$V = 1339.60 (16) \text{ Å}^3$

 $0.35 \times 0.18 \times 0.09 \text{ mm}$

21520 measured reflections 5656 independent reflections 4668 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.12 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.031$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-N'-(2,3,4-Trihydroxybenzylidene)isonicotinohydrazide dihydrate

H. S. Naveenkumar,^a Amirin Sadikun,^a‡ Pazilah Ibrahim,^a Jia Hao Goh^b§ and Hoong-Kun Fun^b*¶

^aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 20 October 2010; accepted 27 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.038; wR factor = 0.113; data-to-parameter ratio = 21.8.

In the title isoniazid derivative, $C_{13}H_{11}N_3O_4\cdot 2H_2O$, the Schiff base molecule exists in an *E* configuration with respect to the acyclic C—N bond. An intramolecular $O-H\cdots N$ hydrogen bond forms a six-membered ring, producing an *S*(6) ring motif. The essentially planar pyridine ring [maximum deviation = 0.0119 (8) Å] is inclined at a dihedral angle of 7.30 (4)° with respect to the benzene ring. In the crystal, intermolecular $O-H\cdots N$, $O-H\cdots O$, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds link the molecules into two-dimensional arrays lying parallel to the (101) plane. These arrays are further interconnected into a three-dimensional extended network *via* $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds. A weak intermolecular $\pi-\pi$ interaction [centroid-to-centroid distance = 3.5627 (5) Å] is also observed.

Related literature

For general background to and applications of the title isoniazid derivative, see: Janin (2007); Kahwa *et al.* (1986); Maccari *et al.* (2005); Slayden & Barry (2000). For the preparation of the title compound, see: Lourenço *et al.* (2008). For closely related isoniazid structures, see: Naveenkumar *et al.* (2009, 2010*a*,*b*,*c*); Shi (2005). For hydrogen-bond ring motifs, see: Bernstein *et al.* (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{11}N_{3}O_{4}:2H_{2}O\\ M_{r}=309.28\\ Monoclinic, \ P2_{1}/c\\ a=6.9504\ (5)\ \text{\AA}\\ b=19.9077\ (13)\ \text{\AA}\\ c=10.0930\ (7)\ \text{\AA}\\ \beta=106.416\ (2)^{\circ} \end{array}$

Data collection

Bruker APEXII DUO CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\rm min} = 0.959, T_{\rm max} = 0.989$

Refinement

. .

$R[F^2 > 2\sigma(F^2)] = 0.038$	259 parameters
$wR(F^2) = 0.113$	All H-atom parameters refined
S = 1.03	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
5656 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table T			
Hydrogen-bond	geometry	(Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H1O2···N3	0.883 (18)	1.854 (18)	2.6561 (9)	150.1 (16)
O3−H1O3···N1 ⁱ	0.869 (19)	1.835 (19)	2.6911 (10)	168.4 (18)
$O4-H1O4\cdots O1W$	0.895 (18)	1.769 (18)	2.6559 (9)	170.5 (18)
$N2-H1N2\cdots O2W^{ii}$	0.890 (16)	2.132 (15)	2.9910 (9)	162.1 (14)
$O1W - H1W1 \cdots O1^{iii}$	0.926 (18)	1.880 (18)	2.7834 (9)	164.6 (16)
$O1W - H2W1 \cdots O2W$	0.837 (19)	2.077 (18)	2.8980 (11)	167.0 (18)
$O2W - H1W2 \cdot \cdot \cdot O2^{iv}$	0.831 (15)	2.161 (15)	2.9570 (11)	160.3 (14)
$O2W - H2W2 \cdots O4^{v}$	0.86 (2)	1.91 (2)	2.7688 (9)	173.3 (19)
$C4-H4A\cdots O1^{vi}$	0.922(14)	2.575 (14)	3.2930 (11)	135.1 (11)
$C7-H7A\cdots O2W^{ii}$	0.988 (14)	2.347 (14)	3.2176 (10)	146.7 (12)
Symmetry codes: (i)	$-x+2, y+\frac{1}{2},$	$-z + \frac{5}{2};$ (ii)	-x + 1, -y + 1,	-z + 1; (iii)

