

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraaqua{1-[(1*H*-1,2,3-benzotriazol-1-yl)methyl]-1*H*-1,2,4-triazole}sulfatozinc(II) dihydrate

Yan-Zhi Wang,^a Xiao-Kun Li,^a Huai-Xia Yang,^a* Wan Zhou^b and Xiang-Ru Meng^b

^aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and ^bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China Correspondence e-mail: yanghuaixia888@163.com

Received 13 October 2010; accepted 24 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; *R* factor = 0.028; *wR* factor = 0.070; data-to-parameter ratio = 12.7.

In the title complex, $[Zn(SO_4)(C_9H_8N_6)(H_2O)_4]\cdot 2H_2O$, the Zn^{II} ion is six-coordinated by one N atom from a 1-[(1*H*-1,2,3-benzotriazol-1-yl)methyl]-1*H*-1,2,4-triazole ligand and five O atoms from one monodentate sulfate anion and four water molecules in a distorted octahedral geometry. The sulfate tetrahedron is rotationally disordered over two positions in a 0.618 (19):0.382 (19) ratio. In the crystal, adjacent molecules are linked through $O-H\cdots O$ and $O-H\cdots N$ hydrogen bonds involving the cation, the anion, and the coordinated and uncoordinated water molecules into a three-dimensional network.

Related literature

For background to complexes based on symmetrical *N*-heterocyclic ligands, see: Fan & Hanson (2005); Zhao *et al.* (2007). For background to complexes with Zn^{II} , see: Lin *et al.* (2008); Liu *et al.* (2010).

Experimental

Crystal data $[Zn(SO_4)(C_9H_8N_6)(H_2O)_4]\cdot 2H_2O$ $M_r = 469.74$ Triclinic, $P\overline{1}$ a = 7.5439 (15) Å b = 7.9573 (16) Å c = 16.151 (3) Å

 $\alpha = 99.60 (3)^{\circ}$ $\beta = 92.16 (3)^{\circ}$ $\gamma = 112.24 (3)^{\circ}$ $V = 879.4 (3) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation metal-organic compounds

 $\mu = 1.58 \text{ mm}^{-1}$ T = 293 K

Data collection

Rigaku Saturn CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2006) $T_{\rm min} = 0.703, T_{\rm max} = 0.733$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.070$ S = 1.043442 reflections

 $0.24 \times 0.23 \times 0.21 \text{ mm}$

7688 measured reflections 3442 independent reflections 3130 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.018$

272 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O8−H8A…O3′	0.85	2.29	2.793 (14)	118
O10−H10A···O1	0.85	2.09	2.938 (2)	178
$O10-H10A\cdots O2'$	0.85	2.51	3.028 (8)	120
$O5-H5B\cdots O4^{i}$	0.85	1.94	2.761 (5)	163
$O5-H5B\cdots O4'^{i}$	0.85	2.19	2.988 (13)	156
$O7 - H7B \cdot \cdot \cdot O1^{i}$	0.85	1.98	2.823 (2)	170
$O5-H5A\cdots O10^{ii}$	0.85	1.90	2.731 (2)	165
$O6-H6A\cdots O4^{iii}$	0.85	1.94	2.752 (5)	159
O6−H6A···O4′ ⁱⁱⁱ	0.85	1.94	2.778 (8)	171
$O6-H6B\cdots O10^{iv}$	0.85	1.96	2.808 (2)	172
$O7-H7A\cdots O2'^{iv}$	0.85	1.84	2.684 (7)	171
$O7-H7A\cdots O2^{iv}$	0.85	1.87	2.701 (4)	164
$O8-H8B\cdots O9^{v}$	0.85	1.82	2.673 (3)	177
$O8-H8A\cdots N2^{vi}$	0.85	2.37	3.122 (3)	148
O9−H9B···O3 ^{vii}	0.85	2.03	2.837 (8)	159
$O9-H9B\cdots O2^{\prime vii}$	0.85	2.22	2.919 (17)	139
$O9-H9B\cdots O3^{\prime vii}$	0.85	2.48	3.266 (17)	154
O9−H9A···N6 ^{viii}	0.85	2.01	2.854 (3)	174
$O10-H10B\cdots O2^{ix}$	0.85	1.99	2.806 (10)	159
$O10-H10B\cdots O4'^{ix}$	0.85	2.08	2.836 (15)	147

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 1; (iii) x + 1, y + 1, z; (iv) x + 1, y, z; (v) x + 1, y - 1, z; (vi) x, y - 1, z; (vii) x, y + 1, z; (viii) -x + 1, -y + 1, -z; (ix) -x + 1, -y, -z + 1.

