organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(Anthracen-9-yl)-3-(4-nitrophenyl)-1phenyl-4,5-dihydro-1H-pyrazole

Bao-Li Dong, Ming-Liang Wang* and Yong-Hua Li

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: wangmlchem@263.net

Received 25 September 2010; accepted 29 September 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.005$ Å; R factor = 0.044; wR factor = 0.095; data-to-parameter ratio = 6.6.

In the title compound, C₂₉H₂₁N₃O₂, the five-membered pyrazoline ring is nearly planar, the maximum deviation being 0.037 (3) Å. The anthracene ring system is approximately perpendicular to the central pyrazoline ring, making a dihedral angle of 86.55 (16)°, whereas the two attached benzene rings are oriented at smaller dihedral angles of 12.9 (2) and 14.7 (2)° with respect to the pyrazoline ring. An intramolecular $C-H \cdots N$ hydrogen bond is observed.

Related literature

For applications of pyrazoline derivatives, see: Shaharyar et al. (2006); Christoph et al. (2003); Parmar et al. (1974); Prasad et al. (2005). For a related pyrazoline compound, see: Krishna et al. (1999).

Experimental

Crystal data

·	
$C_{29}H_{21}N_3O_2$	V = 2159.6 (7) Å ³
$M_r = 443.49$	Z = 4
Orthorhombic, <i>Pca</i> 2 ₁	Mo $K\alpha$ radiation
a = 23.023 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 10.195 (2) Å	T = 293 K
c = 9.2005 (18) Å	$0.20 \times 0.20 \times 0.20 \mbox{ mm}$
Data collection	
Rigaku Mercury2 diffractometer	1675 reflections with $I > 2\sigma(I)$

Rigaku Mercury2 diffractometer 17812 measured reflections 2023 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	2 restraints
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^{-3}$
2023 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$
308 parameters	

 $R_{\rm int} = 0.068$

Table 1

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1-H1A\cdots N2$	0.93	2.59	3.422 (5)	150

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL .

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5037).

References

- Christoph, J. F., Liuchun, Y. & Donald, G. V. (2003). J. Am. Chem. Soc. 125, 3799–3812.
- Krishna, R., Velmurugan, D., Murugesan, R., Shanmuga Sundaram, M. & Raghunathan, R. (1999). Acta Cryst. C55, 1676-1677.
- Parmar, S. S., Pandey, B. R., Dwivedi, C. & Harbinson, R. D. (1974). J. Pharm. Sci. 63, 1152-1155.
- Prasad, Y. R., Rao, A. L., Prasoona, K., Murali, K. & Kumar, P. R. (2005). Bioorg. Med. Chem. Lett. 15, 5030-5034.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Shaharyar, M., Siddiqui, A. A. & Ali, M. A. (2006). Bioorg. Med. Chem. Lett. 16, 4571-4574.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o2786 [https://doi.org/10.1107/S1600536810038912]

5-(Anthracen-9-yl)-3-(4-nitrophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole

Bao-Li Dong, Ming-Liang Wang and Yong-Hua Li

S1. Comment

The derivatives of pyrazoline are mostly used in medicine, such as antibacterial (Shaharyar *et al.*, 2006), antidepressant (Prasad *et al.*, 2005) and anticonvulsant (Parmar *et al.*, 1974), furthermore they also have application in cell biological study due to their simple structure and favorable photophysical properties (Christoph *et al.*, 2003). Here we report the structure of the title compound (I), a new derivative of pyrazoline.

In the pyrazoline ring, the bond length of C17=N2 [1.287 (4) Å] indicates a to the normal C=N bond (1.28 Å), while the N2—N3 distance [1.366 (4) Å] agrees with the expected values (Krishna *et al.*, 1999). The mean plane of anthryl ring makes dihedral angles of 84.98 (9) and 82.81 (8)°, with the benzene ring and 4-nitrophenyl group, respectively.

S2. Experimental

3-(9-Anthryl)-1-(4-nitrophenylprop)-2-en-1-one (3 mmol, 1.0 g) and phenylhydrazine (6.5 mmol, 0.7 g) were dissolved in 10 ml acetic acid. The mixture was stirred for 8 h at refluxing temperature to give red solid. The product was isolated and recrystallized from ethanol/ethyl acetate (1:1 ν/ν) mixed solution, red single-crystal of (1) was obtained.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. As no significant anomalous scatterings, Friedel pairs were merged.