Symmetry codes: (i) $-x + 2, y + \frac{1}{2}, -z + \frac{2}{2};$ (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z - 1; (iv) x, y, z - 1; (v) $x, -y + \frac{3}{2}, z - \frac{1}{2};$ (vi) -x + 2, -y + 1, -z + 3.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

This research was supported by Universiti Sains Malaysia (USM) under a University Research Grant (No. 1001/ PFARMASI/815005). JHG and HKF thank USM for a Research University Grant (No. 1001/PFIZIK/811160). HSNK is grateful to USM for a USM Fellowship.

[‡] Additional correspondence author, e-mail: amirin@usm.my.

[§] Thomson Reuters ResearcherID: C-7576-2009. ¶ Thomson Reuters ResearcherID: A-3561-2009.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2508).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.
- Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
- Lourenço, M. C. da S., Ferreira, M. de L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). *Eur. J. Med. Chem.* 43, 1344–1347.

- Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.
- Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). *Acta Cryst.* E65, 02540–02541.
- Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2010a). Acta Cryst. E66, o1202–o1203.
- Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o291.
- Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, 0579.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, J. (2005). Acta Cryst. E61, 03933-03934.
- Slayden, R. A. & Barry, C. E. (2000). *Microbes Infect.* **2**, 659–669. Spek, A. L. (2009). *Acta Cryst.* **D65**, 148–155.

03018 Naveenkumar et al. • $C_{13}H_{11}N_3O_4 \cdot 2H_2O$

supporting information

Acta Cryst. (2010). E66, o3017-o3018 [https://doi.org/10.1107/S1600536810043965]

(E)-N'-(2,3,4-Trihydroxybenzylidene)isonicotinohydrazide dihydrate

H. S. Naveenkumar, Amirin Sadikun, Pazilah Ibrahim, Jia Hao Goh and Hoong-Kun Fun

S1. Comment

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari *et al.*, 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa *et al.*, 1986). As a part of our current work on synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound.

The title isoniazid derivative comprises of a (*E*)-*N*'-(2,3,4-trihydroxybenzylidene)isonicotinohydrazide molecule and two water molecules of crystallization (Fig. 1). The Schiff base molecule exists in an *E* configuration with respect to the acyclic C7=N3 bond [C7=N3 = 1.2921 (10) Å; torsion angle N2-N3-C7-C8 = 178.85 (7)°]. An intramolecular O2-H1O2···N3 hydrogen bond (Table 1) generates a six-membered ring, producing an *S*(6) ring motifs (Bernstein *et al.*, 1995). The pyridine ring with atom sequence C1/C2/N1/C3/C4/C5 is essentially planar, with a maximum deviation of 0.0119 (8) Å at atom C5. There is a slight inclination between the pyridine and benzene rings, as indicated by the dihedral angle formed of 7.30 (4)°. All bond lengths and angles are consistent to those observed in closely related isoniazid structures (Naveenkumar *et al.*, 2009, 2010*a*,*b*,*c*; Shi, 2005).

In the crystal packing, water molecules play an extensive part in forming the hydrogen-bonded structure. Neighbouring molecules are linked into two-dimensional arrays parallel to the (101) plane (Fig. 2) by intermolecular O3—H1O3…N1, O4—H1O4…O1W, N2—H1N2…O2W, O1W—H1W1…O1, O2W—H2W2…O4 and C7—H7A…O2W hydrogen bonds (Table 1). These arrays are further interconnected by intermolecular O1W—H2W1…O2W, O2W—H1W2…O2 and C4—H4A…O1 hydrogen bonds (Table 1) into a three-dimensional extended structure (Fig. 3). Weak intermolecular π - π aromatic stacking interactions involving the pyridine and benzene rings [Cg1…Cg2 = 3.5627 (5) Å, symmetry code: -x + 2, -y + 1, -z + 2] stabilizing the crystal structure.

