organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Allyl-4-(1,3-benzothiazol-2-yl)-5methyl-2-phenyl-1H-pyrazol-3(2H)-one

Imane Chakib,^a Abdelfettah Zerzouf,^a Hafid Zouihri,^a El Mokhtar Essassi^a and Seik Weng Ng^{b*}

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 6 October 2010; accepted 8 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.050; wR factor = 0.172; data-to-parameter ratio = 16.2

The title compound, $C_{20}H_{17}N_3OS$, is a 1*H*-pyrazol-3(2*H*)-one having aromatic 4-(1,3-benzothiazol-2-yl)- and 2-phenyl substituents. The five-membered ring and fused ring system are planar, the r.m.s. deviations being 0.021 and 0.005 Å, respectively. The five-membered ring is aligned at 7.9 $(2)^{\circ}$ with respect to the fused-ring system. The allyl and phenyl parts of the molecule are both disordered over two positions in a 1:1 ratio. Weak intermolecular C-H···O hydrogen bonding is present in the crystal structure.

Related literature

For the structure of a related compound (E)-4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, see: Chakibe et al. (2010).

Experimental

Crystal data

C20H17N3OS	$V = 3534.00 (14) \text{ Å}^3$
$M_r = 347.43$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 17.8734 (5) Å	$\mu = 0.20 \text{ mm}^{-1}$
b = 10.4297 (2) Å	T = 293 K
c = 18.9578 (4) Å	$0.30 \times 0.30 \times 0.25 \text{ mm}$

Data collection

Bruker X8 APEXII diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.944, T_{\rm max} = 0.953$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	17 restraints
R[1 > 20(1)] = 0.050	
$wR(F^2) = 0.172$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
3678 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
227 parameters	

18349 measured reflections 3678 independent reflections

2341 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.032$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots O1^{i}$	0.93	2.59	3.318 (3)	135
$C12-H12A\cdotsO1^{n}$	0.97	2.51	3.404 (4)	152
$C12-H12C\cdots O1^n$	0.97	2.48	3.404 (4)	159

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z.

Data collection: APEX2 (Bruker, 2008): cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5047).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chakibe, I., Zerzouf, A., Essassi, E. M., Reichelt, M. & Reuter, H. (2010). Acta Cryst. E66, 01096.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2010). E66, o2842 [https://doi.org/10.1107/S1600536810040316]

1-Allyl-4-(1,3-benzothiazol-2-yl)-5-methyl-2-phenyl-1H-pyrazol-3(2H)-one

Imane Chakib, Abdelfettah Zerzouf, Hafid Zouihri, El Mokhtar Essassi and Seik Weng Ng

S1. Comment

(*E*)-4-(2,3-Dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one is an amine that can under a nucleophilic substitution with organo bromides to form 2-substituted derivatives if tetra-*n*-butyl ammonium bromide is used as catalyst. In this study, the compound is reacted with allyl bromide to yield the title compound (Scheme I, Fig. 1).

S2. Experimental

To a solution of (E)-4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (1 g, 3.25 mmol) in DMF (50 ml), was added sodium carbonate (2.5 g, 23 mmol), tetra-*n*-butyl ammonium bromide (0.15 g, 1 mmol) and allyl bromide (5.6 g, 46 mmol). The mixture was stirred for 24 h at room temperature. The solid material was removed by filtration and the solution was evaporated under reduced. The residue was washed with dichloromethane and hexane, and the recrystallized from ethanol to afford the title compound as colorless crystals.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2-1.5U_{eq}(C)$.

