

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Chloro-*N'*-(4-methoxybenzylidene)benzohydrazide methanol monosolvate

Hai-Tao Huang^a* and Hong-Yuan Wu^b

^aPharmacy School, Qiqihar Medical University, Qiqihar 161006, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China Correspondence e-mail: huanghaitao09@163.com

Received 19 September 2010; accepted 28 September 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.060; wR factor = 0.123; data-to-parameter ratio = 9.3.

The title compound, $C_{15}H_{13}ClN_2O_2 \cdot CH_4O$, consists of a 4chloro-*N'*-(4-methoxybenzylidene)benzohydrazide (CMB) molecule and a methanol molecule of crystallization. It was obtained by the condensation of 4-methoxybenzaldehyde with 4-chlorobenzohydrazide. In the CMB molecule, the dihedral angle between the two benzene rings is 50.1 (3)°. The methanol molecule is linked to the CMB molecule through $O-H\cdots O$ and $O-H\cdots N$ hydrogen bonds. In the crystal, CMB molecules are linked through intermolecular $N-H\cdots O$ hydrogen bonds, involving the methanol molecule, forming chains propagating along [010].

Related literature

For background to compounds obtained by the condensation of aldehydes with benzohydrazides, see: Qiu & Zhao (2008); Yathirajan *et al.* (2007); Salhin *et al.* (2007). For their biological properties, see: Bedia *et al.* (2006); Terzioglu & Gürsoy (2003); Küçükgüzel *et al.* (2003); Charkoudian *et al.* (2007). For similar compounds reported by our group, see: Huang (2009); Wu (2009). For other similar structures, see: Fun *et al.* (2008); Liu & Li (2004); Lei *et al.* (2008). For bond-length data, see: Allen *et al.* (1987).

V = 799.6 (4) Å³

Mo $K\alpha$ radiation

 $0.17 \times 0.13 \times 0.12 \text{ mm}$

6424 measured reflections

1865 independent reflections

1030 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.25 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.074$

1 restraint

 $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.19$ e Å⁻³

Z = 2

Experimental

Crystal data

C₁₅H₁₃ClN₂O₂·CH₄O $M_r = 320.77$ Monoclinic, $P2_1$ a = 10.914 (3) Å b = 6.459 (2) Å c = 11.358 (2) Å $\beta = 93.000$ (3)°

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.958, T_{\rm max} = 0.970$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.123$ S = 1.001865 reflections 201 parameters

Table 1

Hydrogen-bond	geometry	(Å, '	°).
	B	·	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3−H3···N2	0.82	2.47	3.184 (6)	146
O3−H3···O1	0.82	2.12	2.820 (6)	143
$N1 - H1 \cdots O3^i$	0.86	2.08	2.880 (6)	154

Symmetry code: (i) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by Qiqihar Medical University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2215).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). *Eur. J. Med. Chem.* **41**, 1253–1261.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Charkoudian, L. K., Pham, D. M., Kwon, A. M., Vangeloff, A. D. & Franz, K. J. (2007). *Dalton Trans.* pp. 5031–5042.

Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, 01594–01595.

Huang, H.-T. (2009). Acta Cryst. E65, 0892.

- Küçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.
- Lei, J.-T., Jiang, Y.-X., Tao, L.-Y., Huang, S.-S. & Zhang, H.-L. (2008). Acta Cryst. E64, 0909.

Liu, W.-Y. & Li, Y.-Z. (2004). Acta Cryst. E60, 0694-0695.

Qiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067.

Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, 02880.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122. Terzioglu, N. & Gürsoy, A. (2003). *Eur. J. Med. Chem.* **38**, 781–786.

Wu, H.-Y. (2009). Acta Cryst. E65, 0852. Yathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o2719.

supporting information

Acta Cryst. (2010). E66, o2729–o2730 [https://doi.org/10.1107/S1600536810038857]

4-Chloro-N'-(4-methoxybenzylidene)benzohydrazide methanol monosolvate

Hai-Tao Huang and Hong-Yuan Wu

S1. Comment

In the last few years considerable attention has been focused on compounds derived from the condensation of aldehydes with benzohydrazides, especially for their crystal structures (Lei *et al.*, 2008; Qiu & Zhao, 2008; Yathirajan *et al.*, 2007; Salhin *et al.*, 2007; Fun *et al.*, 2008; Liu & Li, 2004) or for their biological properties (Bedia *et al.*, 2006; Terzioglu & Gürsoy, 2003; Küçükgüzel *et al.*, 2003; Charkoudian *et al.*, 2007). Continueing our research on the synthesis and crystal structures of such compounds (Huang, 2009; Wu, 2009), herein we report on the crystal structure of the title compound, obtained by the condensation of 4-methoxybenzaldehyde with 4-chlorobenzohydrazide.

