

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diethyl 2-amino-5-[(*E*)-(furan-2-ylmethylidene)amino]thiophene-3,4-dicarboxylate

Stéphane Dufresne and W. G. Skene*

Department of Chemistry, University of Montreal, CP 6128, succ. Centre-ville, Montréal, Québec, Canada H3C 3J7 Correspondence e-mail: w.skene@umontreal.ca

Received 21 October 2010; accepted 26 October 2010

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.102; data-to-parameter ratio = 14.3.

In the crystal structure of the title compound, $C_{15}H_{16}N_2O_5S$, the azomethine adopts the *E* configuration. The two heterocyclic rings adopt an antiperiplanar orientation. The mean planes of the thiophene and furan rings are twisted by 2.51 (4)°. The crystal structure exhibits intermolecular N- $H \cdots O$ hydrogen bonding. $\pi - \pi$ stacking is also observed, the centroid-to-centroid distance being 3.770 (4) Å.

Related literature

For general background, see: Dufresne & Skene (2008). For a related crystal structure, see: Skene *et al.* (2006)

Experimental

Crystal data

$C_{15}H_{16}N_2O_5S$
$M_r = 336.36$
Monoclinic, P21/n
$a = 9.3452 (19) \text{\AA}$
<i>b</i> = 14.635 (3) Å
c = 11.343 (2) Å
$\beta = 99.73 \ (3)^{\circ}$

 $V = 1529.0 (5) Å^{3}$ Z = 4Cu K\alpha radiation $\mu = 2.14 \text{ mm}^{-1}$ T = 123 K0.14 × 0.10 × 0.04 mm 6320 measured reflections

 $R_{\rm int} = 0.036$

3005 independent reflections

2475 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART 6000

diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.728, T_{\rm max} = 0.920$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	210 parameters
$wR(F^2) = 0.102$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
3005 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} \mathrm{N1}{-}\mathrm{H1}A{\cdots}\mathrm{O2^{i}}\\ \mathrm{N1}{-}\mathrm{H1}B{\cdots}\mathrm{O4^{ii}} \end{array}$	0.88 0.88	2.20 2.50	2.889 (2) 3.059 (3)	135 122

Symmetry codes: (i) -x, -y, -z + 2; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *UdMX* (Marris, 2004).

NSERC Canada is thanked for DG and RTI grants allowing this work to be performed, in addition to CFI for additional equipment funding. SD also thanks NSERC for a graduate scholarship. WGS also acknowledges both the Alexander von Humboldt Foundation and the RSC for J. W. T. Jones Travelling fellowships, allowing the completion of this manuscript.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2415).

References

Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dufresne, S. & Skene, W. G. (2008). J. Org. Chem. 73, 3859–3866.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Marris, T. (2004). UdMX. Université de Montréal, Canada.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Skene, W. G., Dufresne, S., Trefz, T. & Simard, M. (2006). Acta Cryst. E62, o2382–o2384.

supporting information

Acta Cryst. (2010). E66, o3027 [https://doi.org/10.1107/S1600536810043746]

Diethyl 2-amino-5-[(*E*)-(furan-2-ylmethylidene)amino]thiophene-3,4-dicarboxyl-ate

Stéphane Dufresne and W. G. Skene

S1. Comment

During the course of our ongoing conjugated azomethine research, we prepared the title compound. The X-ray crystallographic analysis not only confirmed the structure (Fig. 1), but that the energetically stable E isomer was formed. Neither solvent nor counter-ions were found in the structure.

The heterocyclic rings were found not to be coplanar; the angle between the heterocyclic mean planes is $2.51 (4)^{\circ}$. This angle is less than that in a previously reported azomethine thiophene system, whose angle is $7.25 (11)^{\circ}$ (Skene *et al.*, 2006).

A major point of interest is the azomethine bond. The bond lengths for N2—C4, N2—C5 and C5—C6 are 1.382 (2), 1.289 (2) and 1.420 (2) Å, respectively. These are similar to the related azomethine thiophene compound (Skene *et al.*, 2006), whose homologous lengths are 1.381 (3), 1.283 (3) and 1.426 (3) Å.