Figure 1

Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

5-(Anthracen-9-yl)-3-(4-nitrophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole

Crystal data

 $C_{29}H_{21}N_{3}O_{2}$ $M_{r} = 443.49$ Orthorhombic, $Pca2_{1}$ Hall symbol: P 2c -2ac a = 23.023 (5) Å b = 10.195 (2) Å c = 9.2005 (18) Å V = 2159.6 (7) Å³ Z = 4

Data collection

Rigaku Mercury2	2023 independent reflections
diffractometer	1675 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.068$
Graphite monochromator	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Detector resolution: 13.6612 pixels mm ⁻¹	$h = -27 \rightarrow 27$
CCD_Profile_fitting scans	$k = -12 \rightarrow 12$
17812 measured reflections	$l = -10 \rightarrow 10$
17812 measured reflections	$l = 10 \rightarrow 10$

F(000) = 928

 $\theta = 2.6 - 25.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

T = 293 K

Prism. red

 $D_{\rm x} = 1.364 {\rm Mg} {\rm m}^{-3}$

 $0.20 \times 0.20 \times 0.20$ mm

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2023 reflections

Refinement

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.095$	neighbouring sites
<i>S</i> = 1.08	H-atom parameters constrained
2023 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0418P)^2 + 0.3731P]$
308 parameters	where $P = (F_o^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.14 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N2	0.34781 (11)	0.8437 (3)	0.1581 (3)	0.0417 (7)	
C18	0.33011 (15)	0.6798 (3)	-0.0211 (4)	0.0400 (8)	
C6	0.48920 (14)	0.7455 (3)	0.3722 (4)	0.0392 (8)	
C7	0.49683 (14)	0.8475 (3)	0.2692 (4)	0.0380 (8)	
C5	0.53459 (15)	0.7161 (3)	0.4735 (4)	0.0451 (9)	
C17	0.36872 (14)	0.7631 (4)	0.0641 (4)	0.0410 (9)	

C21	0.25650 (16)	0.5236(3)	-0.1831 (4)	0.0437 (9)
C9	0.59566 (15)	0.8817 (4)	0.3653 (4)	0.0461 (9)
01	0.16551 (13)	0.4657 (3)	-0.2656 (4)	0.0673 (9)
C8	0.55013 (14)	0.9175 (3)	0.2655 (4)	0.0394 (9)
C15	0.44934 (13)	0.8788 (3)	0.1582 (4)	0.0408 (8)
H15A	0.4619	0.9549	0.1013	0.049*
N3	0.39237 (12)	0.9097 (3)	0.2234 (4)	0.0434 (7)
C29	0.42219 (16)	1.1131 (3)	0.3361 (4)	0.0437 (9)
H29A	0.4595	1.1022	0.2991	0.052*
C1	0.43743 (16)	0.6694 (3)	0.3833 (4)	0.0464 (9)
H1A	0.4074	0.6842	0.3178	0.056*
C27	0.35497 (16)	1.2377 (4)	0.4779 (5)	0.0594 (11)
H27A	0.3468	1.3096	0.5367	0.071*
C11	0.65023 (17)	0.9509 (4)	0.3584 (5)	0.0613 (12)
H11A	0.6801	0.9270	0.4211	0.074*
C14	0.56258 (15)	1.0242 (3)	0.1698 (5)	0.0482 (9)
H14A	0.5339	1.0515	0.1053	0.058*
C24	0.37940 (15)	1.0216 (3)	0.3050 (4)	0.0409 (9)
C10	0.58675 (16)	0.7836 (4)	0.4662 (4)	0.0506 (10)
H10A	0.6164	0.7624	0.5307	0.061*
N1	0.21739 (15)	0.4423 (3)	-0.2714 (4)	0.0558 (9)
C23	0.35171 (16)	0.5779 (4)	-0.1053 (5)	0.0546 (11)
H23A	0.3915	0.5628	-0.1076	0.066*
C2	0.43091 (17)	0.5761 (4)	0.4868 (5)	0.0564 (11)
H2A	0.3967	0.5277	0.4904	0.068*
C20	0.23398 (15)	0.6237 (4)	-0.1030 (4)	0.0476 (10)
H20A	0.1942	0.6399	-0.1041	0.057*
O2	0.23825 (14)	0.3550 (3)	-0.3453 (4)	0.0887 (11)
C28	0.40961 (17)	1.2200 (4)	0.4218 (5)	0.0509 (10)
H28A	0.4385	1.2810	0.4419	0.061*
C12	0.65894 (18)	1.0493 (4)	0.2635 (6)	0.0689 (13)
H12A	0.6946	1.0921	0.2605	0.083*
C16	0.43391 (13)	0.7676 (4)	0.0517 (4)	0.0453 (9)
H16A	0.4461	0.7885	-0.0466	0.054*
H16B	0.4514	0.6852	0.0810	0.054*
C13	0.61422 (17)	1.0873 (4)	0.1690 (5)	0.0577 (11)
H13A	0.6201	1.1567	0.1051	0.069*
C3	0.47497 (19)	0.5511 (4)	0.5891 (5)	0.0590 (11)
H3A	0.4693	0.4889	0.6617	0.071*
C25	0.32422 (17)	1.0409 (4)	0.3603 (5)	0.0566 (11)
H25A	0.2949	0.9812	0.3393	0.068*
C19	0.27035 (15)	0.7011 (3)	-0.0203 (4)	0.0474 (9)
H19A	0.2549	0.7680	0.0365	0.057*
C4	0.52555 (19)	0.6179 (4)	0.5811 (5)	0.0584 (11)
H4A	0.5550	0.5993	0.6471	0.070*
C22	0.31528 (17)	0.4985 (4)	-0.1856 (5)	0.0572 (11)
H22A	0.3301	0.4294	-0.2403	0.069*
C26	0.31263 (17)	1.1481 (4)	0.4460 (6)	0.0679 (13)