S2. Experimental

The isoniazid derivative was prepared following the procedure by Lourenço *et al.*, 2008. The title compound was prepared by the reaction between 2,3,4-trihydroxybenzaldehyde (1.0 eq) with isoniazid (1.0 eq) in ethanol/water. After stirring for 1-3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue, purified by washing with cold ethanol and ethyl ether, afforded the pure derivative. The brown-coloured single crystals suitable for X-ray analysis were obtained by recrystallization with ethanol.

S3. Refinement

All H atoms were located from difference Fourier map and allowed to refine freely with N—H = 0.890 (16), O—H = 0.834 (16)–0.926 (18) and C—H = 0.921 (14)–0.988 (13) Å.

Figure 1

The asymmetric unit of the title isoniazid derivative, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line.

Figure 2

Part of the crystal structure, viewed along the $[10\overline{1}]$ direction, showing a hydrogen-bonded 2D array. Intermolecular hydrogen bonds are shown as dashed lines.

Figure 3

The crystal structure of the title derivative, viewed along the b axis, showing the 2D arrays being linked into a 3D extended network. Intermolecular hydrogen bonds are shown as dashed lines.

(E)-N'-(2,3,4-Trihydroxybenzylidene)isonicotinohydrazide dihydrate

Crystal data

$C_{13}H_{11}N_{3}O_{4}\cdot 2H_{2}O$
$M_r = 309.28$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 6.9504 (5) Å
<i>b</i> = 19.9077 (13) Å
c = 10.0930 (7) Å
$\beta = 106.416 \ (2)^{\circ}$
$V = 1339.60 (16) \text{ Å}^3$
Z = 4

F(000) = 648 $D_x = 1.534 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7532 reflections $\theta = 2.9-34.5^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 100 KPlate, brown $0.35 \times 0.18 \times 0.09 \text{ mm}$ Data collection

Bruker APEXII DUO CCD area-detector	21520 measured reflections
diffractometer	5656 independent reflections
Radiation source: fine-focus sealed tube	4668 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.031$
φ and ω scans	$\theta_{max} = 34.5^{\circ}, \theta_{min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(<i>SADABS</i> ; Bruker, 2009)	$k = -31 \rightarrow 31$
$T_{\min} = 0.959, T_{\max} = 0.989$	$l = -16 \rightarrow 14$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.113$	neighbouring sites
S = 1.03	All H-atom parameters refined
5656 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0651P)^2 + 0.2238P]$
259 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.50$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.26$ e Å ⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	1.01608 (10)	0.51301 (3)	1.29712 (6)	0.01639 (12)	
O2	0.67646 (10)	0.62875 (3)	0.99244 (6)	0.01723 (13)	
O3	0.48628 (10)	0.72385 (3)	0.80029 (6)	0.01782 (13)	
04	0.29346 (10)	0.68845 (3)	0.54245 (6)	0.01504 (12)	
N1	1.23127 (11)	0.28684 (4)	1.50037 (7)	0.01687 (14)	
N2	0.86827 (10)	0.44582 (3)	1.11516 (6)	0.01251 (12)	
N3	0.78423 (10)	0.50085 (3)	1.03671 (7)	0.01281 (12)	
C1	1.05976 (13)	0.33042 (4)	1.27584 (8)	0.01494 (14)	
C2	1.14706 (13)	0.27828 (4)	1.36485 (8)	0.01646 (15)	
C3	1.22531 (14)	0.34874 (4)	1.55190 (8)	0.01760 (15)	
C4	1.14150 (13)	0.40355 (4)	1.47177 (8)	0.01499 (14)	
C5	1.05899 (11)	0.39475 (4)	1.32999 (7)	0.01165 (13)	
C6	0.97938 (12)	0.45639 (4)	1.24693 (7)	0.01180 (13)	
C7	0.68132 (12)	0.48824 (4)	0.91109 (8)	0.01247 (13)	

