Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hexakis(N, N^{\prime}-dimethylthiourea- κS)nickel(II) nitrate

Iram Asif, ${ }^{\text {a }}$ Rashid Mahmood, ${ }^{\text {b }}$ Helen Stoeckli-Evans, ${ }^{\text {c }}$ Muhammad Mateen ${ }^{\text {a }}$ and Saeed Ahmad ${ }^{\mathrm{a} *}$
${ }^{\text {a }}$ Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, ${ }^{\mathbf{b}}$ Division of Science and Technology, University of Education, Township, Lahore, Pakistan, and ${ }^{\text {c Institute of Physics, University of Neuchâtel, rue Emile-Argand }}$ 11, CH-2000 Neuchâtel, Switzerland
Correspondence e-mail: saeed_a786@hotmail.com

Received 3 October 2010; accepted 7 October 2010

Key indicators: single-crystal X-ray study; $T=223 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.003 \AA$; R factor $=0.029 ; w R$ factor $=0.056$; data-to-parameter ratio $=15.2$.

The title complex salt, $\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}$, consists of an $\left[\mathrm{Ni}(\mathrm{Dmtu})_{6}\right]^{2+}$ (Dmtu is N, N^{\prime}-dimethylthiourea) dication and two nitrate counter-anions. The $\mathrm{Ni}^{\mathrm{II}}$ atom (site symmetry $\overline{3}$) is coordinated by the S atoms of six Dmtu ligands within a slightly distorted octahedral environment. The crystal structure is characterized by weak intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions and by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the nitrate anion (site symmetry 3.). These intermolecular interactions lead to the formation of two-dimensional networks lying parallel to the $a b$ plane. The networks are linked via non-classical intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a three-dimensional arrangement.

Related literature

For background to nickel(II) complexes of thiourea and its derivatives, see: Ambujam et al. (2006); Basso et al. (1969); Bentley \& Waters (1974); Chiesi et al. (1971); Crane \& Herod (2004); Eaton \& Zaw (1975); El-Bahy et al. (2003); Figgis \& Reynolds (1986); Monim-ul-Mehboob et al. (2010); Sonar et al. (1979); Weininger et al. (1969); Weininger \& Amma (1976). For the crystal structures of similar nickel(II) complexes, see: Bentley \& Waters (1974); El-Bahy et al. (2003); Monim-ulMehboob et al. (2010); Weininger et al. (1969).

Experimental

Crystal data
$\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}$
$M_{r}=807.77$
Trigonal, $R \overline{3} c$
$a=13.7166(10) \AA$
$c=35.332$ (3) A
$V=5756.9(8) \AA^{3}$
$Z=6$
Mo $K \alpha$ radiation
$\mu=0.88 \mathrm{~mm}^{-1}$
$T=223 \mathrm{~K}$
$0.30 \times 0.26 \times 0.24 \mathrm{~mm}$

Data collection

Stoe IPDS 2 diffractometer Absorption correction: multi-scan (MULscanABS; Spek, 2009)
$T_{\text {min }}=0.963, T_{\max }=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.056$
$S=1.00$
1199 reflections
79 parameters
2 restraints

3491 measured reflections 1199 independent reflections 851 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.17 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{~S}^{1}{ }^{\mathrm{i}}$	$0.86(2)$	$2.520(19)$	$3.367(2)$	$168.6(17)$
$\mathrm{N} 2-\mathrm{H} 2 N \cdots 1^{\mathrm{ii}}$	$0.83(2)$	$2.14(2)$	$2.947(3)$	$163.4(18)$
${\mathrm{C} 3-\mathrm{H} 3 B \cdots{ }^{\text {iii }}}{ }^{2}$	0.97	2.41	$3.180(3)$	136

Symmetry codes: (i) $x-y+\frac{1}{3},-y+\frac{2}{3},-z+\frac{1}{6}$; (ii) $-x+y,-x, z$; (iii) $y,-x+y,-z$.

Data collection: X-AREA (Stoe \& Cie, 2009); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010).

We thank the staff of the X-ray Application Lab, CSEM, Neuchâtel, for access to the X-ray diffraction equipement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2412).

