

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[diaquacalcium(II)]bis(µ-quinoline-3-carboxylato)]

Dong-Liang Miao,^a Shi-Jie Li,^a Wen-Dong Song,^b* Juan-Hua Liu^a and Xiao-Fei Li^a

^aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and ^bCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China Correspondence e-mail: songwd60@163.com

Received 14 September 2010; accepted 1 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.035; w*R* factor = 0.090; data-to-parameter ratio = 13.0.

In the title complex, $[Ca(C_{10}H_6NO_2)_2(H_2O)_2]_n$, the Ca^{II} ion is eight-coordinated by six carboxylate O atoms from four separate quinoline-3-carboxylate ligands, two of which are bidentate chelate and two bridging, and two water molecules in a distorted square-antiprismatic geometry. The bridging groups form a polymeric chain substructure extending along the *c* axis, the chains being connected by coordinated-water $O-H \cdots N$ and $O-H \cdots O_{carboxylate}$ hydrogen bonds into a three-dimensional framework structure.

Related literature

For the potential uses and diverse structural types of metal complexes with the quinoline-3-carboxylate ligand, see: Hu *et al.* (2007). For related structures, see: Martell & Smith (1974); Haendler (1986, 1996); Okabe & Koizumi (1997); Okabe & Makino (1998, 1999); Okabe & Muranishi (2002); Odoko *et al.* (2001).

metal-organic compounds

Experimental

Crystal data

 $\begin{bmatrix} Ca(C_{10}H_6NO_2)_2(H_2O)_2 \end{bmatrix} \\ M_r = 420.43 \\ Monoclinic, P2_1/c \\ a = 16.0115 (16) \text{ Å} \\ b = 15.3636 (16) \text{ Å} \\ c = 7.7962 (8) \text{ Å} \\ \beta = 97.928 (1)^{\circ} \end{bmatrix}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) T_{min} = 0.897, T_{max} = 0.913

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.090$ S = 1.023411 reflections 262 parameters Z = 4Mo K\alpha radiation $\mu = 0.37 \text{ mm}^{-1}$ T = 296 K $0.30 \times 0.26 \times 0.25 \text{ mm}$

V = 1899.5 (3) Å³

9735 measured reflections 3411 independent reflections 2433 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$

6 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.25$ e Å⁻³ $\Delta \rho_{min} = -0.26$ e Å⁻³

able 1			
Hvdrogen-bond	geometry	(Å.	°)

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2W−H4W···N2 ⁱ	0.88	2.01	2.880 (3)	170
O2W−H3W···O1 ⁱⁱ	0.92	1.92	2.813 (2)	163
$O1W - H2W \cdot \cdot \cdot N1^{iii}$	0.72	2.18	2.885 (2)	165
$O1W - H1W \cdots O4^{iv}$	0.84	1.94	2.785 (2)	174
Symmetry codes: (i) $-x$	$+1, y + \frac{1}{2}, -z$	$+\frac{1}{2}$; (ii) x, -y	$+\frac{3}{2}, z - \frac{1}{2};$ (iii) -	$x, y + \frac{1}{2}, -z + \frac{1}{2};$

Symmetry codes: (1) -x + 1, $y + \frac{2}{2}$, $-z + \frac{2}{2}$; (ii) $x, -y + \frac{2}{2}$, $z - \frac{2}{2}$; (iii) $-x, y + \frac{2}{2}$, $-z + \frac{2}{2}$; (iv) $x, -y + \frac{3}{2}$, $z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The work was supported by the Non-profit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant No. 2009B091300121), the Guangdong Province key project in the field of social development [grant No·A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Fundation (No. 9252408801000002)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2067).

References

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Haendler, H. M. (1986). Acta Cryst. C42, 147–149. Haendler, H. M. (1996). Acta Cryst. C52, 801–803.

Haendler, H. M. (1996). Acta Cryst. C52, 801-803.

Hu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565.