supporting information

H26A	0.2754	1	.1600	0.4829	0.082*	
Atomic displacement parameters $(Å^2)$						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N2	0.0337 (16)	0.0427 (16)	0.0487 (18)	0.0034 (14)	-0.0089 (15)	-0.0072 (16)
C18	0.0364 (18)	0.0455 (19)	0.038 (2)	-0.0010 (16)	-0.0049 (17)	-0.0013 (18)
C6	0.0333 (19)	0.0358 (18)	0.048 (2)	0.0078 (15)	-0.0037 (16)	-0.0067 (18)
C7	0.0317 (18)	0.0382 (18)	0.044 (2)	0.0055 (15)	-0.0054 (16)	-0.0067 (18)
C5	0.046 (2)	0.044 (2)	0.045 (2)	0.0123 (17)	-0.0091 (19)	-0.005 (2)
C17	0.0322 (18)	0.049 (2)	0.041 (2)	0.0033 (16)	-0.0077 (16)	-0.0047 (19)
C21	0.040 (2)	0.052 (2)	0.0393 (19)	-0.0063 (18)	-0.0050 (18)	-0.0046 (19)
C9	0.032 (2)	0.054 (2)	0.052 (2)	0.0026 (17)	-0.0061 (17)	-0.014 (2)
01	0.0474 (17)	0.081 (2)	0.074 (2)	-0.0142 (15)	-0.0129 (17)	-0.0069 (18)
C8	0.0347 (19)	0.042 (2)	0.042 (2)	0.0047 (15)	-0.0029 (16)	-0.0111 (18)
C15	0.0331 (18)	0.044 (2)	0.045 (2)	0.0027 (15)	-0.0080 (17)	-0.0037 (19)
N3	0.0310 (15)	0.0459 (17)	0.0534 (18)	0.0040 (14)	-0.0084 (15)	-0.0110 (16)
C29	0.041 (2)	0.041 (2)	0.049 (2)	0.0030 (17)	-0.0015 (18)	-0.0050 (19)
C1	0.041 (2)	0.042 (2)	0.056 (2)	0.0045 (17)	-0.0084 (19)	-0.001 (2)
C27	0.055 (3)	0.052 (2)	0.071 (3)	0.002 (2)	0.005 (2)	-0.022 (2)
C11	0.038 (2)	0.074 (3)	0.072 (3)	0.002 (2)	-0.012 (2)	-0.015 (3)
C14	0.040 (2)	0.050(2)	0.055 (2)	0.0007 (18)	0.0018 (19)	-0.004 (2)
C24	0.040 (2)	0.0387 (19)	0.044 (2)	0.0035 (16)	-0.0075 (17)	-0.0030 (18)
C10	0.038 (2)	0.060(2)	0.054 (3)	0.0114 (19)	-0.014 (2)	-0.012 (2)
N1	0.054 (2)	0.064 (2)	0.050(2)	-0.0117 (18)	-0.0066 (18)	-0.003 (2)
C23	0.035 (2)	0.076 (3)	0.053 (2)	0.0052 (19)	-0.0053 (19)	-0.021 (2)
C2	0.054 (2)	0.045 (2)	0.071 (3)	0.0012 (19)	0.001 (2)	0.003 (2)
C20	0.0313 (19)	0.055 (2)	0.056 (2)	0.0010 (17)	-0.0054 (19)	-0.002 (2)
O2	0.075 (2)	0.097 (2)	0.094 (3)	-0.007 (2)	-0.001 (2)	-0.055 (2)
C28	0.048 (2)	0.041 (2)	0.064 (3)	0.0001 (18)	-0.004 (2)	-0.005 (2)
C12	0.048 (3)	0.071 (3)	0.088 (4)	-0.017 (2)	0.002 (3)	-0.012 (3)
C16	0.0333 (19)	0.059 (2)	0.044 (2)	0.0019 (17)	-0.0053 (17)	-0.010 (2)
C13	0.046 (2)	0.060 (3)	0.067 (3)	-0.009 (2)	0.005 (2)	-0.007 (2)
C3	0.071 (3)	0.047 (2)	0.059 (3)	0.013 (2)	0.001 (2)	0.011 (2)
C25	0.039 (2)	0.056 (2)	0.074 (3)	-0.0022 (18)	0.004 (2)	-0.019 (2)
C19	0.040 (2)	0.047 (2)	0.055 (2)	0.0028 (17)	-0.0064 (19)	-0.012 (2)
C4	0.061 (3)	0.056 (2)	0.058 (3)	0.018 (2)	-0.011 (2)	0.005 (2)
C22	0.048 (2)	0.070 (3)	0.053 (2)	0.006 (2)	-0.002 (2)	-0.023 (2)
C26	0.044 (2)	0.073 (3)	0.087 (4)	0.005 (2)	0.013 (2)	-0.029 (3)