supporting information

C8	0.58229 (11)	0.54102 (3)	0.81860 (7)	0.01120 (13)
C9	0.58328 (11)	0.60855 (4)	0.85957 (7)	0.01149 (13)
C10	0.48749 (12)	0.65802 (4)	0.76616 (7)	0.01176 (13)
C11	0.38589 (11)	0.63908 (4)	0.63033 (7)	0.01128 (13)
C12	0.38052 (12)	0.57192 (4)	0.58943 (7)	0.01307 (13)
C13	0.47908 (12)	0.52365 (4)	0.68254 (7)	0.01302 (13)
O1W	0.13931 (13)	0.64535 (3)	0.28519 (7)	0.02289 (15)
O2W	0.30816 (11)	0.67273 (3)	0.05904 (7)	0.01959 (13)
H1O2	0.732 (3)	0.5922 (9)	1.0365 (17)	0.041 (4)*
H1O3	0.582 (3)	0.7387 (9)	0.8694 (18)	0.045 (5)*
H1O4	0.247 (3)	0.6695 (9)	0.4591 (19)	0.045 (5)*
H1N2	0.836 (2)	0.4055 (8)	1.0773 (15)	0.034 (4)*
H1A	1.001 (2)	0.3205 (7)	1.1767 (14)	0.023 (3)*
H2A	1.146 (2)	0.2338 (7)	1.3281 (14)	0.023 (3)*
H3A	1.282 (2)	0.3542 (6)	1.6527 (14)	0.021 (3)*
H4A	1.135 (2)	0.4445 (7)	1.5129 (14)	0.028 (3)*
H7A	0.665 (2)	0.4412 (7)	0.8788 (15)	0.029 (3)*
H12A	0.306 (2)	0.5605 (7)	0.4985 (13)	0.020 (3)*
H13A	0.479 (2)	0.4751 (7)	0.6573 (14)	0.021 (3)*
H1W1	0.102 (3)	0.6006 (9)	0.2736 (17)	0.043 (4)*
H2W1	0.206 (3)	0.6521 (8)	0.2292 (17)	0.038 (4)*
H1W2	0.425 (2)	0.6675 (7)	0.0549 (15)	0.030 (4)*
H2W2	0.309 (3)	0.7161 (10)	0.0608 (19)	0.049 (5)*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0222 (3)	0.0097 (2)	0.0151 (2)	-0.0004 (2)	0.0018 (2)	-0.00091 (18)
0.0237 (3)	0.0122 (2)	0.0108 (2)	0.0021 (2)	-0.0033 (2)	-0.00140 (18)
0.0247 (3)	0.0080 (2)	0.0154 (2)	0.0006 (2)	-0.0029 (2)	-0.00218 (18)
0.0206 (3)	0.0099 (2)	0.0112 (2)	0.00154 (19)	-0.0010 (2)	0.00164 (17)
0.0185 (3)	0.0132 (3)	0.0162 (3)	0.0008 (2)	0.0005 (2)	0.0031 (2)
0.0154 (3)	0.0084 (2)	0.0115 (2)	0.0012 (2)	0.0002 (2)	0.00147 (19)
0.0139 (3)	0.0104 (2)	0.0126 (3)	0.0018 (2)	0.0014 (2)	0.00298 (19)
0.0188 (4)	0.0110 (3)	0.0133 (3)	0.0015 (2)	0.0017 (3)	0.0002 (2)
0.0195 (4)	0.0109 (3)	0.0169 (3)	0.0021 (3)	0.0018 (3)	0.0012 (2)
0.0218 (4)	0.0148 (3)	0.0129 (3)	0.0008 (3)	-0.0006 (3)	0.0023 (2)
0.0179 (4)	0.0121 (3)	0.0125 (3)	0.0008 (2)	0.0003 (2)	0.0006 (2)
0.0121 (3)	0.0097 (3)	0.0121 (3)	0.0005 (2)	0.0017 (2)	0.0012 (2)
0.0127 (3)	0.0103 (3)	0.0115 (3)	0.0006 (2)	0.0021 (2)	0.0009 (2)
0.0146 (3)	0.0095 (3)	0.0126 (3)	0.0010 (2)	0.0026 (2)	0.0011 (2)