The allyl and phenyl units are disordered over two positions; the disorder could be refined, and was assumed to be a 1:1 type of disorder. For the allyl unit, the single-bond distances were restrained to 1.50 ± 0.01 Å and the double-bond distances to 1.35 ± 0.01 Å; the anisotropic temperature factors were restrained to be nearly isotropic. The phenyl rings were refined as rigid hexagons of 1.39 Å sides; the N–C_{phenyl} pair of distances were restrained to within 0.01 Å of each other. Additionally, the temperature factors of the primed atoms were restrained to those of the unprimed ones.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{20}H_{17}N_3OS$ at the 50% probability level; hydrogen atoms are drawn as arbitrary radius. The disorder is not shown

1-Allyl-4-(1,3-benzothiazol-2-yl)-5-methyl-2-phenyl- 1H-pyrazol-3(2H)-one

Crystal data

C₂₀H₁₇N₃OS $M_r = 347.43$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 17.8734 (5) Å b = 10.4297 (2) Å c = 18.9578 (4) Å V = 3534.00 (14) Å³ Z = 8

Data collection

Bruker X8 APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.944, T_{\max} = 0.953$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.172$ S = 1.003678 reflections F(000) = 1456 $D_x = 1.306 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3745 reflections $\theta = 2.3-22.5^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 293 KPrism, colorless $0.30 \times 0.30 \times 0.25 \text{ mm}$

18349 measured reflections 3678 independent reflections 2341 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 26.6^\circ, \theta_{min} = 2.4^\circ$ $h = -22 \rightarrow 21$ $k = -13 \rightarrow 12$ $l = -23 \rightarrow 23$

227 parameters17 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained
$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.096P)^2 + 0.8646P] \\ &\text{where } P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} = 0.001 \\ \Delta\rho_{\text{max}} = 0.32 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} = -0.25 \text{ e } \text{\AA}^{-3} \end{split}$$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.54022 (4)	0.59623 (7)	0.57529 (3)	0.0590 (2)	
01	0.63189 (12)	0.5096 (2)	0.45761 (10)	0.0808 (6)	
N1	0.61613 (12)	0.7853 (2)	0.62953 (11)	0.0590 (6)	
N2	0.79529 (13)	0.6762 (2)	0.48741 (11)	0.0593 (6)	
N3	0.75432 (13)	0.5809 (2)	0.45335 (11)	0.0627 (6)	
C1	0.50073 (15)	0.6812 (2)	0.64448 (12)	0.0531 (6)	
C2	0.43115 (17)	0.6640 (3)	0.67650 (14)	0.0669 (7)	
H2	0.3989	0.5995	0.6617	0.080*	
C3	0.41164 (19)	0.7448 (3)	0.73035 (15)	0.0762 (9)	
Н3	0.3654	0.7349	0.7522	0.091*	
C4	0.4595 (2)	0.8412 (3)	0.75287 (16)	0.0798 (9)	
H4	0.4454	0.8943	0.7900	0.096*	
C5	0.52717 (19)	0.8589 (3)	0.72110 (15)	0.0743 (8)	
Н5	0.5587	0.9242	0.7362	0.089*	
C6	0.54904 (16)	0.7785 (2)	0.66569 (12)	0.0566 (6)	
C7	0.61898 (14)	0.6956 (2)	0.58142 (11)	0.0495 (6)	
C8	0.68208 (17)	0.5800 (3)	0.48056 (13)	0.0603 (7)	
C9	0.68293 (15)	0.6721 (2)	0.53608 (12)	0.0518 (6)	
C10	0.75276 (15)	0.7255 (2)	0.53898 (12)	0.0548 (6)	
C11	0.78327 (19)	0.8222 (3)	0.58934 (16)	0.0760 (8)	
H11A	0.8269	0.8617	0.5693	0.114*	
H11B	0.7965	0.7806	0.6327	0.114*	
H11C	0.7461	0.8865	0.5984	0.114*	
C12	0.87637 (17)	0.6862 (3)	0.48056 (16)	0.0746 (8)	
H12A	0.8914	0.7755	0.4806	0.090*	0.50
H12B	0.8926	0.6475	0.4366	0.090*	0.50
H12C	0.8825	0.7782	0.4852	0.090*	0.50
H12D	0.8812	0.6708	0.4303	0.090*	0.50
C13	0.9121 (11)	0.6151 (15)	0.5440 (7)	0.101 (3)	0.50
H13	0.8915	0.5398	0.5616	0.121*	0.50
C14	0.9722 (11)	0.6652 (18)	0.5718 (9)	0.139 (4)	0.50
H14A	0.9920	0.7407	0.5535	0.166*	0.50
H14B	0.9953	0.6254	0.6099	0.166*	0.50
C13′	0.9175 (11)	0.5938 (15)	0.5294 (7)	0.101 (3)	0.50
H13′	0.9148	0.5076	0.5171	0.121*	0.50
C14′	0.9555 (11)	0.6196 (18)	0.5854 (8)	0.139 (4)	0.50
H14C	0.9603	0.7041	0.6004	0.166*	0.50
H14D	0.9781	0.5538	0.6107	0.166*	0.50
C15	0.7691 (10)	0.5140 (10)	0.3885 (4)	0.0510 (18)	0.50