The title compound consists of a 4-chloro-*N*'-(4-methoxybenzylidene)benzohydrazide (CMB) molecule and a methanol solvent molecule (Fig. 1). The methanol molecule is linked to the CMB molecule through intermolecular O—H…O and O —H…N hydrogen bonds (Table 1). In the CMB molecule the dihedral angle between the two benzene rings is 50.1 (3)°. The bond distances (Allen *et al.*, 1987) and bond angles are normal and similar to those reported for the above mentioned compounds.

In the crystal molecules are linked, *via* the methanol molecule, through intermolecular N—H···O hydrogen bonds (Table 1), so forming chains propagating along the b axis (Fig. 2).

S2. Experimental

The title compound was prepared by the condensation of 4-methoxybenzaldehyde (0.1 mol) and 4-chlorobenzohydrazide (0.1 mol) in ethanol (20 ml). The excess ethanol was removed by distillation. The colou; rless solid obtained was filtered and washed with ethanol. Single crystals, suitable for X-ray diffraction, were obtained on slow evaporation of a solution of the title compound in methanol.

S3. Refinement

As there is no asymmetric center in the title molecule in the final cycles of least-squares refinement 1371 Friedel pairs were merged and $\Delta f''$ set to zero, rather than refining the structure as a inversion twin. The H-atoms were positioned geometrically and treated as riding atoms: O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93 and 0.96 Å, for CH and CH₃ H-atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(O-, N-, C-parent atom)$, where k = 1.5 for OH and CH₃ H-atoms and k = 1.2 for all other H-atoms.

Figure 1

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2

The crystal packing of the title compound viewed along the c axis. Hydrogen bonds are shown as dashed lines - see Table 1 for details (H-atoms not involved in hydrogen bonding have been omitted for clarity).

4-Chloro-N'-(4-methoxybenzylidene)benzohydrazide methanol monosolvate

Crystal data

$C_{15}H_{13}ClN_2O_2{\cdot}CH_4O$
$M_r = 320.77$
Monoclinic, $P2_1$
Hall symbol: P 2yb
<i>a</i> = 10.914 (3) Å
<i>b</i> = 6.459 (2) Å
c = 11.358 (2) Å
$\beta = 93.000 \ (3)^{\circ}$
$V = 799.6 (4) \text{ Å}^3$
Z = 2

F(000) = 336 $D_x = 1.332 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 640 reflections $\theta = 2.5-24.3^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.17 \times 0.13 \times 0.12 \text{ mm}$ Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.958, T_{max} = 0.970$ <i>Refinement</i>	6424 measured reflections 1865 independent reflections 1030 reflections with $I > 2\sigma(I)$ $R_{int} = 0.074$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -13 \rightarrow 13$ $k = -7 \rightarrow 8$ $l = -14 \rightarrow 14$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
S = 1.00	H-atom parameters constrained
1865 reflections	$w = 1/[\sigma^2(F_o^2) + (0.048P)^2]$
201 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.24$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.19$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.58789 (14)	1.0709 (3)	1.25398 (13)	0.0754 (6)	
01	0.7358 (4)	0.4112 (6)	0.8320 (3)	0.0689 (13)	
O2	1.0029 (3)	0.3682 (6)	0.1329 (3)	0.0573 (11)	
N1	0.7495 (4)	0.7047 (7)	0.7275 (4)	0.0502 (12)	
H1	0.7447	0.8376	0.7257	0.060*	
N2	0.7810 (4)	0.5948 (7)	0.6283 (4)	0.0493 (12)	
C1	0.6292 (5)	0.9354 (10)	1.1301 (5)	0.0505 (15)	
C2	0.6174 (5)	1.0320 (9)	1.0215 (5)	0.0571 (16)	
H2	0.5886	1.1673	1.0156	0.069*	
C3	0.6487 (5)	0.9259 (9)	0.9215 (5)	0.0559 (15)	
H3A	0.6402	0.9908	0.8484	0.067*	
C4	0.6922 (4)	0.7256 (8)	0.9284 (5)	0.0395 (13)	
C5	0.7063 (5)	0.6364 (9)	1.0389 (5)	0.0561 (16)	
H5	0.7393	0.5039	1.0456	0.067*	
C6	0.6732 (5)	0.7365 (10)	1.1399 (5)	0.0592 (17)	
H6	0.6805	0.6708	1.2128	0.071*	