Fig. 2 shows that two different hydrogen bonds occur in the crystal structure, viz. N1—H1A···O2ⁱⁱⁱ and N1—H1B···O4ⁱⁱ. The D—H···A angles are 135° and 122° and distances of 2.880 (3) Å and 3.059 (3) Å were measured between the nitrogen and oxygens (Table 1). Dimerization of two molecules occurs *via* H-bonding between N1—H1A···O2ⁱⁱⁱ. Additionally, π -stacking takes place between two different molecules, at [x, y, z] and [1 - x, -y, 1 - z]. Fig. 3 shows the interactions, with the distance between the planes being 3.440 (4) Å. The centroid···centroid distance between the two rings is 3.770 (4) Å.

S2. Experimental

2-Furaldehyde (37 mg, 0.39 mmol) and 2,5-diamino-thiophene-3,4-dicarboxylic acid diethyl ester (100 mg, 0.39 mmol) were mixed in anhydrous 2-propanol with a catalytic amount of TFA and refluxed for 12 h. The reaction was then purified by flash chromatography to afford the title compound as a brownish yellow solid (110 mg, 85%). Single crystals were obtained by slow evaporation of an acetone solution.

S3. Refinement

Carbon-bound H atoms were placed in calculated positions (Cmethyl—H = 0.98 Å, Cmethylene—H = 0.99 Å and Csp²— H = 0.95 Å) and included in the refinement in the riding-model approximation, with $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for Cmethyl and 1.2 for Cmethylene and Csp². The H atoms of the amino group were placed in calculated positions (N—H = 0.88 Å) and included in the refinement in the riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(N)$.

ORTEP-3 (Farrugia, 1997) representation of the molecular structure, with the numbering scheme adopted. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 2

Supramolecular structure showing the intermolecular hydrogen bonding (dashed lines). [Symmetry codes: (i) 1/2 - x, 1/2 + y, 1.5 - z; (ii) 1/2 - x, -1/2 + y, 1.5 - z; (iii) -x, -y, 2 - z.]

The three-dimensional network demonstrating the π -stacking (dashed lines) in the crystal structure.

Diethyl 2-amino-5-[(*E*)-(furan-2-ylmethylidene)amino]thiophene-3,4-dicarboxylate

Crystal data

C₁₅H₁₆N₂O₅S $M_r = 336.36$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.3452 (19) Å b = 14.635 (3) Å c = 11.343 (2) Å $\beta = 99.73$ (3)° V = 1529.0 (5) Å³ Z = 4

Data collection

Bruker SMART 6000 diffractometer Radiation source: rotating anode Montel 200 optics monochromator Detector resolution: 5.5 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.728, T_{\max} = 0.920$ F(000) = 704 $D_x = 1.461 \text{ Mg m}^{-3}$ Melting point: 425(2) K Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 3360 reflections $\theta = 5.0-38.8^{\circ}$ $\mu = 2.14 \text{ mm}^{-1}$ T = 123 KBlock, yellow $0.14 \times 0.10 \times 0.04 \text{ mm}$

6320 measured reflections 3005 independent reflections 2475 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 72.3^{\circ}, \theta_{min} = 5.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -17 \rightarrow 18$ $l = -13 \rightarrow 13$ Refinement