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C16	0.8277 (10)	0.4304 (14)	0.3741 (5)	0.0863 (18)	0.50
H16	0.8561	0.3969	0.4108	0.104*	0.50
C17	0.8437 (10)	0.3967 (13)	0.3048 (5)	0.105 (3)	0.50
H17	0.8829	0.3407	0.2951	0.126*	0.50
C18	0.8012 (11)	0.4466 (10)	0.2499 (4)	0.110 (4)	0.50
H18	0.8119	0.4241	0.2035	0.132*	0.50
C19	0.7426 (10)	0.5303 (12)	0.2643 (6)	0.102 (3)	0.50
H19	0.7142	0.5637	0.2275	0.123*	0.50
C20	0.7265 (9)	0.5640 (12)	0.3336 (7)	0.0714 (19)	0.50
H20	0.6874	0.6199	0.3432	0.086*	0.50
C15′	0.7791 (10)	0.5424 (10)	0.3848 (5)	0.0510 (18)	0.50
C16′	0.8326 (10)	0.4458 (14)	0.3884 (4)	0.0863 (18)	0.50
H16′	0.8571	0.4294	0.4308	0.104*	0.50
C17′	0.8494 (11)	0.3738 (12)	0.3288 (5)	0.105 (3)	0.50
H17′	0.8852	0.3092	0.3312	0.126*	0.50
C18′	0.8127 (11)	0.3984 (9)	0.2656 (4)	0.110 (4)	0.50
H18′	0.8240	0.3502	0.2257	0.132*	0.50
C19′	0.7593 (10)	0.4949 (13)	0.2620 (5)	0.102 (3)	0.50
H19′	0.7347	0.5113	0.2197	0.123*	0.50
C20′	0.7425 (9)	0.5669 (11)	0.3216 (7)	0.0714 (19)	0.50
H20′	0.7067	0.6315	0.3192	0.086*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
<u>S1</u>	0.0542 (4)	0.0698 (4)	0.0528 (4)	-0.0033 (3)	0.0062 (3)	-0.0106 (3)
01	0.0647 (13)	0.1020 (15)	0.0756 (13)	-0.0228 (12)	0.0166 (10)	-0.0337 (12)
N1	0.0559 (14)	0.0630 (12)	0.0580 (12)	0.0042 (10)	0.0020 (10)	-0.0066 (10)
N2	0.0529 (14)	0.0655 (12)	0.0594 (12)	-0.0072 (11)	0.0080 (10)	-0.0040 (10)
N3	0.0568 (14)	0.0740 (13)	0.0573 (12)	-0.0097 (11)	0.0118 (11)	-0.0143 (10)
C1	0.0521 (16)	0.0634 (14)	0.0438 (12)	0.0102 (12)	-0.0007 (11)	0.0048 (10)
C2	0.0615 (18)	0.0812 (18)	0.0581 (15)	0.0026 (15)	0.0106 (13)	0.0007 (13)
C3	0.067 (2)	0.100 (2)	0.0611 (16)	0.0151 (18)	0.0163 (15)	0.0006 (15)
C4	0.084 (2)	0.090 (2)	0.0657 (17)	0.0216 (19)	0.0131 (17)	-0.0169 (16)
C5	0.075 (2)	0.0803 (18)	0.0677 (17)	0.0077 (16)	0.0047 (16)	-0.0213 (15)
C6	0.0589 (17)	0.0610 (14)	0.0500 (13)	0.0111 (13)	-0.0020 (12)	-0.0043 (11)
C7	0.0514 (15)	0.0534 (12)	0.0438 (11)	0.0041 (11)	-0.0018 (10)	0.0018 (10)
C8	0.0599 (17)	0.0689 (15)	0.0521 (13)	-0.0055 (14)	0.0088 (13)	-0.0060 (12)
C9	0.0538 (16)	0.0566 (13)	0.0450 (12)	0.0004 (12)	0.0022 (11)	-0.0006 (10)
C10	0.0558 (16)	0.0580 (13)	0.0507 (13)	-0.0014 (12)	0.0024 (12)	-0.0003 (11)
C11	0.070 (2)	0.0852 (19)	0.0725 (17)	-0.0151 (16)	0.0033 (15)	-0.0177 (15)
C12	0.0580 (19)	0.090 (2)	0.0763 (19)	-0.0105 (16)	0.0148 (15)	-0.0134 (16)
C13	0.072 (3)	0.124 (5)	0.108 (6)	0.039 (3)	-0.021 (4)	-0.065 (4)
C14	0.136 (8)	0.165 (9)	0.115 (6)	0.033 (7)	0.001 (5)	0.023 (6)
C13′	0.072 (3)	0.124 (5)	0.108 (6)	0.039 (3)	-0.021 (4)	-0.065 (4)
C14′	0.136 (8)	0.165 (9)	0.115 (6)	0.033 (7)	0.001 (5)	0.023 (6)
C15	0.059 (4)	0.031 (4)	0.0631 (17)	-0.024 (4)	0.0240 (16)	-0.001 (2)
C16	0.087 (3)	0.067 (3)	0.105 (4)	0.001 (3)	0.026 (4)	-0.022 (3)