Data collection: *CrystalClear* (Rigaku/MSC, 2006); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXL97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The study was supported by the Science and Technology Department of Henan Province (grant No. 082102330003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2415).

References

- Fan, J. & Hanson, B. E. (2005). Inorg. Chem. 44, 6998-7008.
- Lin, J.-D., Cheng, J.-W. & Du, S.-W. (2008). Cryst. Growth Des. 8, 3345–3353.Liu, S.-L., Yang, Y., Qi, Y.-F., Meng, X.-R. & Hou, H.-W. (2010). J. Mol. Struct. 975, 154–159.
- Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhao, X.-X., Ma, J.-P., Dong, Y.-B., Huang, R.-Q. & Lai, T.-S. (2007). Cryst. Growth Des. 7, 1058–1068.

Acta Cryst. (2010). E66, m1483 [https://doi.org/10.1107/S160053681004331X]

Tetraaqua{1-[(1*H*-1,2,3-benzotriazol-1-yl)methyl]-1*H*-1,2,4-triazole}sulfatozinc(II) dihydrate

Yan-Zhi Wang, Xiao-Kun Li, Huai-Xia Yang, Wan Zhou and Xiang-Ru Meng

S1. Comment

Up to now, numerous complexes with one-, two- and three-dimensional structure motifs based on symmetrical N-heterocyclic ligands have been synthesized and reported (Fan & Hanson, 2005; Zhao *et al.*, 2007), whereas complexes based on unsymmetrical N-heterocyclic ligands are relatively scarce. Focused on complexes with Zn^{II} , this ion is able to coordinate to different donors simultaneously and the final products can exhibit promising luminescent properties (Lin *et al.*, 2008; Liu *et al.*, 2010). In this work, through the reaction of 1-((benzotriazol-1-yl)methyl)-1-*H*-1,2,4-triazole (bmt) with zinc sulfate at room temperature, we obtained the title complex [Zn(bmt)(SO₄)(H₂O)₄](H₂O)₂, which is reported here.

As shown in Figure 1, the Zn^{II} ion displays a distorted octahedral coordination defined by five oxygen atoms from four water molecules and one monodentate sulfate anion and by one nitrogen atom from the bmt ligand. Atoms O1, O5, O6, O8 and Zn1 are nearly co-planar (the mean deviation from the plane is 0.0258 Å), and atoms O7 and N1 are located in the apical positions. The SO₄ tetrahedron is rotationally disordered about its S—O axis passing through O1 and S1 atoms. O —H…O and O—H…N hydrogen bonds including coordinated and uncoordinated water molecules, the cations and anions consolidate the crystal packing (Figure 2).

S2. Experimental

The ligand 1-((benzotriazol-1-yl)methyl)-1-*H*-1,2,4-triazole (0.1 mmol) in methanol (5 ml) was added dropwise to an aqueous solution (2 ml) of zinc sulfate (0.1 mmol). The resulting solution was allowed to stand at room temperature. After three weeks, colorless crystals with good quality were obtained from the filtrate and were dried in air.

S3. Refinement

The disordered sulfate anion has been modeled by splitting it into two combined parts (O2, O3, O4 and O2', O3', O4'), the site occupation factors of which refined in a ratio of 0.618 (19):0.382 (19). H atoms are positioned geometrically and refined as riding atoms, with C-H = 0.93 (aromatic) and 0.97 (CH₂) Å and O-H = 0.85 Å, and with U_{iso} (H) = 1.2 U_{eq} (C,O).

Figure 1

View of the title complex, showing the labelling of the atoms. Displacement ellipsoids are displayed at the 30% probability level. H atoms are omitted for clarity; only one orientation of the disordered SO₄ tetrahedron is shown.

View of the title complex, showing the packing of the structure. Hydrogen bonds are indicated by dashed lines.