C7	0.7264 (5)	0.5997 (10)	0.8265 (5)	0.0500 (14)
C8	0.8292 (5)	0.7001 (9)	0.5487 (5)	0.0482 (15)
H8	0.8390	0.8418	0.5605	0.058*
C9	0.8700 (4)	0.6108 (9)	0.4395 (4)	0.0424 (13)
C10	0.9473 (5)	0.7190 (8)	0.3688 (5)	0.0482 (14)
H10	0.9700	0.8532	0.3901	0.058*
C11	0.9914 (5)	0.6360 (9)	0.2693 (5)	0.0504 (15)
H11	1.0449	0.7116	0.2248	0.060*
C12	0.9561 (5)	0.4384 (9)	0.2346 (5)	0.0441 (14)
C13	0.8792 (5)	0.3255 (8)	0.3021 (4)	0.0448 (14)
H13	0.8558	0.1925	0.2791	0.054*
C14	0.8365 (5)	0.4103 (9)	0.4045 (5)	0.0492 (15)
H14	0.7852	0.3329	0.4503	0.059*
C15	0.9668 (6)	0.1704 (10)	0.0893 (5)	0.076 (2)
H15A	0.9827	0.0682	0.1496	0.115*
H15B	1.0125	0.1372	0.0218	0.115*
H15C	0.8807	0.1718	0.0670	0.115*
O3	0.7025 (4)	0.1217 (6)	0.6473 (4)	0.0689 (12)
H3	0.7236	0.2346	0.6745	0.103*
C16	0.5831 (6)	0.1364 (13)	0.5954 (5)	0.092 (2)
H16A	0.5772	0.2565	0.5456	0.139*
H16B	0.5254	0.1481	0.6560	0.139*
H16C	0.5651	0.0147	0.5491	0.139*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0776 (11)	0.0881 (14)	0.0620 (10)	-0.0048 (11)	0.0168 (8)	-0.0320 (10)
01	0.111 (4)	0.035 (2)	0.063 (3)	0.008 (3)	0.018 (2)	-0.002 (2)
O2	0.074 (3)	0.051 (3)	0.049 (2)	0.004 (2)	0.024 (2)	-0.004 (2)
N1	0.069 (3)	0.030 (3)	0.052 (3)	0.004 (2)	0.014 (2)	-0.009 (2)
N2	0.064 (3)	0.035 (3)	0.050 (3)	0.003 (3)	0.011 (2)	-0.006 (3)
C1	0.041 (3)	0.065 (4)	0.046 (4)	-0.003 (3)	0.006 (3)	-0.023 (3)
C2	0.065 (4)	0.044 (4)	0.064 (4)	0.000 (3)	0.018 (3)	-0.009 (3)
C3	0.075 (4)	0.038 (3)	0.056 (4)	0.004 (3)	0.017 (3)	0.001 (3)
C4	0.044 (3)	0.034 (3)	0.040 (3)	0.001 (3)	0.004 (3)	-0.008 (3)
C5	0.053 (4)	0.048 (4)	0.068 (4)	0.014 (3)	0.004 (3)	0.003 (3)
C6	0.055 (4)	0.071 (5)	0.052 (4)	0.009 (4)	0.007 (3)	0.001 (4)
C7	0.054 (4)	0.042 (4)	0.054 (4)	0.004 (3)	0.008 (3)	0.001 (3)
C8	0.058 (4)	0.033 (3)	0.054 (4)	0.001 (3)	0.002 (3)	-0.007 (3)
C9	0.047 (3)	0.038 (3)	0.041 (3)	0.002 (3)	-0.001 (3)	-0.004 (3)
C10	0.056 (4)	0.034 (3)	0.054 (4)	-0.008 (3)	0.000 (3)	0.003 (3)
C11	0.059 (4)	0.045 (4)	0.048 (4)	-0.003 (3)	0.010 (3)	0.007 (3)
C12	0.046 (3)	0.045 (4)	0.041 (3)	0.006 (3)	-0.002 (3)	-0.001 (3)
C13	0.057 (4)	0.035 (3)	0.044 (3)	-0.008 (3)	0.010 (3)	-0.008 (3)
C14	0.060 (4)	0.037 (3)	0.051 (4)	-0.007 (3)	0.009 (3)	-0.001 (3)
C15	0.102 (6)	0.058 (5)	0.071 (5)	0.001 (4)	0.017 (4)	-0.022 (4)
03	0.095 (3)	0.031 (3)	0.080 (3)	0.005 (2)	0.003 (2)	-0.006 (2)