supporting information

C17	0.122 (5)	0.085 (5)	0.108 (8)	0.000 (4)	0.058 (7)	-0.028 (5)
C18	0.133 (8)	0.098 (8)	0.098 (5)	-0.045 (8)	0.057 (6)	-0.038 (5)
C19	0.100 (7)	0.149 (8)	0.0579 (19)	-0.034 (6)	0.029 (3)	-0.017 (3)
C20	0.069 (6)	0.102 (2)	0.043 (4)	-0.020 (3)	0.028 (3)	0.007 (2)
C15′	0.059 (4)	0.031 (4)	0.0631 (17)	-0.024 (4)	0.0240 (16)	-0.001 (2)
C16′	0.087 (3)	0.067 (3)	0.105 (4)	0.001 (3)	0.026 (4)	-0.022 (3)
C17′	0.122 (5)	0.085 (5)	0.108 (8)	0.000 (4)	0.058 (7)	-0.028 (5)
C18′	0.133 (8)	0.098 (8)	0.098 (5)	-0.045 (8)	0.057 (6)	-0.038 (5)
C19′	0.100(7)	0.149 (8)	0.0579 (19)	-0.034 (6)	0.029 (3)	-0.017 (3)
C20′	0.069 (6)	0.102 (2)	0.043 (4)	-0.020 (3)	0.028 (3)	0.007 (2)

Geometric parameters (Å, °)