References

Ambujam, K., Thomas, P. C., Aruna, S., Anand, D. P. \& Sagayaraj, P. (2006). Cryst. Res. Technol. 41, 1082-1088.
Basso, S., Costamagna, J. A. \& Levitus, R. (1969). J. Inorg. Nucl. Chem. 31, 1797-1805.
Bentley, G. A. \& Waters, J. M. (1974). J. Inorg. Nucl. Chem. 36, 2247-2252.
Chiesi, A., Mangia, A., Nardelli, M. \& Pelizzi, G. (1971). J. Chem. Crystallogr. 1, 285-289.
Crane, J. D. \& Herod, A. (2004). Inorg. Chem. Commun. 7, 38-41.
Eaton, D. R. \& Zaw, K. (1975). Can. J. Chem. 53, 633-643.
El-Bahy, G. M. S., El-Sayed, B. A. \& Shabana, A. A. (2003). Vib. Spectrosc. 31, 101-107.
Figgis, B. N. \& Reynolds, P. A. (1986). J. Chem. Soc. Dalton Trans. pp. 125-134.
Monim-ul-Mehboob, M., Akkurt, M., Khan, I. U., Sharif, S., Asif, I. \& Ahmad, S. (2010). Acta Cryst. E66, i57-i58.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sonar, M. H., Hiremath, A. C. \& Murty, A. S. (1979). Monatsh. Chem. 110, 167-175.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

metal-organic compounds

Stoe \& Cie. (2009). X-AREA and X-RED32. Stoe \& Cie GmbH, Darmstadt, Germany.
Weininger, M. S. \& Amma, E. L. (1976). J. Coord. Chem. 5, 91-99.

Weininger, M. S., O’Connor, J. E. \& Amma, E. L. (1969). Inorg. Chem. 8, 424 431.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2010). E66, m1393-m1394 [https://doi.org/10.1107/S1600536810040031]

Hexakis(N, N^{\prime}-dimethylthiourea- κ S) nickel(II) nitrate

Iram Asif, Rashid Mahmood, Helen Stoeckli-Evans, Muhammad Mateen and Saeed Ahmad

S1. Comment

Several studies have been focused on the synthesis and structural characterization of nickel(II) complexes with thiourea type ligands. These studies showed that nickel(II) can adopt a variety of coordination geometries (octahedral, tetragonal, square-planar and tetrahedral) both in the solid state and in solution, which were prepared by varying the ligands or the anions (Ambujam et al., 2006; Bentley et al., 1974; Chiesi et al., 1971; Eaton \& Zaw, 1975; El-Bahy et al., 2003; Figgis \& Reynolds, 1986; Monim-ul-Mehboob et al., 2010; Sonar et al., 1979; Weininger et al. 1969, Weininger \& Amma, 1976). When the anion is chloride, bromide or iodide, the predominant coordination about the nickel(II) atom in the crystalline solid state is tetragonal with the halide anions in the apical positions, leading to [$\left.\mathrm{Ni} L_{4}\right] X_{2}$ complexes (Ambujam et al., 2006; Chiesi et al., 1971; Crane et al., 2004; Figgis \& Reynolds, 1986; Weininger \& Amma, 1976), although $\left[\mathrm{Ni}_{6}\right] X_{2}$ complexes are also formed (El-Bahy et al., 2003; Weininger et al., 1969). The formation (in the solid
 al., 2006; El-Bahy et al., 2003; Monim-ul-Mehboob et al., 2010; Weininger et al., 1969). The coordination of nickel(II) in nitrate and the perchlorate salts is generally homoleptic octahedral in the solid state (Bentley et al., 1974; Monim-ulMehboob et al., 2010), but also can give such species as $\left[\mathrm{NiL}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ (Basso et al., 1969). We have recently reported on the crystal structure of a thiourea (Tu) complex of nickel(II) nitrate, $\left[\mathrm{Ni}(\mathrm{Tu})_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}$ (Monim-ul-Mehboob et al., 2010). Herein, we report on the crystal structure of the title nickel(II) nitrate complex of dimethylthiourea, $\left[\mathrm{Ni}(\mathrm{Dmtu})_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}$.
The molecular structure of the title complex is illustrated in Fig. 1. It is ionic and consists of a $\left[\mathrm{Ni}(\mathrm{Dmtu})_{6}\right]^{2+}$ cationic unit (site symmetry $\overline{3}$) and two nitrate counter ions (site symmetry 3.). Atom Ni1 assumes a slightly distorted octahedral geometry, due to coordination with six sulfur atoms of the Dmtu ligands. In the cation there are weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions linking adjacent ligand molecules (Table 1). The values of the bond lengths and bond angles observed in the title complex are comparable to those reported for related complexes (Ambujam et al., 2006; El-Bahy et al., 2003; Monim-ul-Mehboob et al., 2010; Weininger et al., 1969). In the only previously reported nickel(II) complex of N, N^{\prime}-dimethylthiourea, $\left[\mathrm{Ni}(\mathrm{Dmtu})_{4}\right] \mathrm{Br}_{2}$ (Weininger \& Amma, 1976), the nickel(II) atom is 4-coordinate, while in the title complex having the same ligand the nickel(II) atom is 6-coordinate, suggesting that in the presence of nitrate an octahedral coordination is preferred.