supporting information C16 0.102 (6) 0.087(6) 0.087(5)-0.001(5)-0.004(4)-0.013(5)Geometric parameters (Å, °) Cl1-C1 1.736 (5) C8—H8 0.9300 O1—C7 C9-C10 1.224(7)1.384(7)O2-C12 1.364 (6) C9-C14 1.398 (8) O2-C15 1.419(7) C10-C11 1.362 (7) C10-H10 N1-C7 1.349(6) 0.9300 N1-N2 1.389 (5) C11-C12 1.385(7) N1—H1 C11—H11 0.9300 0.8600 N2-C8 1.268 (6) C12-C13 1.375 (7) C1-C6 1.374 (8) C13-C14 1.389(6) C1-C2 C13—H13 0.9300 1.383(7)C2-C3 1.384(7)C14—H14 0.9300 C2—H2 0.9300 C15—H15A 0.9600 C3-C4 1.379(7) C15-H15B 0.9600 С3—НЗА 0.9300 C15-H15C 0.9600 C4—C5 O3-C16 1.383(7)1.406 (6) C4—C7 O3-H3 0.8200 1.477 (7) С5—С6 1.381(7) C16—H16A 0.9600 С5—Н5 0.9300 C16-H16B 0.9600 С6—Н6 0.9300 C16-H16C 0.9600 C8-C9 1.458 (7) C10-C9-C8 C12-02-C15 119.0 (4) 121.1(5)C7-N1-N2 119.0 (4) C14-C9-C8 121.4 (5) C7-N1-H1 C11-C10-C9 120.5 122.4 (5) N2-N1-H1 120.5 C11-C10-H10 118.8 C8-N2-N1 115.7 (5) C9-C10-H10 118.8 C6-C1-C2 C10-C11-C12 119.6 (5) 120.6 (5) C6-C1-Cl1 120.7 (5) C10-C11-H11 120.2 C2-C1-Cl1 118.7 (5) C12-C11-H11 120.2 C1-C2-C3 119.6 (6) O2-C12-C13 124.2 (5) C1-C2-H2 120.2 O2-C12-C11 115.9 (5) C3-C2-H2 120.2 C13-C12-C11 119.9 (5) C4—C3—C2 121.1 (6) C12-C13-C14 120.0 (5) С4-С3-НЗА 119.4 C12-C13-H13 120.0 С2—С3—Н3А 119.4 C14-C13-H13 120.0 C3-C4-C5 117.6(5) C13-C14-C9 120.6 (5)

C13-C14-H14

C9-C14-H14

O2-C15-H15A

O2-C15-H15B

O2-C15-H15C

H15A-C15-H15B

124.9 (5)

117.5 (5)

122.5 (5)

118.4 (6)

118.7

118.7

C3—C4—C7

C5-C4-C7

C6-C5-C4

С6—С5—Н5

С4—С5—Н5

C1-C6-C5

119.7

119.7

109.5

109.5

109.5

109.5

109.5

109.5

O1—C7—N1	121.6 (5)	С16—О3—Н3	109.5
O1—C7—C4	122.1 (5)	O3—C16—H16A	109.5
N1—C7—C4	116.3 (5)	O3—C16—H16B	109.5
N2—C8—C9	123.5 (5)	H16A—C16—H16B	109.5
N2—C8—H8	118.3	O3—C16—H16C	109.5
С9—С8—Н8	118.3	H16A—C16—H16C	109.5
C10—C9—C14	117.5 (5)	H16B—C16—H16C	109.5
C7—N1—N2—C8	-164.0 (5)	C5-C4-C7-N1	-159.7 (5)
C6—C1—C2—C3	0.9 (8)	N1—N2—C8—C9	178.9 (4)
Cl1—C1—C2—C3	-179.4 (4)	N2-C8-C9-C10	-164.4 (5)
C1—C2—C3—C4	-0.4 (9)	N2-C8-C9-C14	13.1 (8)
C2—C3—C4—C5	-1.5 (8)	C14—C9—C10—C11	-0.7 (8)
C2—C3—C4—C7	179.2 (5)	C8—C9—C10—C11	176.9 (5)
C3—C4—C5—C6	3.1 (8)	C9-C10-C11-C12	1.7 (8)
C7—C4—C5—C6	-177.6 (5)	C15—O2—C12—C13	3.0 (8)
C2-C1-C6-C5	0.6 (8)	C15—O2—C12—C11	-177.5 (5)
Cl1—C1—C6—C5	-179.2 (4)	C10-C11-C12-O2	179.0 (5)
C4—C5—C6—C1	-2.7 (9)	C10-C11-C12-C13	-1.5 (8)
N2-N1-C7-01	2.0 (8)	O2—C12—C13—C14	179.9 (5)
N2—N1—C7—C4	-179.4 (4)	C11—C12—C13—C14	0.4 (8)
C3—C4—C7—O1	-161.9 (5)	C12—C13—C14—C9	0.6 (8)
C5—C4—C7—O1	18.8 (8)	C10-C9-C14-C13	-0.5 (7)
C3—C4—C7—N1	19.5 (8)	C8—C9—C14—C13	-178.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
O3—H3…N2	0.82	2.47	3.184 (6)	146
O3—H3…O1	0.82	2.12	2.820 (6)	143
N1—H1···O3 ⁱ	0.86	2.08	2.880 (6)	154

Symmetry code: (i) x, y+1, z.