S1—C1	1.733 (2)	C12—H12C	0.9701
S1—C7	1.752 (3)	C12—H12D	0.9701
O1—C8	1.238 (3)	C13—C14	1.305 (10)
N1—C7	1.307 (3)	C13—H13	0.9300
N1—C6	1.383 (3)	C14—H14A	0.9300
N2	1.341 (3)	C14—H14B	0.9300
N2—N3	1.393 (3)	C13′—C14′	1.289 (9)
N2	1.459 (3)	С13'—Н13'	0.9300
N3—C8	1.391 (4)	C14′—H14C	0.9300
N3—C15′	1.430 (6)	C14′—H14D	0.9300
N3—C15	1.438 (6)	C15—C16	1.3900
C1—C6	1.392 (4)	C15—C20	1.3900
C1—C2	1.395 (4)	C16—C17	1.3900
C2—C3	1.369 (4)	C16—H16	0.9300
С2—Н2	0.9300	C17—C18	1.3900
C3—C4	1.388 (5)	C17—H17	0.9300
С3—Н3	0.9300	C18—C19	1.3900
C4—C5	1.363 (4)	C18—H18	0.9300
C4—H4	0.9300	C19—C20	1.3900
C5—C6	1.399 (4)	С19—Н19	0.9300
С5—Н5	0.9300	C20—H20	0.9300
С7—С9	1.451 (3)	C15'—C16'	1.3900
C8—C9	1.425 (3)	C15′—C20′	1.3900
C9—C10	1.368 (4)	C16'—C17'	1.3900
C10-C11	1.492 (4)	C16'—H16'	0.9300
C11—H11A	0.9600	C17'—C18'	1.3900
C11—H11B	0.9600	C17'—H17'	0.9300
C11—H11C	0.9600	C18′—C19′	1.3900
C12—C13′	1.525 (9)	C18'—H18'	0.9300
C12—C13	1.551 (8)	C19′—C20′	1.3900
C12—H12A	0.9700	C19'—H19'	0.9300
C12—H12B	0.9700	С20'—Н20'	0.9300
C1—S1—C7	88.53 (12)	H12A—C12—H12B	108.5
C7—N1—C6	110.1 (2)	C13'—C12—H12C	121.0