Tetraaqua{1-[(1H-1,2,3-benzotriazol-1-yl)methyl]-1H-1,2,4-triazole}sulfatozinc(II) dihydrate

Crystal data

$[Zn(SO_4)(C_9H_8N_6)(H_2O)_4]\cdot 2H_2O$	$\beta = 92.16 \ (3)^{\circ}$
$M_r = 469.74$	$\gamma = 112.24 (3)^{\circ}$
Triclinic, P1	V = 879.4 (3) Å ³
Hall symbol: -P 1	Z = 2
a = 7.5439 (15) Å	F(000) = 484
b = 7.9573 (16) Å	$D_{\rm x} = 1.774 {\rm ~Mg} {\rm ~m}^{-3}$
c = 16.151 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 99.60 \ (3)^{\circ}$	Cell parameters from 2915 reflections

 $\theta = 2.6-27.9^{\circ}$ $\mu = 1.58 \text{ mm}^{-1}$ T = 293 K

Data collection

Rigaku Saturn CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 28.5714 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2006) $T_{\min} = 0.703, T_{\max} = 0.733$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from
$wR(F^2) = 0.070$	neighbouring sites
S = 1.04	H-atom parameters constrained
3442 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0343P)^2 + 0.4616P]$
272 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Prism, colourless

 $R_{\rm int} = 0.018$

 $h = -9 \rightarrow 9$

 $k = -9 \rightarrow 8$

 $l = -19 \rightarrow 19$

 $0.24 \times 0.23 \times 0.21 \text{ mm}$

7688 measured reflections

 $\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.6^\circ$

3442 independent reflections

3130 reflections with $I > 2\sigma(I)$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Zn1	1.09002 (3)	0.17235 (3)	0.371640 (15)	0.02549 (9)	
S1	0.62271 (7)	-0.14764 (7)	0.35463 (3)	0.02418 (12)	
O1	0.7976 (2)	0.0142 (2)	0.39731 (9)	0.0305 (3)	
O2	0.4569 (4)	-0.1335 (9)	0.3924 (5)	0.0409 (19)	0.618 (19)
O3	0.6021 (13)	-0.1670 (12)	0.2661 (5)	0.0369 (14)	0.618 (19)
O4	0.6445 (10)	-0.3168 (6)	0.3758 (5)	0.0414 (14)	0.618 (19)
O2′	0.4634 (9)	-0.0755 (15)	0.3547 (9)	0.057 (3)	0.382 (19)
O3′	0.656 (2)	-0.189 (2)	0.2635 (9)	0.043 (3)	0.382 (19)
O4′	0.574 (2)	-0.2951 (11)	0.3977 (6)	0.044 (3)	0.382 (19)
O5	1.1162 (2)	0.3281 (2)	0.49352 (9)	0.0349 (4)	
H5B	1.1754	0.3012	0.5318	0.042*	
H5A	1.1677	0.4457	0.5028	0.042*	
O6	1.3836 (2)	0.3225 (2)	0.35396 (11)	0.0375 (4)	