0.0128 (3)	0.0088 (3)	0.0110 (3)	0.0007 (2)	0.0018 (2)	0.0008 (2)
0.0129 (3)	0.0097 (3)	0.0101 (3)	0.0001 (2)	0.0004 (2)	-0.0001 (2)
0.0137 (3)	0.0084 (3)	0.0116 (3)	-0.0001 (2)	0.0010 (2)	0.0001 (2)
0.0129 (3)	0.0093 (3)	0.0106 (3)	0.0002 (2)	0.0015 (2)	0.0010 (2)
0.0163 (3)	0.0102 (3)	0.0110 (3)	0.0005 (2)	0.0011 (2)	-0.0003 (2)
0.0165 (3)	0.0093 (3)	0.0117 (3)	0.0006 (2)	0.0015 (2)	-0.0004 (2)
0.0385 (4)	0.0160 (3)	0.0140 (3)	-0.0034 (3)	0.0071 (3)	-0.0002 (2)
	U^{11} 0.0222 (3) 0.0237 (3) 0.0247 (3) 0.0206 (3) 0.0185 (3) 0.0154 (3) 0.0154 (3) 0.0139 (3) 0.0195 (4) 0.0195 (4) 0.0195 (4) 0.0121 (3) 0.0127 (3) 0.0128 (3) 0.0129 (3) 0.0129 (3) 0.0163 (3) 0.0385 (4)	U^{11} U^{22} $0.0222 (3)$ $0.0097 (2)$ $0.0237 (3)$ $0.0122 (2)$ $0.0247 (3)$ $0.0080 (2)$ $0.0206 (3)$ $0.0099 (2)$ $0.0185 (3)$ $0.0132 (3)$ $0.0154 (3)$ $0.0084 (2)$ $0.0139 (3)$ $0.0104 (2)$ $0.0139 (3)$ $0.0104 (2)$ $0.0195 (4)$ $0.0109 (3)$ $0.0121 (3)$ $0.0121 (3)$ $0.0127 (3)$ $0.0103 (3)$ $0.0127 (3)$ $0.0097 (3)$ $0.0128 (3)$ $0.0095 (3)$ $0.0129 (3)$ $0.0097 (3)$ $0.0129 (3)$ $0.0097 (3)$ $0.0129 (3)$ $0.0097 (3)$ $0.0129 (3)$ $0.0093 (3)$ $0.0163 (3)$ $0.0102 (3)$ $0.0165 (3)$ $0.0093 (3)$ $0.0385 (4)$ $0.0160 (3)$	U^{11} U^{22} U^{33} $0.0222 (3)$ $0.0097 (2)$ $0.0151 (2)$ $0.0237 (3)$ $0.0122 (2)$ $0.0108 (2)$ $0.0247 (3)$ $0.0080 (2)$ $0.0154 (2)$ $0.0206 (3)$ $0.0099 (2)$ $0.0112 (2)$ $0.0185 (3)$ $0.0132 (3)$ $0.0162 (3)$ $0.0154 (3)$ $0.0084 (2)$ $0.0115 (2)$ $0.0139 (3)$ $0.0104 (2)$ $0.0126 (3)$ $0.0195 (4)$ $0.0109 (3)$ $0.0169 (3)$ $0.0195 (4)$ $0.0109 (3)$ $0.0169 (3)$ $0.0121 (3)$ $0.0121 (3)$ $0.0125 (3)$ $0.0127 (3)$ $0.0103 (3)$ $0.0115 (3)$ $0.0128 (3)$ $0.0097 (3)$ $0.0126 (3)$ $0.0128 (3)$ $0.0095 (3)$ $0.0126 (3)$ $0.0129 (3)$ $0.0097 (3)$ $0.0110 (3)$ $0.0129 (3)$ $0.0097 (3)$ $0.0110 (3)$ $0.0129 (3)$ $0.0097 (3)$ $0.0110 (3)$ $0.0129 (3)$ $0.0097 (3)$ $0.0110 (3)$ $0.0129 (3)$ $0.0097 (3)$ $0.0110 (3)$ $0.0129 (3)$ $0.0093 (3)$ $0.0110 (3)$ $0.0163 (3)$ $0.0102 (3)$ $0.0110 (3)$ $0.0165 (3)$ $0.0093 (3)$ $0.0110 (3)$ $0.0165 (3)$ $0.0093 (3)$ $0.0140 (3)$	U^{11} U^{22} U^{33} U^{12} $0.0222 (3)$ $0.0097 (2)$ $0.0151 (2)$ $-0.0004 (2)$ $0.0237 (3)$ $0.0122 (2)$ $0.0108 (2)$ $0.0021 (2)$ $0.0247 (3)$ $0.0080 (2)$ $0.0154 (2)$ $0.0006 (2)$ $0.0206 (3)$ $0.0099 (2)$ $0.0112 (2)$ $0.00154 (19)$ $0.0185 (3)$ $0.0132 (3)$ $0.0162 (3)$ $0.0008 (2)$ $0.0154 (3)$ $0.0084 (2)$ $0.0115 (2)$ $0.0012 (2)$ $0.0139 (3)$ $0.0104 (2)$ $0.0126 (3)$ $0.0018 (2)$ $0.0188 (4)$ $0.0110 (3)$ $0.0133 (3)$ $0.0015 (2)$ $0.0195 (4)$ $0.0109 (3)$ $0.0169 (3)$ $0.0021 (3)$ $0.0218 (4)$ $0.0148 (3)$ $0.0129 (3)$ $0.0008 (3)$ $0.0179 (4)$ $0.0121 (3)$ $0.0125 (3)$ $0.0008 (2)$ $0.0121 (3)$ $0.0097 (3)$ $0.0115 (3)$ $0.0006 (2)$ $0.0127 (3)$ $0.0103 (3)$ $0.0115 (3)$ $0.0007 (2)$ $0.0128 (3)$ $0.0097 (3)$ $0.0110 (3)$ $0.0007 (2)$ $0.0129 (3)$ $0.0097 (3)$ $0.0110 (3)$ $0.0001 (2)$ $0.0129 (3)$ $0.0093 (3)$ $0.0116 (3)$ $-0.0001 (2)$ $0.0129 (3)$ $0.0093 (3)$ $0.0116 (3)$ $-0.0005 (2)$ $0.0163 (3)$ $0.0093 (3)$ $0.0117 (3)$ $0.0006 (2)$ $0.0165 (3)$ $0.0093 (3)$ $0.0140 (3)$ $-0.0034 (3)$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0222 (3)$ $0.0097 (2)$ $0.0151 (2)$ $-0.0004 (2)$ $0.0018 (2)$ $0.0237 (3)$ $0.0122 (2)$ $0.0108 (2)$ $0.0021 (2)$ $-0.0033 (2)$ $0.0247 (3)$ $0.0080 (2)$ $0.0154 (2)$ $0.0006 (2)$ $-0.0029 (2)$ $0.0266 (3)$ $0.0099 (2)$ $0.0112 (2)$ $0.00154 (19)$ $-0.0010 (2)$ $0.0185 (3)$ $0.0132 (3)$ $0.0162 (3)$ $0.0008 (2)$ $0.0005 (2)$ $0.0154 (3)$ $0.0084 (2)$ $0.0115 (2)$ $0.0012 (2)$ $0.0002 (2)$ $0.0139 (3)$ $0.0104 (2)$ $0.0126 (3)$ $0.0018 (2)$ $0.0014 (2)$ $0.0188 (4)$ $0.0110 (3)$ $0.0133 (3)$ $0.0015 (2)$ $0.0017 (3)$ $0.0195 (4)$ $0.0109 (3)$ $0.0129 (3)$ $0.0008 (3)$ $-0.0006 (3)$ $0.0218 (4)$ $0.0121 (3)$ $0.0125 (3)$ $0.0008 (2)$ $0.003 (2)$ $0.0127 (3)$ $0.0103 (3)$ $0.0121 (3)$ $0.0005 (2)$ $0.0021 (2)$ $0.0127 (3)$ $0.0097 (3)$ $0.0126 (3)$ $0.0006 (2)$ $0.0026 (2)$ $0.0128 (3)$ $0.0097 (3)$ $0.0116 (3)$ $0.0007 (2)$ $0.0018 (2)$ $0.0129 (3)$ $0.0097 (3)$ $0.0101 (3)$ $0.0001 (2)$ $0.0004 (2)$ $0.0129 (3)$ $0.0093 (3)$ $0.0116 (3)$ $-0.0001 (2)$ $0.0014 (2)$ $0.0129 (3)$ $0.0093 (3)$ $0.0116 (3)$ $-0.0001 (2)$ $0.0015 (2)$ $0.0128 (4)$ $0.0102 (3)$ $0.0110 (3)$ $0.0005 (2)$ $0.0015 (2)$ </td