In the crystal of the title compound the $\left[\mathrm{Ni}(\mathrm{Dmtu})_{6}\right]^{+2}$ cations and the $\mathrm{NO}_{3}{ }^{-}$ions are connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) to form two-dimensional networks lying parallel to the $a b$-plane (Fig. 2). These two-dimensional sheets are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), resulting in the formation of a three-dimensional network.

S2. Experimental

The title compound was prepared by adding 2 equivalents of N, N^{\prime}-dimethylthiourea in 15 ml methanol to 0.29 g (1 mmol) of nickel(II) nitrate hexahydrate in 10 ml methanol. After stirring the mixture for 30 min the solution was filtered. The filtrate on slow evaporation yielded pale-green crystals, suitable for X-ray diffraction analysis.

S3. Refinement

The NH H-atoms were located in difference electron-density maps. In the final cycles of least-squares refinement they was refined with a distance restraint of $\mathrm{N}-\mathrm{H}=0.87$ (2) \AA. The C -bound H -atoms were included in calculated positions and treated as riding atoms: $\mathrm{C}-\mathrm{H}=0.97 \AA$ for $\mathrm{CH}_{3} \mathrm{H}$-atoms, with $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\text {eq }}$ (parent C -atom).

Figure 1
The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [Only one of the nitrate anions is shown; Symmetry codes: $\mathrm{a}=1-y, x-y, z ; \mathrm{b}=1-x+y, 1-x, z ; \mathrm{c}$ $=1 / 3+y,-1 / 3+x, 1 / 6-z ; \mathrm{d}=4 / 3-x, 2 / 3-x+y, 1 / 6-z ; \mathrm{e}=1 / 3+x-y, 2 / 3-y, 1 / 6-z ; \mathrm{f}=-y, x-y, z ; \mathrm{g}=-x+y,-x, z]$.

Figure 2
The crystal packing of the title compound viewed along the c axis (the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds are shown as dashed lines - see Table 1 for details; H-atoms not involved in hydrogen bonding have been omitted for clarity).

Hexakis(N, N^{\prime}-dimethylthiourea- κ S) nickel(II) dinitrate

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}$
$M_{r}=807.77$
Trigonal, $R \overline{3} c$
Hall symbol: -R 3 2"c
$a=13.7166$ (10) \AA
$c=35.332(3) \AA$
$V=5756.9(8) \AA^{3}$
$Z=6$
$F(000)=2556$

Data collection

Stoe IPDS 2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\varphi+\omega$ scans
Absorption correction: multi-scan
(MULscanABS; Spek, 2009)
$T_{\min }=0.963, T_{\text {max }}=1.000$
$D_{\mathrm{x}}=1.398 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2717 reflections
$\theta=2.9-26.1^{\circ}$
$\mu=0.88 \mathrm{~mm}^{-1}$
$T=223 \mathrm{~K}$
Block, pale green
$0.30 \times 0.26 \times 0.24 \mathrm{~mm}$