H6A	1.4383	0.4397	0.3616	0.045*
H6B	1.4681	0.3082	0.3852	0.045*
07	1.1822 (2)	-0.0011(2)	0.42915 (10)	0.0342 (4)
H7A	1.2706	-0.0324	0.4095	0.041*
H7B	1.1743	-0.0138	0.4803	0.041*
08	1.0517 (2)	-0.0077(2)	0.25848 (10)	0.0378 (4)
H8B	1.1514	-0.0103	0.2365	0.045*
H8A	0.9778	-0.1201	0.2564	0.045*
N1	0.9899 (3)	0.3421 (2)	0.31394 (11)	0.0288 (4)
N2	0.9472 (3)	0.5789 (2)	0.27075 (12)	0.0344 (4)
N3	0.7996 (2)	0.4154 (2)	0.23720 (11)	0.0265 (4)
N4	0.6884 (3)	0.4047 (2)	0.09507 (11)	0.0285 (4)
N5	0.6883 (3)	0.2466 (3)	0.04821 (13)	0.0395 (5)
N6	0.7300 (3)	0.2763 (3)	-0.02657 (13)	0.0419 (5)
C1	1.0571 (3)	0.5274 (3)	0.31691 (14)	0.0328 (5)
H1	1.1710	0.6106	0.3488	0.039*
C2	0.8284 (3)	0.2775 (3)	0.26262 (14)	0.0324 (5)
H2	0.7469	0.1533	0.2467	0.039*
C3	0.6397 (3)	0.4063 (3)	0.18067 (13)	0.0308 (5)
H3A	0.5276	0.2952	0.1823	0.037*
H3B	0.6073	0.5123	0.1997	0.037*
C4	0.7304 (3)	0.5407 (3)	0.04844 (13)	0.0272 (4)
C5	0.7419 (3)	0.7219 (3)	0.06513 (15)	0.0349 (5)
Н5	0.7230	0.7772	0.1176	0.042*
C6	0.7834 (4)	0.8139 (4)	-0.00128 (18)	0.0442 (6)
H6	0.7918	0.9352	0.0066	0.053*
C7	0.8134 (4)	0.7313 (4)	-0.08015 (18)	0.0495 (7)
H7	0.8431	0.8000	-0.1227	0.059*
C8	0.8003 (4)	0.5530 (4)	-0.09633 (16)	0.0452 (6)
H8	0.8186	0.4981	-0.1490	0.054*
C9	0.7578 (3)	0.4563 (3)	-0.02981 (14)	0.0334 (5)
O9	0.3572 (3)	0.9693 (2)	0.18654 (11)	0.0443 (4)
H9B	0.4072	0.9201	0.2182	0.053*
H9A	0.3326	0.9027	0.1373	0.053*
O10	0.6604 (2)	0.3016 (2)	0.46855 (11)	0.0408 (4)
H10A	0.6979	0.2174	0.4471	0.049*
H10B	0.6070	0.2662	0.5115	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Znl	0.02551 (14)	0.02764 (14)	0.02428 (14)	0.01074 (10)	0.00097 (9)	0.00719 (9)
S 1	0.0209 (3)	0.0230 (3)	0.0249 (3)	0.0055 (2)	0.00115 (19)	0.00244 (19)
O1	0.0240 (8)	0.0301 (8)	0.0281 (8)	0.0012 (6)	0.0017 (6)	0.0035 (6)
O2	0.0209 (14)	0.041 (3)	0.056 (3)	0.0108 (14)	0.0063 (15)	0.0004 (19)
O3	0.037 (4)	0.047 (2)	0.024 (2)	0.014 (2)	0.002 (2)	0.0040 (16)
O4	0.047 (3)	0.0268 (17)	0.050 (3)	0.0147 (17)	-0.006(2)	0.0086 (16)
O2′	0.038 (3)	0.072 (4)	0.081 (6)	0.038 (3)	0.017 (3)	0.030 (5)

O3′	0.033 (6)	0.056 (5)	0.028 (3)	0.010 (4)	0.008 (4)	-0.010 (3)
O4′	0.059 (6)	0.025 (3)	0.040 (4)	0.005 (3)	0.002 (3)	0.012 (2)
05	0.0417 (9)	0.0287 (8)	0.0281 (8)	0.0092 (7)	-0.0044 (7)	0.0019 (6)
06	0.0274 (8)	0.0326 (9)	0.0499 (10)	0.0066 (7)	0.0016 (7)	0.0138 (7)
O7	0.0405 (9)	0.0412 (9)	0.0315 (8)	0.0248 (8)	0.0071 (7)	0.0136 (7)
08	0.0347 (9)	0.0374 (9)	0.0307 (9)	0.0050 (7)	0.0065 (7)	0.0000 (7)
N1	0.0273 (9)	0.0283 (9)	0.0295 (10)	0.0079 (8)	-0.0017 (8)	0.0102 (7)
N2	0.0347 (10)	0.0249 (9)	0.0392 (11)	0.0083 (8)	-0.0037 (8)	0.0046 (8)
N3	0.0269 (9)	0.0266 (9)	0.0244 (9)	0.0079 (8)	-0.0015 (7)	0.0075 (7)
N4	0.0327 (10)	0.0301 (10)	0.0254 (9)	0.0161 (8)	-0.0012 (7)	0.0047 (7)
N5	0.0481 (12)	0.0356 (11)	0.0374 (12)	0.0224 (10)	-0.0033 (9)	0.0012 (9)
N6	0.0474 (13)	0.0468 (12)	0.0338 (11)	0.0259 (10)	-0.0003 (9)	-0.0029 (9)
C1	0.0302 (12)	0.0288 (11)	0.0337 (12)	0.0072 (10)	-0.0057 (9)	0.0035 (9)
C2	0.0307 (12)	0.0258 (11)	0.0349 (12)	0.0038 (9)	-0.0045 (9)	0.0096 (9)
C3	0.0276 (11)	0.0376 (12)	0.0284 (11)	0.0131 (10)	-0.0007 (9)	0.0100 (9)
C4	0.0228 (10)	0.0333 (11)	0.0253 (11)	0.0109 (9)	-0.0022 (8)	0.0064 (9)
C5	0.0342 (13)	0.0329 (12)	0.0358 (13)	0.0125 (10)	-0.0006 (10)	0.0041 (9)
C6	0.0396 (14)	0.0378 (14)	0.0557 (17)	0.0112 (11)	0.0003 (12)	0.0208 (12)
C7	0.0378 (14)	0.0657 (19)	0.0470 (16)	0.0131 (13)	0.0049 (12)	0.0333 (14)
C8	0.0404 (14)	0.0727 (19)	0.0276 (12)	0.0246 (14)	0.0088 (10)	0.0158 (12)
C9	0.0295 (11)	0.0442 (13)	0.0269 (11)	0.0169 (10)	-0.0010 (9)	0.0029 (9)
09	0.0512 (11)	0.0463 (10)	0.0343 (9)	0.0215 (9)	0.0003 (8)	0.0003 (7)
O10	0.0422 (10)	0.0314 (9)	0.0502 (10)	0.0153 (8)	0.0090 (8)	0.0087 (7)