supporting information

O2W	0.0281 (4)	0.0104 (2)	0.0201 (3)	-0.0019 (2)	0.0065 (2)	-0.0011 (2)
Geometr	ic parameters (Å	, °)				
01—C6		1.2326	5 (9)	С3—НЗА		0.988 (13)
О2—С9		1.3743	3 (9)	C4—C5		1.3941 (10)
O2—H1	02	0.883	(18)	C4—H4A		0.921 (14)
O3—C10	0	1.3557	7 (9)	C5—C6		1.5009 (10)
O3—H1	O3	0.868	(18)	C7—C8		1.4442 (10)
04—C1	1	1.3577	7 (9)	C7—H7A		0.987 (15)
O4—H1	04	0.895	(18)	C8—C13		1.4011 (10)
N1—C2		1.3380) (10)	C8—C9		1.4060 (10)
N1—C3		1.3428	3 (11)	C9—C10		1.3954 (10)
N2—C6		1.3524	l (9)	C10-C11		1.4047 (10)
N2—N3		1.3809) (9)	C11—C12		1.3965 (10)
N2—H1	N2	0.890	(16)	C12—C13		1.3827 (10)
N3—C7		1.2921	(10)	C12—H12A		0.946 (13)
C1—C5		1.3929	(10)	С13—Н13А		1.000 (13)
C1-C2		1.3945	5(11)	O1W—H1W1		0.926 (18)
C1—H1	A	0.988	(13)	O1W—H2W1		0.838 (18)
С2—Н2	A	0.960	(14)	O2W—H1W2		0.834 (16)
C3—C4	-	1.3847	7 (11)	O2W—H2W2		0.863 (19)
С9—02-	—H1O2	105.5	(11)	N2—C6—C5		116.10 (6)
C10O	3—H1O3	118.3	(12)	N3—C7—C8		121.57 (7)
C11—O4	4—H1O4	106.7	(12)	N3—C7—H7A		119.2 (8)
C2-N1-	—С3	117.41	(7)	С8—С7—Н7А		119.2 (8)
C6—N2-	—N3	118.17	'(6)	С13—С8—С9		118.86 (6)
C6—N2-	—H1N2	124.5	(10)	C13—C8—C7		118.20 (6)
N3—N2-	—H1N2	117.1	(10)	C9—C8—C7		122.94 (6)
C7—N3-	—N2	115.84	(6)	O2—C9—C10		117.13 (6)
C5-C1-	—C2	118.73	(7)	O2—C9—C8		121.91 (6)
C5-C1-	—H1A	122.3	(8)	С10—С9—С8		120.96 (6)
C2-C1-	—H1A	118.9	(8)	O3—C10—C9		123.14 (6)
N1-C2-	—C1	123.29	9(7)	O3—C10—C11		118.03 (6)
N1-C2-	—H2A	117.8	(8)	C9—C10—C11		118.83 (6)
C1—C2-	—H2A	118.9	(8)	O4—C11—C12		122.13 (6)
N1-C3-	—C4	123.43	3 (7)	O4—C11—C10		117.24 (6)
N1-C3-	—H3A	117.0	(8)	C12—C11—C10		120.63 (6)
C4—C3-	—H3A	119.6	(8)	C13—C12—C11		119.85 (7)
C3—C4-	C5	118.92	(7)	C13—C12—H12A		121.6 (8)
C3—C4-	—H4A	119.9	(9)	C11—C12—H12A		118.6 (8)
C5-C4-	—H4A	121.1	(9)	C12—C13—C8		120.85 (7)
C1C5-	—C4	118.18	3(7)	С12—С13—Н13А		122.3 (8)
C1C5-	C6	125.04	5 (7)	C8—C13—H13A		116.8 (8)
C4—C5-	C6	116.76	5(6)	H1W1 - O1W - H2W	/1	105.0 (15)
01—C6-	—N2	122.73	3 (7)	H1W2 - O2W - H2W	/2	97.2 (15)
01-C6	C5	121.16	5(7)			()

