—C4—H4B	109.5	O4—C7—H7B	109.8	
C3—C4—H4C	109.5	H7A—C7—H7B	108.2	
Н4А—С4—Н4С	109.5	C7—C8—H8A	109.5	
Н4В—С4—Н4С	109.5	C7—C8—H8B	109.5	
N3—C5—C3	109.4 (2)	H8A—C8—H8B	109.5	
N3—C5—C6	122.6 (2)	C7—C8—H8C	109.5	
C3—C5—C6	127.9 (2)	H8A—C8—H8C	109.5	
O3—C6—O4	124.8 (3)	H8B—C8—H8C	109.5	
02—C1—C2—N1	7.1 (4)	C5—C3—N1—C2	175.1 (3)	
01-C1-C2-N1	-173.6(2)	C4-C3-N1-C2	-5.1 (4)	
N1—C3—C5—N3	0.2 (3)	C1—C2—N1—N2	-110.4 (3)	
C4—C3—C5—N3	-179.6 (3)	C1—C2—N1—C3	74.9 (3)	
N1—C3—C5—C6	-176.4 (3)	C3—N1—N2—N3	-0.4 (3)	
C4—C3—C5—C6	3.8 (5)	C2—N1—N2—N3	-176.0 (2)	
N3—C5—C6—O3	-179.6 (3)	N1—N2—N3—C5	0.5 (3)	
C3—C5—C6—O3	-3.4 (5)	C3—C5—N3—N2	-0.4 (3)	

supporting information

N3—C5—C6—O4	-0.1 (4)	C6—C5—N3—N2	176.4 (3)
C3—C5—C6—O4	176.1 (3)	O3—C6—O4—C7	3.4 (5)
C5—C3—N1—N2	0.1 (3)	C5—C6—O4—C7	-176.1 (3)
C4—C3—N1—N2	179.9 (3)	C6—O4—C7—C8	159.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
O1 <i>W</i> —H1 <i>F</i> ···O2 ⁱ	0.93	1.84	2.759 (3)	176
O1W— $H1E$ ···· $N3$ ⁱⁱ	0.92	1.96	2.879 (3)	173
O1— $H1$ ··· $O1W$ ⁱⁱⁱ	0.82	1.75	2.558 (3)	167

Symmetry codes: (i) -*x*+3/2, *y*+1/2, -*z*+1/2; (ii) *x*-1/2, *y*+1/2, *z*; (iii) *x*, *y*-1, *z*.