Geometric parameters (Å, °)

Zn1—08	2.0615 (17)	N3—C2	1.320 (3)
Zn1—O7	2.0869 (15)	N3—C3	1.457 (3)
Zn1—N1	2.0979 (18)	N4—N5	1.356 (3)
Zn1—O5	2.1028 (17)	N4—C4	1.367 (3)
Zn1—O6	2.1385 (18)	N4—C3	1.443 (3)
Zn1—O1	2.1824 (16)	N5—N6	1.297 (3)
S1—O4′	1.401 (7)	N6—C9	1.377 (3)
S1—O3	1.409 (8)	C1—H1	0.9300
S1—O2	1.446 (3)	C2—H2	0.9300
S1—O1	1.4912 (16)	С3—НЗА	0.9700
S1—O3′	1.505 (13)	C3—H3B	0.9700
S1—O4	1.507 (4)	C4—C5	1.390 (3)
S1—O2′	1.516 (7)	C4—C9	1.390 (3)
O5—H5B	0.8500	C5—C6	1.378 (3)
O5—H5A	0.8500	С5—Н5	0.9300
O6—H6A	0.8499	C6—C7	1.400 (4)
O6—H6B	0.8499	С6—Н6	0.9300
O7—H7A	0.8500	C7—C8	1.364 (4)
O7—H7B	0.8501	С7—Н7	0.9300
O8—H8B	0.8500	C8—C9	1.401 (3)
O8—H8A	0.8500	C8—H8	0.9300
N1—C2	1.321 (3)	O9—H9B	0.8499