Refinement on F ² Least-squares matrix: full	Secondary atom site location: difference Fourier
$P[E^2 > 2\pi(E^2)] = 0.027$	Hudrogen site location, informed from
K[F > 20(F)] = 0.057	Hydrogen site location. Interfed from
$wR(F^2) = 0.102$	neighbouring sites
S = 1.03	H-atom parameters constrained
3005 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0643P)^2]$
210 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.29 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S 1	0.15876 (5)	0.01058 (3)	0.62132 (4)	0.02153 (13)
O3	0.26457 (13)	0.20322 (8)	0.97617 (10)	0.0216 (3)
O5	0.53448 (13)	0.16250 (8)	0.86520 (11)	0.0229 (3)
01	0.53601 (14)	0.14839 (10)	0.36188 (11)	0.0299 (3)
O4	0.42258 (13)	0.28091 (8)	0.76310 (11)	0.0261 (3)
O2	0.11370 (14)	0.08821 (9)	1.00209 (11)	0.0280 (3)
N2	0.37833 (15)	0.11513 (10)	0.55344 (12)	0.0201 (3)
N1	0.01952 (16)	-0.02136 (10)	0.80267 (14)	0.0247 (3)
H1A	-0.0029	-0.0108	0.8737	0.030*
H1B	-0.0274	-0.0637	0.7563	0.030*
C13	0.42543 (18)	0.20165 (12)	0.79259 (14)	0.0180 (3)
C2	0.21155 (17)	0.09610 (11)	0.82328 (15)	0.0177 (3)
C4	0.29499 (18)	0.09523 (12)	0.63985 (15)	0.0194 (4)
C10	0.19189 (18)	0.12672 (12)	0.94126 (15)	0.0192 (4)
C3	0.30893 (17)	0.13360 (12)	0.75044 (14)	0.0175 (3)
C14	0.65332 (19)	0.22184 (13)	0.91629 (17)	0.0274 (4)
H14A	0.6231	0.2619	0.9780	0.033*
H14B	0.6830	0.2608	0.8533	0.033*
C1	0.12570 (18)	0.02730 (12)	0.76478 (15)	0.0191 (4)
C6	0.42538 (19)	0.08612 (12)	0.35493 (16)	0.0218 (4)
C5	0.35120 (19)	0.07232 (12)	0.45285 (15)	0.0225 (4)
Н5	0.2757	0.0281	0.4435	0.027*
C11	0.2356 (2)	0.24369 (13)	1.08714 (15)	0.0259 (4)
H11A	0.2526	0.1984	1.1528	0.031*
H11B	0.1335	0.2646	1.0776	0.031*

C8	0.5077 (2)	0.08255 (14)	0.18213 (16)	0.0284 (4)
H8	0.5204	0.0675	0.1031	0.034*
C7	0.4049 (2)	0.04441 (13)	0.24649 (16)	0.0272 (4)
H7	0.3351	-0.0014	0.2191	0.033*
С9	0.5836 (2)	0.14410 (15)	0.25473 (17)	0.0316 (5)
H9	0.6604	0.1800	0.2343	0.038*
C15	0.7766 (2)	0.16205 (14)	0.97085 (18)	0.0320 (4)
H15A	0.7455	0.1231	1.0321	0.048*
H15B	0.8583	0.2002	1.0075	0.048*
H15C	0.8068	0.1237	0.9087	0.048*
C12	0.3367 (2)	0.32281 (13)	1.11445 (17)	0.0351 (5)
H12A	0.4372	0.3007	1.1284	0.053*
H12B	0.3167	0.3543	1.1862	0.053*
H12C	0.3227	0.3653	1.0467	0.053*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0226 (2)	0.0245 (2)	0.0170 (2)	-0.00387 (17)	0.00208 (16)	-0.00373 (16)
O3	0.0288 (7)	0.0215 (6)	0.0158 (6)	-0.0027 (5)	0.0072 (5)	-0.0041 (5)
05	0.0206 (6)	0.0213 (6)	0.0245 (7)	-0.0023 (5)	-0.0025 (5)	-0.0003 (5)
O1	0.0275 (7)	0.0373 (8)	0.0254 (7)	-0.0063 (6)	0.0062 (6)	-0.0053 (6)
O4	0.0286 (7)	0.0206 (7)	0.0278 (7)	-0.0032 (5)	0.0013 (5)	0.0036 (5)
O2	0.0310 (7)	0.0308 (7)	0.0253 (7)	-0.0070 (6)	0.0134 (6)	-0.0019 (6)
N2	0.0221 (7)	0.0234 (8)	0.0148 (7)	0.0023 (6)	0.0036 (6)	0.0009 (6)
N1	0.0242 (8)	0.0269 (8)	0.0239 (8)	-0.0083 (6)	0.0069 (6)	-0.0038 (6)
C13	0.0205 (8)	0.0216 (9)	0.0131 (8)	0.0010 (6)	0.0060 (6)	-0.0011 (6)
C2	0.0171 (8)	0.0183 (8)	0.0175 (8)	0.0003 (6)	0.0028 (6)	0.0004 (6)
C4	0.0191 (8)	0.0222 (9)	0.0170 (8)	0.0003 (7)	0.0032 (7)	0.0008 (7)
C10	0.0178 (8)	0.0213 (9)	0.0184 (8)	0.0015 (6)	0.0025 (7)	0.0006 (7)
C3	0.0174 (8)	0.0184 (8)	0.0168 (8)	0.0013 (6)	0.0032 (6)	0.0017 (6)
C14	0.0222 (9)	0.0273 (10)	0.0309 (10)	-0.0057 (7)	-0.0011 (8)	-0.0059 (8)
C1	0.0181 (8)	0.0200 (8)	0.0185 (8)	0.0023 (6)	0.0013 (7)	0.0006 (7)
C6	0.0235 (8)	0.0226 (9)	0.0188 (8)	0.0000 (7)	0.0022 (7)	0.0008 (7)
C5	0.0267 (9)	0.0222 (9)	0.0188 (9)	-0.0013 (7)	0.0041 (7)	0.0005 (7)
C11	0.0380 (10)	0.0256 (9)	0.0154 (8)	0.0023 (8)	0.0080 (8)	-0.0038 (7)
C8	0.0314 (10)	0.0375 (11)	0.0174 (9)	0.0075 (8)	0.0076 (8)	0.0002 (8)
C7	0.0365 (10)	0.0259 (10)	0.0198 (9)	-0.0008 (8)	0.0061 (8)	-0.0038 (7)
С9	0.0266 (10)	0.0429 (12)	0.0278 (10)	-0.0014 (8)	0.0115 (8)	0.0052 (9)
C15	0.0236 (9)	0.0391 (11)	0.0303 (10)	0.0003 (8)	-0.0043 (8)	-0.0037 (9)
C12	0.0578 (14)	0.0241 (10)	0.0235 (10)	-0.0043 (10)	0.0078 (9)	-0.0049 (8)