- Martell, A. E. & Smith, R. M. (1974). Critical Stability Constants, Vol. 1, pp. 78, 372; Vol. 2, p. 219. New York: Plenum Press.
- Odoko, M., Muranishi, Y. & Okabe, N. (2001). Acta Cryst. E57, m267m269.
- Okabe, N. & Koizumi, M. (1997). Acta Cryst. C53, 852-854.
- Okabe, N. & Makino, T. (1998). Acta Cryst. C54, 1279-1280.
- Okabe, N. & Makino, T. (1999). Acta Cryst. C55, 300-302.
- Okabe, N. & Muranishi, Y. (2002). *Acta Cryst.* E58, m287–m289. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

supporting information

Acta Cryst. (2010). E66, m1441–m1442 [https://doi.org/10.1107/S1600536810039401]
catena-Poly[[diaquacalcium(II)]-bis(µ-quinoline-3-carboxylato)]
Dong-Liang Miao, Shi-Jie Li, Wen-Dong Song, Juan-Hua Liu and Xiao-Fei Li

S1. Comment

Design and synthesis of metal-organic complexes have attracted extensive attention in coordination chemistry. Quinoline-2-carboxylic acid, which is a tryptophan metabolite (Martell & Smith, 1974) can be considered as a potential ligand and the crystal structures of a number of metal complexes containing the quinoline-2-carboxylate ligand have been determined, e.g. with Mn^{II} (Haendler, 1996; Okabe & Koizumi, 1997), Cu^{II} (Haendler, 1986), V^{IV} (Okabe & Muranishi, 2002). Fe^{II} and Co^{II} (Okabe & Makino, 1998, 1999), and Ni^{II} (Odoko *et al.*, 2001). However, to the best of our knowledge, there are few crystal structures containing the quinoline-3-carboxylate ligand, one example being the coordination polymer with Zn^{II} (Hu *et al.*,2007). In this paper, we report the synthesis and structure of a new Ca^{II} complex obtained from the reaction of quinoline-3-carboxylic acid with CaCl₂ under hydrothermal condition, the title compound $[Ca(C_{20}H_{12}N_2O_4)(H_2O)_2]_n$ (I).

In the title complex molecule the Ca^{II} atom is eight-coordinated by six carboxylate O atoms from four separate quinoline-2-carboxylate ligands (two bidentate chelate and two bridging) and two water O atoms, in a distorted squareantiprismatic environment (Fig. 1). The bridging carboxylate O atoms (O2 and O3) [Ca—O, 2.3877 (16), 2.3829 (16) Å] link separate Ca^{II} centres forming a one-dimensional chain substructure extended along *c* (Fig.2). The chains are interconnected by coordinated-water O—H…N and O—H…O_{carboxylate} hydrogen bonds (Table 1) giving a three-dimensional framework structure (Fig.3).

S2. Experimental

A mixture of $CaCl_2$ (0.02 g, 0.2 mmol) and quinoline-3-carboxylic acid (0.04 g, 0.2 mmol) in 12 ml of distilled water was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 394 K for 2 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

S3. Refinement

Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 Å and N—H = 0.86 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C, N)$.

Figure 1

The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.

The one-dimensional chain substructure of (I) extending along c.

F(000) = 872

 $\theta = 1.4-25.0^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$

Block, colorless

 $0.30 \times 0.26 \times 0.25 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.470 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3600 reflections

Figure 3

The three-dimensional hydrogen-bonded structure of (I).

catena-Poly[[diaquacalcium(II)]-bis(µ-quinoline-3-carboxylato)]

Crystal data

[Ca(C₁₀H₆NO₂)₂(H₂O)₂] $M_r = 420.43$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 16.0115 (16) Å b = 15.3636 (16) Å c = 7.7962 (8) Å $\beta = 97.928$ (1)° V = 1899.5 (3) Å³ Z = 4