C10—N2—N3	108.3 (2)	C13—C12—H12C	110.8
C10—N2—C12	126.9 (2)	C13'—C12—H12D	116.7
N3—N2—C12	122.1 (2)	H12C-C12-H12D	104.1
C8—N3—N2	108.7 (2)	C14—C13—C12	117.5 (15)
C8—N3—C15′	128.5 (7)	C14—C13—H13	121.3
N2—N3—C15′	117.3 (6)	С12—С13—Н13	121.3
C8—N3—C15	118.9 (7)	C13—C14—H14A	120.0
N2—N3—C15	130.3 (6)	C13—C14—H14B	120.0
C6-C1-C2	121.4 (2)	H14A—C14—H14B	120.0
C6-C1-S1	109.81 (19)	C14'-C13'-C12	128 4 (15)
C_{2} C_{1} S_{1}	128 8 (2)	C14' - C13' - H13'	115.8
$C_3 - C_2 - C_1$	120.0(2) 118.2(3)	C_{12} C_{13} $-H_{13}$	115.8
C_{3} C_{2} H_{2}	120.9	C12' C13' H14C	120.0
C_{1} C_{2} H_{2}	120.9	$C_{13}^{-13} - C_{14}^{-111+C} + H_{14}^{-111+C}$	120.0
$C_1 = C_2 = C_1$	120.9 121.2(3)	H_{14} C_{14} H_{14} H_{14}	120.0
$C_2 = C_3 = C_4$	121.2(5)	1114C - C14 - 1114D	120.0
$C_2 = C_3 = H_3$	119.4	C16 - C15 - C20	120.0
C4—C3—H3	119.4	C10-C15-N3	127.0 (11)
C_{3}	120.6 (3)	C_{20} — C_{15} — N_{3}	111.0 (10)
C3—C4—H4	119.7		120.0
C3—C4—H4	119.7	C15—C16—H16	120.0
C4—C5—C6	119.9 (3)	C17—C16—H16	120.0
C4—C5—H5	120.0	C18—C17—C16	120.0
C6—C5—H5	120.0	C18—C17—H17	120.0
N1—C6—C1	115.6 (2)	С16—С17—Н17	120.0
N1—C6—C5	125.7 (3)	C17—C18—C19	120.0
C1—C6—C5	118.7 (3)	C17—C18—H18	120.0
N1—C7—C9	124.4 (2)	C19—C18—H18	120.0
N1—C7—S1	115.99 (19)	C20—C19—C18	120.0
C9—C7—S1	119.57 (17)	С20—С19—Н19	120.0
O1—C8—N3	123.1 (2)	C18—C19—H19	120.0
O1—C8—C9	131.8 (3)	C19—C20—C15	120.0
N3—C8—C9	105.0 (2)	С19—С20—Н20	120.0
C10—C9—C8	108.3 (2)	С15—С20—Н20	120.0
C10—C9—C7	128.8 (2)	C16'—C15'—C20'	120.0
C8—C9—C7	122.9 (2)	C16'—C15'—N3	111.8 (10)
N2—C10—C9	109.4 (2)	C20'—C15'—N3	125.8 (11)
N2-C10-C11	121.2 (3)	C15'—C16'—C17'	120.0
C9—C10—C11	129.4 (2)	C15'—C16'—H16'	120.0
C10—C11—H11A	109.5	C17'—C16'—H16'	120.0
C10—C11—H11B	109.5	C18' - C17' - C16'	120.0
H11A—C11—H11B	109.5	$C_{18}' - C_{17}' - H_{17}'$	120.0
C10-C11-H11C	109.5	$C_{16} - C_{17} - H_{17}$	120.0
$H_{11}A = C_{11} = H_{11}C$	109.5	C19'-C18'-C17'	120.0
H11B_C11_H11C	109.5	C19'-C18'-H18'	120.0
N2-C12-C13'	112 3 (0)	C17' - C18' - H18'	120.0
$N_2 - C_{12} - C_{13}$	107.8 (9)	C18' - C10' - C20'	120.0
N2 C12 H12A	110.1	C18' = C10' = C20'	120.0
112 - 0.12 - 1112A 0.12' - 0.12 - 1112A	110.1	$C_{10} = C_{10} = 1119$ $C_{20} = C_{10} = 110'$	120.0
UIJ - UIZ - IIIZA	110.2	020 - 017 - 1117	120.0