Geometric parameters (Å, °)

O5-C13	1 3272 (19)	C6-C5	1420(2)
05—C14	1.451 (2)	C5—H5	0.95
01-09	1 364 (2)	$C_{11} - C_{12}$	1 494 (3)
01-05	1.370(2)	C11—H11A	0.99
04-C13	1 206 (2)	C11—H11B	0.99
02-C10	1.200(2) 1.224(2)	C8-C9	1.340(3)
N2C5	1.224(2) 1 289(2)	C8-C7	1.346(3)
N2 - C4	1.209(2) 1.382(2)	C8—H8	0.95
N1C1	1.362(2) 1 349(2)	C7H7	0.95
	0.88	C_{0} H0	0.95
N1 U1P	0.88	C15 H15A	0.95
C_{13} C_{3}	1.403(2)	C15 H15R	0.98
C_{13}	1.495(2)	C15_H15C	0.98
$C_2 = C_1$	1.385(2) 1.437(2)	C12 H12A	0.98
$C_2 = C_1^{10}$	1.437(2) 1.452(2)	C12 H12R	0.98
$C_2 = C_{10}$	1.432(2) 1.360(2)	C12 $H12C$	0.98
C4—C3	1.300 (2)	CI2—HI2C	0.98
$C_1 = S_1 = C_4$	01.65(8)	67 66 65	120 21 (18)
$C_1 = S_1 = C_4$	(0)	$C_{}C_{-$	129.21 (18)
$C_{10} = 05 = C_{14}$	115.90(13) 116.42(14)	N2 C5 C6	120.80(10) 125.07(17)
$C_{13} = 0_{3} = 0_{14}$	110.42(14) 105.02(15)	$N_2 = C_3 = C_0$	123.07 (17)
$C_{9} = 01 = C_{0}$	103.92(13) 119.29(15)	$N_2 - C_3 - H_3$	117.5
C_{1} N1 U1A	118.38 (13)	$C_0 - C_3 - H_3$	11/.3
CI_NI_HIA	120	$O_3 = C_{11} = U_{11}$	100.90 (13)
CI-NI-HIB	120		110.3
HIA—NI—HIB	120	CI2—CII—HIIA	110.3
04-013-05	124.46 (16)	03-CII-HIIB	110.3
04	124.88 (16)	C12—C11—H11B	110.3
05-013-03	110.65 (14)	HIIA—CII—HIIB	108.6
C1—C2—C3	111.96 (15)	C9—C8—C7	106.42 (17)
C1—C2—C10	120.84 (15)	С9—С8—Н8	126.8
C3—C2—C10	127.08 (15)	С7—С8—Н8	126.8
C3—C4—N2	126.11 (16)	C6—C7—C8	106.60 (17)
C3—C4—S1	110.77 (13)	С6—С7—Н7	126.7
N2—C4—S1	123.06 (13)	С8—С7—Н7	126.7
O2—C10—O3	122.79 (16)	C8—C9—O1	111.14 (17)
O2—C10—C2	123.91 (16)	С8—С9—Н9	124.4
O3—C10—C2	113.27 (14)	O1—C9—H9	124.4
C4—C3—C2	113.65 (15)	C14—C15—H15A	109.5
C4—C3—C13	121.43 (15)	C14—C15—H15B	109.5
C2—C3—C13	124.67 (15)	H15A—C15—H15B	109.5
O5—C14—C15	107.41 (15)	C14—C15—H15C	109.5
O5—C14—H14A	110.2	H15A—C15—H15C	109.5
C15—C14—H14A	110.2	H15B—C15—H15C	109.5
O5—C14—H14B	110.2	C11—C12—H12A	109.5
C15—C14—H14B	110.2	C11—C12—H12B	109.5
H14A—C14—H14B	108.5	H12A—C12—H12B	109.5
N1—C1—C2	128.96 (16)	C11—C12—H12C	109.5
N1—C1—S1	118.97 (13)	H12A—C12—H12C	109.5
	· · ·		