N1C1	1 357 (3)	<u>09</u> H9A	0.8501
$N_2 = C_1$	1.337(3)	010 H10A	0.8700
N2 N2	1.313(3)	010 H10R	0.8500
INZINS	1.500 (5)	Ото—нтов	0.8300
O8—Zn1—O7	87.82 (7)	Zn1—O8—H8A	116.6
O8—Zn1—N1	91.97 (7)	H8B—O8—H8A	105.9
07—Zn1—N1	178.51 (7)	C2—N1—C1	103.23 (18)
08-7n1-05	173 22 (6)	C_{2} N1 Z_{n1}	123 15 (15)
07 - 7 - 7 - 7 - 05	86.93 (6)	C1 - N1 - Zn1	133 61 (15)
$N_1 - Z_{n_1} - O_5$	93 18 (7)	$C1_N2_N3$	102.46(17)
08 - 7n1 - 06	95.10(7)	$C_1 = N_2 = N_3$	102.40(17) 110.10(17)
08 - 211 - 06	90.09 (7) 98 10 (7)	$C_2 = N_3 = N_2$	110.19(17) 128.18(18)
0/-211-00	00.10(7)	C2—N3—C3	120.10(10)
N1 = 2n1 = 06	93.38 (7)	$N_2 - N_3 - C_3$	121.02(17)
05 - 2n1 - 06	93.40 (8)	N5—N4—C4	110.63 (18)
08—Zn1—01	91.05 (7)	N5—N4—C3	119.25 (18)
0/—Znl—Ol	88.44 (7)	C4—N4—C3	130.06 (18)
N1—Zn1—O1	90.10 (7)	N6—N5—N4	108.29 (19)
O5—Zn1—O1	84.54 (7)	N5—N6—C9	108.93 (19)
O6—Zn1—O1	176.06 (6)	N2—C1—N1	114.12 (19)
O4′—S1—O3	124.8 (5)	N2—C1—H1	122.9
O4′—S1—O2	79.7 (5)	N1—C1—H1	122.9
O3—S1—O2	112.6 (3)	N3—C2—N1	109.99 (19)
O4'—S1—O1	112.3 (3)	N3—C2—H2	125.0
O3—S1—O1	113.5 (4)	N1—C2—H2	125.0
O2—S1—O1	108.19 (15)	N4—C3—N3	111.05 (18)
O4'—S1—O3'	116.6 (7)	N4—C3—H3A	109.4
O3—S1—O3′	19.3 (5)	N3—C3—H3A	109.4
O2—S1—O3′	131.0 (4)	N4—C3—H3B	109.4
01-81-03'	106.7 (6)	N3—C3—H3B	109.4
04′—\$1—04	27.9 (4)	H3A—C3—H3B	108.0
03 - 51 - 04	108 6 (4)	N4-C4-C5	1335(2)
02 - 51 - 04	107.4(2)	N4 - C4 - C9	103.73(19)
01 - 51 - 04	107.4(2) 106.24(19)	$C_{5} - C_{4} - C_{9}$	103.75(17) 122.8(2)
O_3' S1 O_4	94.5 (6)	C_{1} C_{2} C_{3} C_{4}	122.0(2) 1155(2)
03 - 31 - 04	94.3(0) 100 8 (4)	C6 C5 H5	113.3 (2)
04 - 31 - 02	109.0(4)	C_{4} C_{5} H_{5}	122.3
03 - 51 - 02	00.4(4)	$C_{4} - C_{5} - H_{5}$	122.5
02 - 51 - 02	31.9 (3)	$C_{2} = C_{0} = C_{1}$	122.4 (2)
01 - 51 - 02'	104.9 (3)	С5—С6—Н6	118.8
03'-\$1-02'	105.8 (5)	С/—Сб—Нб	118.8
04—\$1—02'	135.7 (4)	C8—C7—C6	121.8 (2)
\$1—01—Zn1	138.82 (9)	С8—С7—Н7	119.1
Zn1—O5—H5B	114.8	С6—С7—Н7	119.1
Zn1—O5—H5A	120.7	C7—C8—C9	116.9 (2)
H5B—O5—H5A	103.1	С7—С8—Н8	121.6
Zn1—O6—H6A	124.8	С9—С8—Н8	121.6
Zn1—O6—H6B	116.0	N6—C9—C4	108.4 (2)
H6A—O6—H6B	96.0	N6—C9—C8	130.9 (2)
Zn1—O7—H7A	119.6	C4—C9—C8	120.7 (2)