Geometric parameters (Å, °)

N2—C17	1.287 (4)	C27—C26	1.368 (5)	
N2—N3	1.366 (4)	C27—C28	1.372 (5)	
C18—C23	1.388 (5)	C27—H27A	0.9300	
C18—C19	1.393 (5)	C11—C12	1.345 (6)	
C18—C17	1.458 (5)	C11—H11A	0.9300	
С6—С7	1.417 (5)	C14—C13	1.352 (5)	

C6—C1	1.426 (5)	C14—H14A	0.9300
C6—C5	1.432 (5)	C24—C25	1.382 (5)
C7—C8	1.420 (5)	C10—H10A	0.9300
C7—C15	1.530 (5)	N1—O2	1.219 (4)
C5—C10	1.386 (5)	C23—C22	1.380 (5)
C5—C4	1.423 (6)	C23—H23A	0.9300
C17—C16	1.506 (5)	C2—C3	1.407 (6)
$C_{21} - C_{20}$	1 361 (5)	C2—H2A	0.9300
$C_{21} - C_{22}$	1.301(5) 1.378(5)	C_{20} C_{19}	1 379 (5)
C21 N1	1.570(5)	C_{20} H_{20A}	0.0300
$C_2 = N_1$	1.409 (5)	$C_{20} = H_{20} A$	0.9300
C_{2}	1.361(0) 1.440(5)	C_{20} $- H_{20}A$	1 402 (6)
C_{9}	1.440(3)	C12—C13	1.402 (0)
	1.442 (5)	CI2—HI2A	0.9300
OI—NI	1.219 (4)	C16—H16A	0.9700
C8—C14	1.429 (5)	C16—H16B	0.9700
C15—N3	1.476 (4)	C13—H13A	0.9300
C15—C16	1.540 (5)	C3—C4	1.351 (6)
C15—H15A	0.9800	С3—НЗА	0.9300
N3—C24	1.398 (4)	C25—C26	1.374 (5)
C29—C28	1.375 (5)	C25—H25A	0.9300
C29—C24	1.387 (5)	C19—H19A	0.9300
C29—H29A	0.9300	C4—H4A	0.9300
C1—C2	1.354 (5)	C22—H22A	0.9300
C1—H1A	0.9300	C26—H26A	0.9300
C17—N2—N3	109.2 (3)	C25—C24—N3	120.7(3)
C_{23} C_{18} C_{19}	1183(3)	C29 - C24 - N3	120.7(3)
C_{23} C_{18} C_{17}	121.2(3)	C9-C10-C5	120.3(3) 1214(3)
C_{23} C_{10} C_{17} C_{17}	121.2(3) 120.6(3)	C_{0} C_{10} H_{10A}	110.2
C7 - C6 - C1	120.0(3) 123.4(3)	C_{5} C_{10} H_{10A}	119.3
C7 = C6 = C1	123.4(3)	C_{3} C_{10} C_{10} C_{10}	119.3 122.6(2)
$C/=C_0$	119.9 (3)	02 N1 -01	123.0(3)
CI = C6 = C3	110.7 (3)	02-N1-C21	118.0 (3)
C6	119.5 (3)	OI - NI - C2I	11/.8 (3)
C6—C7—C15	120.7 (3)	C22—C23—C18	121.3 (3)
C8—C7—C15	119.8 (3)	C22—C23—H23A	119.3