supporting information

C2—C1—S1 C7—C6—O1	111.94 (13) 109.92 (16)	H12B—C12—H12C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.5 (2)	O5-C13-C3-C4	-101.12 (18)
	-177.89 (14)	O4-C13-C3-C2	-108.6 (2)
	179.86 (17)	O5-C13-C3-C2	72.8 (2)
	2.9 (2)	C13-O5-C14-C15	-167.31 (15)
	-1.07 (14)	C3-C2-C1-N1	-177.66 (17)
	176.35 (15)	C10-C2-C1-N1	-1.3 (3)
	-5.4 (2)	C3-C2-C1-S1	-1.82 (18)
	172.78 (14)	C10-C2-C1-S1	174.49 (12)
	9.1 (3)	C4-S1-C1-N1	177.96 (14)
C3-C2-C10-O2	-175.17 (17)	C4—S1—C1—C2	1.66 (13)
C1-C2-C10-O3	-169.01 (15)	C9—O1—C6—C7	0.0 (2)
C3-C2-C10-O3	6.7 (2)	C9—O1—C6—C5	179.52 (17)
N2-C4-C3-C2	-177.09 (15)	C4—N2—C5—C6	178.96 (16)
S1-C4-C3-C2	0.22 (19)	C7—C6—C5—N2	179.79 (19)
N2-C4-C3-C13	-2.6 (3)	O1—C6—C5—N2	0.3 (3)
S1—C4—C3—C13	174.76 (12)	C10-O3-C11-C12	175.14 (15)
C1—C2—C3—C4	1.0 (2)	O1-C6-C7-C8	-0.1 (2)
C10—C2—C3—C4	-175.00 (16)	C5-C6-C7-C8	-179.58 (18)
C1—C2—C3—C13	-173.30 (15)	C9-C8-C7-C6	0.2 (2)
C10—C2—C3—C13	10.7 (3)	C7-C8-C9-O1	-0.2 (2)
O4—C13—C3—C4	77.5 (2)	C6-O1-C9-C8	0.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
N1—H1A···O2 ⁱ	0.88	2.20	2.889 (2)	135
N1—H1 <i>B</i> ···O4 ⁱⁱ	0.88	2.50	3.059 (3)	122

Symmetry codes: (i) -*x*, -*y*, -*z*+2; (ii) -*x*+1/2, *y*-1/2, -*z*+3/2.