Zn1—O7—H7B H7A—O7—H7B Zn1—O8—H8B	126.2 110.1 118.1	H9B—O9—H9A H10A—O10—H10B	107.2 105.2
O4'—S1—O1—Zn1 O3—S1—O1—Zn1	116.9 (8) -31.3 (4)	C2—N1—C1—N2 Zn1—N1—C1—N2	-0.1 (3) -179.33 (16)
O2—S1—O1—Zn1	-157.0 (4)	N2—N3—C2—N1	1.1 (3)
O3'—S1—O1—Zn1	-12.0 (7)	C3—N3—C2—N1	-179.8 (2)
O4—S1—O1—Zn1	88.0 (4)	C1—N1—C2—N3	-0.6 (3)
O2′—S1—O1—Zn1	-123.9 (7)	Zn1—N1—C2—N3	178.71 (14)
O8—Zn1—O1—S1	-4.72 (15)	N5—N4—C3—N3	76.6 (2)
O7—Zn1—O1—S1	-92.51 (15)	C4—N4—C3—N3	-106.4 (2)
N1—Zn1—O1—S1	87.25 (15)	C2—N3—C3—N4	-95.9 (3)
O5—Zn1—O1—S1	-179.57 (15)	N2—N3—C3—N4	83.0 (2)
O6—Zn1—O1—S1	-120.9 (8)	N5—N4—C4—C5	177.5 (2)
O8—Zn1—N1—C2	49.15 (19)	C3—N4—C4—C5	0.3 (4)
O7—Zn1—N1—C2	-33 (3)	N5—N4—C4—C9	-0.6 (2)
O5—Zn1—N1—C2	-126.43 (19)	C3—N4—C4—C9	-177.8 (2)
O6—Zn1—N1—C2	139.96 (19)	N4—C4—C5—C6	-177.9 (2)
O1—Zn1—N1—C2	-41.90 (19)	C9—C4—C5—C6	-0.2 (3)
O8—Zn1—N1—C1	-131.7 (2)	C4—C5—C6—C7	-0.5 (4)
O7—Zn1—N1—C1	147 (2)	C5—C6—C7—C8	1.0 (4)
O5—Zn1—N1—C1	52.7 (2)	C6—C7—C8—C9	-0.9 (4)
O6—Zn1—N1—C1	-40.9 (2)	N5—N6—C9—C4	-0.2 (3)
O1—Zn1—N1—C1	137.2 (2)	N5—N6—C9—C8	-178.1 (2)
C1—N2—N3—C2	-1.1 (2)	N4—C4—C9—N6	0.4 (2)
C1—N2—N3—C3	179.8 (2)	C5—C4—C9—N6	-177.9 (2)
C4—N4—N5—N6	0.5 (2)	N4—C4—C9—C8	178.7 (2)
C3—N4—N5—N6	178.03 (19)	C5—C4—C9—C8	0.4 (3)
N4—N5—N6—C9	-0.2 (3)	C7—C8—C9—N6	177.9 (2)
N3—N2—C1—N1	0.7 (3)	C7—C8—C9—C4	0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
08—H8A···O3′	0.85	2.29	2.793 (14)	118
O10—H10A…O1	0.85	2.09	2.938 (2)	178
O10—H10A····O2′	0.85	2.51	3.028 (8)	120
O5— $H5B$ ···O4 ⁱ	0.85	1.94	2.761 (5)	163
O5—H5 <i>B</i> ···O4′ ⁱ	0.85	2.19	2.988 (13)	156
$O7-H7B\cdots O1^{i}$	0.85	1.98	2.823 (2)	170
O5—H5A…O10 ⁱⁱ	0.85	1.90	2.731 (2)	165
O6—H6A···O4 ⁱⁱⁱ	0.85	1.94	2.752 (5)	159
O6—H6A····O4′ ⁱⁱⁱ	0.85	1.94	2.778 (8)	171
O6—H6 <i>B</i> ···O10 ^{iv}	0.85	1.96	2.808 (2)	172
O7— $H7A$ ···O2 ^{<i>i</i>v}	0.85	1.84	2.684 (7)	171
O7— $H7A$ ···O2 ^{iv}	0.85	1.87	2.701 (4)	164
O8—H8 <i>B</i> ···O9 ^v	0.85	1.82	2.673 (3)	177

O8—H8A····N2 ^{vi}	0.85	2.37	3.122 (3)	148	
О9—H9 <i>B</i> …О3 ^{vii}	0.85	2.03	2.837 (8)	159	
О9—H9 <i>B</i> …О2′ ^{vii}	0.85	2.22	2.919 (17)	139	
О9—H9 <i>B</i> ···O3′ ^{vii}	0.85	2.48	3.266 (17)	154	
O9—H9A…N6 ^{viii}	0.85	2.01	2.854 (3)	174	
O10—H10 <i>B</i> ···O2 ^{ix}	0.85	1.99	2.806 (10)	159	
O10—H10 <i>B</i> …O4′ ^{ix}	0.85	2.08	2.836 (15)	147	

Symmetry codes: (i) -*x*+2, -*y*, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) *x*+1, *y*+1, *z*; (iv) *x*+1, *y*, *z*; (v) *x*+1, *y*-1, *z*; (vi) *x*, *y*-1, *z*; (vii) *x*, *y*+1, *z*; (viii) -*x*+1, -*y*+1, -*z*; (ix) -*x*+1, -*y*, -*z*+1.