3491 measured reflections
1199 independent reflections
851 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.6^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-4 \rightarrow 14$
$k=-16 \rightarrow 9$
$l=-42 \rightarrow 40$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.056$
$S=1.00$
1199 reflections
79 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0271 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} / U_{\mathrm{eq}}$
Ni1	0.66667	0.33333	0.08333	$0.0208(1)$
S1	$0.50780(4)$	$0.25803(5)$	$0.03726(1)$	$0.0262(1)$
N1	$0.35924(14)$	$0.17766(18)$	$0.09365(4)$	$0.0319(5)$
N2	$0.29514(15)$	$0.09027(15)$	$0.03650(5)$	$0.0295(5)$
C1	$0.37831(17)$	$0.16823(15)$	$0.05723(5)$	$0.0246(6)$
C2	$0.25557(19)$	$0.10275(19)$	$0.11355(6)$	$0.0399(7)$
C3	$0.3066(2)$	$0.0703(2)$	$-0.00341(6)$	$0.0409(8)$
O1	$0.05182(15)$	$0.10490(12)$	$0.05290(4)$	$0.0449(5)$
N3	0.00000	0.00000	$0.05255(7)$	$0.0300(6)$
H1N	$0.4165(16)$	$0.2300(15)$	$0.1053(5)$	$0.029(6)^{*}$
H2A	0.19490	0.11240	0.10370	0.0600^{*}
H2B	0.26520	0.12040	0.14040	0.0600^{*}
H2C	0.23750	0.02540	0.10990	0.0600^{*}
H2N	$0.2303(14)$	$0.0569(17)$	$0.0455(5)$	$0.021(5)^{*}$
H3A	0.34410	0.14160	-0.01680	0.0610^{*}
H3B	0.23250	0.02290	-0.01430	0.0610^{*}
H3C	0.35070	0.03320	-0.00570	0.0610^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.0195(2)$	$0.0195(2)$	$0.0232(2)$	$0.0098(1)$	0.0000	0.0000
S1	$0.0203(2)$	$0.0277(3)$	$0.0272(2)$	$0.0095(3)$	$-0.0019(2)$	$-0.0009(3)$
N1	$0.0223(8)$	$0.0328(11)$	$0.0325(7)$	$0.0078(10)$	$-0.0009(6)$	$-0.0031(9)$
N2	$0.0180(9)$	$0.0281(10)$	$0.0382(8)$	$0.0084(8)$	$-0.0036(8)$	$-0.0040(8)$