C13—C12—H12A	110.1	C19'—C20'—C15'	120.0
N2—C12—H12B	110.1	C19'—C20'—H20'	120.0
C13—C12—H12B	110.1	C15'—C20'—H20'	120.0
C10—N2—N3—C8	5.6 (3)	C12-N2-C10-C11	13.0 (4)
C12—N2—N3—C8	168.3 (2)	C8—C9—C10—N2	2.0 (3)
C10—N2—N3—C15′	161.9 (8)	C7—C9—C10—N2	179.5 (2)
C12—N2—N3—C15′	-35.5 (8)	C8—C9—C10—C11	-177.2 (3)
C10—N2—N3—C15	168.7 (9)	C7—C9—C10—C11	0.3 (5)
C12—N2—N3—C15	-28.7 (9)	C10—N2—C12—C13′	77.9 (7)
C7—S1—C1—C6	1.10 (18)	N3—N2—C12—C13′	-81.3 (7)
C7—S1—C1—C2	179.7 (2)	C10-N2-C12-C13	64.1 (7)
C6—C1—C2—C3	-0.8 (4)	N3—N2—C12—C13	-95.2 (7)
S1—C1—C2—C3	-179.3 (2)	N2-C12-C13-C14	-142.4 (14)
C1—C2—C3—C4	-0.1 (4)	C13′—C12—C13—C14	106 (7)
C2—C3—C4—C5	0.8 (5)	N2—C12—C13'—C14'	-108(2)
C3—C4—C5—C6	-0.6 (5)	C13—C12—C13'—C14'	-35 (6)
C7—N1—C6—C1	0.3 (3)	C8—N3—C15—C16	-133.0(8)
C7—N1—C6—C5	179.4 (3)	N2—N3—C15—C16	65.4 (10)
C2-C1-C6-N1	-179.8(2)	C15′—N3—C15—C16	91 (6)
S1—C1—C6—N1	-1.1 (3)	C8—N3—C15—C20	60.6 (8)
C2-C1-C6-C5	1.0 (4)	N2—N3—C15—C20	-101.0(10)
S1—C1—C6—C5	179.8 (2)	C15′—N3—C15—C20	-75 (6)
C4—C5—C6—N1	-179.4(3)	C20—C15—C16—C17	0.0
C4C5C6C1	-0.3 (4)	N3—C15—C16—C17	-165.3(9)
C6—N1—C7—C9	-177.2(2)	C15—C16—C17—C18	0.0
C6—N1—C7—S1	0.6 (3)	C16—C17—C18—C19	0.0
C1—S1—C7—N1	-1.01 (19)	C17—C18—C19—C20	0.0
C1—S1—C7—C9	176.89 (19)	C18—C19—C20—C15	0.0
N2-N3-C8-O1	176.1 (3)	C16—C15—C20—C19	0.0
C15' - N3 - C8 - O1	23.3 (8)	N3-C15-C20-C19	167.6 (9)
C15—N3—C8—O1	10.8 (7)	C8—N3—C15'—C16'	-121.9(9)
N2—N3—C8—C9	-4.3 (3)	N2—N3—C15′—C16′	87.4 (7)
C15' - N3 - C8 - C9	-157.0(7)	C15—N3—C15'—C16'	-71(6)
C15 - N3 - C8 - C9	-169.5(7)	C8 - N3 - C15' - C20'	40.7 (11)
01 - C8 - C9 - C10	-1789(3)	N2 - N3 - C15' - C20'	-1101(9)
N_{3} C_{8} C_{9} C_{10}	14(3)	$C_{15} N_{3} C_{15} C_{20}$	92 (6)
01 - C8 - C9 - C7	34(5)	C20'-C15'-C16'-C17'	0.0
N_{3} C_{8} C_{9} C_{7}	-1762(2)	$N_3 - C_{15'} - C_{16'} - C_{17'}$	163.7(10)
$N_1 - C_7 - C_9 - C_{10}$	78(4)	$C_{15} - C_{16} - C_{17} - C_{18}$	0.0
S1-C7-C9-C10	-1699(2)	C16' - C17' - C18' - C19'	0.0
N1 - C7 - C9 - C8	-175.0(2)	C17' - C18' - C19' - C20'	0.0
1 - 07 - 09 - 08	7 2 (3)	$C_{18}' - C_{19}' - C_{20}' - C_{15}'$	0.0
$N_{1} = 0, -0, -0, -0, -0, -0, -0, -0, -0, -0, $	-4.7(3)	$C_{16} = C_{15} = C_{20} = C_{15}$	0.0
$C_{12} = N_{2} = C_{10} = C_{9}$	-1663(3)	N3-C15'-C20'-C10'	-161.3(0)
$N_{12} = N_{12} = C_{10} = C_{7}$	174.6(2)	113-013-020-017	101.3 (9)
113-112-010-011	1/7.0 (2)		

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C2—H2···O1 ⁱ	0.93	2.59	3.318 (3)	135
C12—H12A···O1 ⁱⁱ	0.97	2.51	3.404 (4)	152
C12—H12C···O1 ⁱⁱ	0.97	2.48	3.404 (4)	159

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+3/2, *y*+1/2, *z*.