C6—N2—N3—C7	179.26 (7)	C13—C8—C9—O2	178.05 (7)
C3—N1—C2—C1	1.77 (14)	C7—C8—C9—O2	-1.23 (12)
C5-C1-C2-N1	-0.22 (14)	C13—C8—C9—C10	-1.49 (12)
C2—N1—C3—C4	-1.57 (14)	C7—C8—C9—C10	179.23 (7)
N1—C3—C4—C5	-0.19 (14)	O2—C9—C10—O3	1.24 (12)
C2-C1-C5-C4	-1.57 (12)	C8—C9—C10—O3	-179.21 (8)
C2-C1-C5-C6	177.13 (8)	O2—C9—C10—C11	-178.29 (7)
C3—C4—C5—C1	1.76 (12)	C8—C9—C10—C11	1.26 (12)
C3—C4—C5—C6	-177.05 (8)	O3—C10—C11—O4	0.08 (11)
N3—N2—C6—O1	-3.53 (12)	C9—C10—C11—O4	179.64 (7)
N3—N2—C6—C5	177.10 (7)	O3—C10—C11—C12	-179.47 (8)
C1C5C6O1	-166.63 (8)	C9—C10—C11—C12	0.09 (12)
C4—C5—C6—O1	12.09 (12)	O4—C11—C12—C13	179.27 (7)
C1C5	12.74 (12)	C10-C11-C12-C13	-1.20 (12)
C4—C5—C6—N2	-168.54 (7)	C11—C12—C13—C8	0.97 (12)
N2—N3—C7—C8	178.85 (7)	C9—C8—C13—C12	0.35 (12)
N3—C7—C8—C13	177.91 (8)	C7—C8—C13—C12	179.67 (7)
N3—C7—C8—C9	-2.81 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
02—H1 <i>O</i> 2···N3	0.883 (18)	1.854 (18)	2.6561 (9)	150.1 (16)
O3—H1 <i>O</i> 3…N1 ⁱ	0.869 (19)	1.835 (19)	2.6911 (10)	168.4 (18)
O4—H1 <i>O</i> 4···O1 <i>W</i>	0.895 (18)	1.769 (18)	2.6559 (9)	170.5 (18)
N2—H1 $N2$ ···O2 W^{ii}	0.890 (16)	2.132 (15)	2.9910 (9)	162.1 (14)
O1W— $H1W1$ ···O1 ⁱⁱⁱ	0.926 (18)	1.880 (18)	2.7834 (9)	164.6 (16)
O1 <i>W</i> —H2 <i>W</i> 1···O2 <i>W</i>	0.837 (19)	2.077 (18)	2.8980 (11)	167.0 (18)
O2W—H1 $W2$ ···O2 ^{iv}	0.831 (15)	2.161 (15)	2.9570 (11)	160.3 (14)
O2W— $H2W2$ ···O4 ^v	0.86 (2)	1.91 (2)	2.7688 (9)	173.3 (19)
C4—H4 A ···O1 ^{vi}	0.922 (14)	2.575 (14)	3.2930 (11)	135.1 (11)
$C7$ — $H7A$ ···O2 W^{ii}	0.988 (14)	2.347 (14)	3.2176 (10)	146.7 (12)

Symmetry codes: (i) -*x*+2, *y*+1/2, -*z*+5/2; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*-1, *y*, *z*-1; (iv) *x*, *y*, *z*-1; (v) *x*, -*y*+3/2, *z*-1/2; (vi) -*x*+2, -*y*+1, -*z*+3.