supporting information

C1	$0.0218(10)$	$0.0222(11)$	$0.0336(9)$	$0.0138(8)$	$-0.0037(7)$	$0.0011(7)$
C2	$0.0299(12)$	$0.0453(15)$	$0.0373(10)$	$0.0133(11)$	$0.0033(9)$	$0.0028(9)$
C3	$0.0376(14)$	$0.0439(15)$	$0.0398(11)$	$0.0193(12)$	$-0.0136(10)$	$-0.0131(10)$
O1	$0.0306(10)$	$0.0206(7)$	$0.0794(10)$	$0.0097(9)$	$0.0077(10)$	$0.0079(7)$
N3	$0.0261(9)$	$0.0261(9)$	$0.0379(13)$	$0.0131(5)$	0.0000	0.0000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Ni1-S1	2.4929 (6)	N2-C3	1.460 (3)
Ni1-S1 ${ }^{\text {i }}$	2.4929 (7)	N2-C1	1.327 (3)
Ni1-S1 ${ }^{\text {ii }}$	2.4929 (5)	N1-H1N	0.86 (2)
Ni1-S1 ${ }^{\text {iii }}$	2.4929 (5)	N2-H2N	0.83 (2)
Ni1-S $1^{\text {iv }}$	2.4929 (6)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
Ni1-S1v	2.4929 (7)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9700
S1-C1	1.727 (2)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
O1-N3	1.2462 (14)	C3-H3B	0.9700
N1-C1	1.332 (2)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9700
N1-C2	1.453 (3)	C3-H3A	0.9700
S1—Ni1—S1 ${ }^{\text {i }}$	81.98 (2)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	118.9 (13)
S1-Ni1-S $1^{\text {ii }}$	81.98 (2)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	116.8 (13)
S1-Ni1-S1 ${ }^{\text {iii }}$	99.78 (2)	$\mathrm{O} 1-\mathrm{N} 3-\mathrm{O} 1^{\text {vi }}$	119.99 (14)
S1-Ni1-S1 ${ }^{\text {iv }}$	177.39 (2)	$\mathrm{O} 1^{\text {vii }}-\mathrm{N} 3-\mathrm{O} 1^{\text {vi }}$	119.99 (14)
S1-Ni1-S1 ${ }^{\text {v }}$	96.33 (2)	$\mathrm{O} 1-\mathrm{N} 3-\mathrm{O} 1^{\text {vii }}$	119.99 (14)
$\mathrm{S} 1{ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{S} 1^{\text {ii }}$	81.98 (2)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	118.7 (2)
S1-Ni1-S $1^{\text {iii }}$	96.34 (2)	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2$	120.83 (15)
S1 ${ }^{\text {i }}$-Nil- $\mathrm{S}^{\text {iv }}$	99.78 (2)	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	120.48 (16)
S1 ${ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{S}^{\text {v }}$	177.40 (2)	N1-C2-H2B	109.00
S ${ }^{\text {iii }}$-Ni1-S $1^{\text {iii }}$	177.40 (3)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	110.00
S1 ${ }^{\text {ii- }}$-Ni1-S1 ${ }^{\text {iv }}$	96.33 (2)	N1- $\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.00
S $1^{\text {ii- }}$ - $\mathrm{Ni} 1-\mathrm{Sl}^{\text {v }}$	99.78 (2)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.00
S1 ${ }^{\text {iii- }}$-Ni1-S1 ${ }^{\text {iv }}$	81.98 (2)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.00
S $1^{\text {iii }}$-Ni1-S1 ${ }^{\text {v }}$	81.98 (2)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.00
S1 ${ }^{\text {iv }}$-Ni1-S1 ${ }^{\text {v }}$	81.97 (2)	N2-C3-H3C	109.00
Ni1-S1-C1	113.77 (7)	H3A-C3-H3C	109.00
C1-N1-C2	124.68 (19)	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	110.00
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	123.7 (2)	H3A-C3-H3B	109.00
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	113.7 (13)	N2-C3-H3A	110.00
C2-N1-H1N	121.5 (13)	N2-C3-H3B	109.00
S1- ${ }^{\text {i }}$ (11-S1-C1	124.24 (8)	Ni1-S1-C1-N2	-154.41 (17)
S1i- ${ }^{\text {ii }} 11-\mathrm{S} 1-\mathrm{C} 1$	-152.79(8)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	-176.58 (19)
S1iii-Ni1-S1-C1	29.15 (8)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	4.9 (4)
S1 ${ }^{\text {- }}$ - $\mathrm{Ni} 1-\mathrm{S} 1-\mathrm{C} 1$	-53.76 (8)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	2.9 (3)
Ni1-S1-C1-N1	27.1 (2)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	-178.6 (2)

[^0] $-x, z$; (vii) $-y, x-y, z$.

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{~S}^{\mathrm{v}}$	$0.86(2)$	$2.520(19)$	$3.367(2)$	$168.6(17)$
$\mathrm{N} 2 — \mathrm{H} 2 N \cdots 1^{\text {vi }}$	$0.83(2)$	$2.14(2)$	$2.947(3)$	$163.4(18)$
$\mathrm{C} 3 — \mathrm{H} 3 B \cdots 1^{\text {viii }}$	0.97	2.41	$3.180(3)$	136

Symmetry codes: (v) $x-y+1 / 3,-y+2 / 3,-z+1 / 6$; (vi) $-x+y,-x$, z; (viii) $y,-x+y,-z$.

[^0]: Symmetry codes: (i) $-y+1, x-y, z$; (ii) $-x+y+1,-x+1, z$; (iii) $y+1 / 3, x-1 / 3,-z+1 / 6$; (iv) $-x+4 / 3,-x+y+2 / 3,-z+1 / 6$; (v) $x-y+1 / 3,-y+2 / 3,-z+1 / 6$; (vi) $-x+y$,