C10—C5—C4	120.7 (4)	C18—C23—H23A	119.3
C10—C5—C6	119.8 (4)	C1—C2—C3	121.2 (4)
C4—C5—C6	119.6 (3)	C1—C2—H2A	119.4
N2-C17-C18	120.4 (3)	C3—C2—H2A	119.4
N2-C17-C16	113.8 (3)	C21—C20—C19	119.7 (3)
C18—C17—C16	125.8 (3)	C21—C20—H20A	120.1
C20—C21—C22	121.5 (3)	C19—C20—H20A	120.1
C20-C21-N1	119.3 (3)	C27—C28—C29	120.9 (4)
C22—C21—N1	119.2 (3)	C27—C28—H28A	119.6
С10—С9—С8	120.3 (3)	C29—C28—H28A	119.6
C10-C9-C11	120.9 (4)	C11—C12—C13	120.0 (4)
C8-C9-C11	118 8 (4)	C11—C12—H12A	120.0
C7-C8-C14	124 8 (3)	C13-C12-H12A	120.0
	12 110 (2)		

C7—C8—C9	119.1 (3)	C17—C16—C15	101.8 (3)
C14—C8—C9	116.1 (3)	C17—C16—H16A	111.4
N3—C15—C7	114.1 (3)	C15—C16—H16A	111.4
N3—C15—C16	102.2 (3)	C17—C16—H16B	111.4
C7—C15—C16	115.9 (3)	C15—C16—H16B	111.4
N3—C15—H15A	108.1	H16A—C16—H16B	109.3
C7—C15—H15A	108.1	C14—C13—C12	120.7 (4)
C16—C15—H15A	108.1	C14—C13—H13A	119.6
N2—N3—C24	118.5 (3)	С12—С13—Н13А	119.6
N2—N3—C15	112.5 (3)	C4—C3—C2	119.6 (4)
C24—N3—C15	125.6 (3)	С4—С3—НЗА	120.2
C28—C29—C24	120.1 (3)	С2—С3—НЗА	120.2
С28—С29—Н29А	120.0	C26—C25—C24	120.2 (4)
С24—С29—Н29А	120.0	C26—C25—H25A	119.9
C2—C1—C6	121.7 (3)	С24—С25—Н25А	119.9
C2—C1—H1A	119.1	C20-C19-C18	120.5 (3)
C6—C1—H1A	119.1	С20—С19—Н19А	119.7
C26—C27—C28	119.0 (4)	C18—C19—H19A	119.7
С26—С27—Н27А	120.5	C3—C4—C5	121.2 (4)
С28—С27—Н27А	120.5	C3—C4—H4A	119.4
C12—C11—C9	121.5 (4)	C5—C4—H4A	119.4
C12—C11—H11A	119.2	C21—C22—C23	118.6 (4)
С9—С11—Н11А	119.2	C21—C22—H22A	120.7
C13—C14—C8	122.8 (4)	C23—C22—H22A	120.7
C13—C14—H14A	118.6	C27—C26—C25	121.1 (4)
C8—C14—H14A	118.6	C27—C26—H26A	119.5
C25—C24—C29	118.8 (3)	C25—C26—H26A	119.5

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1 <i>A</i> …N2	0.93	2.59	3.422 (5)	150