Data collection

Bruker APEXII area-detector	9735 measured reflections
diffractometer	3411 independent reflections
Radiation source: fine-focus sealed tube	2433 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.032$
φ and ω scan	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -19 \rightarrow 16$
(SADABS; Bruker, 2008)	$k = -18 \rightarrow 18$
$T_{\min} = 0.897, \ T_{\max} = 0.913$	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.090$ S = 1.023411 reflections 262 parameters 6 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0344P)^2 + 0.6204P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cal	0.24944 (3)	0.78080 (3)	0.25589 (6)	0.02366 (14)	
C1	0.45779 (14)	0.63295 (14)	0.1201 (3)	0.0284 (5)	
N2	0.58144 (13)	0.54488 (14)	0.1998 (3)	0.0420 (6)	
C2	0.48749 (15)	0.65988 (16)	-0.0265 (3)	0.0349 (6)	
H2	0.4562	0.6989	-0.1008	0.042*	
C10	0.50824 (16)	0.57576 (17)	0.2313 (3)	0.0394 (6)	
H10	0.4887	0.5587	0.3331	0.047*	
C11	0.37390 (15)	0.66290 (14)	0.1614 (3)	0.0278 (5)	
C8	0.61064 (15)	0.57047 (16)	0.0508 (3)	0.0360 (6)	
C3	0.56531 (16)	0.62891 (17)	-0.0660 (3)	0.0374 (6)	
C7	0.68710 (17)	0.53586 (18)	0.0112 (4)	0.0471 (7)	
H7	0.7182	0.4980	0.0885	0.057*	
C4	0.59749 (19)	0.6509 (2)	-0.2199 (4)	0.0626 (9)	
H4	0.5687	0.6903	-0.2970	0.075*	
C6	0.71558 (19)	0.5574 (2)	-0.1385 (4)	0.0634 (9)	
H6	0.7659	0.5337	-0.1638	0.076*	
C5	0.6704 (2)	0.6145 (3)	-0.2557 (5)	0.0743 (11)	
Н5	0.6904	0.6279	-0.3590	0.089*	
N1	0.00972 (12)	0.44091 (13)	0.2997 (3)	0.0352 (5)	
C22	0.15016 (13)	0.63803 (14)	0.3447 (3)	0.0244 (5)	
C12	0.11785 (14)	0.54892 (15)	0.3760 (3)	0.0272 (5)	
C21	0.04213 (15)	0.51849 (15)	0.2802 (3)	0.0323 (6)	
H21	0.0134	0.5556	0.1982	0.039*	
C13	0.16177 (15)	0.49416 (16)	0.4924 (3)	0.0319 (6)	
H13	0.2113	0.5129	0.5586	0.038*	
C18	0.02177 (17)	0.30129 (17)	0.4363 (4)	0.0423 (7)	
H18	-0.0301	0.2856	0.3752	0.051*	
C14	0.13216 (16)	0.40902 (15)	0.5126 (3)	0.0327 (6)	
C19	0.05460 (16)	0.38521 (15)	0.4152 (3)	0.0329 (6)	
C17	0.0653 (2)	0.24367 (19)	0.5447 (4)	0.0543 (8)	
H17	0.0433	0.1884	0.5569	0.065*	
C15	0.17626 (18)	0.34683 (18)	0.6242 (4)	0.0470 (7)	
H15	0.2280	0.3612	0.6876	0.056*	
C16	0.1433 (2)	0.26606 (19)	0.6392 (4)	0.0579 (9)	
H16	0.1727	0.2254	0.7126	0.069*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

03	0.18843 (9)	0.67991 (10)	0.47024 (19)	0.0292 (4)
O4	0.14006 (10)	0.66737 (10)	0.1932 (2)	0.0335 (4)
01	0.36040 (11)	0.66234 (11)	0.3145 (2)	0.0405 (4)
O2	0.32086 (9)	0.69201 (10)	0.0404 (2)	0.0312 (4)
O1W	0.15496 (10)	0.88329 (10)	0.3557 (2)	0.0360 (4)
H1W	0.1487	0.8714	0.4588	0.054*
H2W	0.1156	0.9051	0.3282	0.054*
O2W	0.34752 (10)	0.88362 (11)	0.1592 (2)	0.0414 (5)
H3W	0.3577	0.8785	0.0459	0.062*
H4W	0.3751	0.9313	0.1964	0.062*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Ca1	0.0245 (3)	0.0257 (2)	0.0204 (3)	-0.0003 (2)	0.00171 (18)	0.00021 (19)
C1	0.0283 (13)	0.0289 (13)	0.0266 (13)	0.0030 (10)	-0.0005 (10)	-0.0037 (10)
N2	0.0387 (13)	0.0447 (13)	0.0421 (14)	0.0147 (11)	0.0040 (10)	0.0051 (11)
C2	0.0309 (14)	0.0390 (14)	0.0332 (15)	0.0070 (11)	-0.0014 (11)	0.0048 (12)
C10	0.0383 (16)	0.0442 (16)	0.0357 (15)	0.0123 (12)	0.0049 (12)	0.0048 (12)
C11	0.0328 (14)	0.0238 (12)	0.0261 (14)	0.0012 (10)	0.0009 (11)	-0.0020 (10)
C8	0.0306 (15)	0.0365 (14)	0.0398 (16)	0.0041 (11)	0.0015 (12)	-0.0056 (12)
C3	0.0332 (15)	0.0424 (15)	0.0370 (15)	0.0036 (12)	0.0057 (12)	0.0014 (12)
C7	0.0353 (16)	0.0483 (17)	0.058 (2)	0.0118 (13)	0.0067 (14)	-0.0031 (14)
C4	0.051 (2)	0.086 (2)	0.056 (2)	0.0174 (17)	0.0216 (16)	0.0237 (18)
C6	0.0412 (19)	0.077 (2)	0.076 (2)	0.0149 (17)	0.0228 (17)	-0.006 (2)
C5	0.057 (2)	0.111 (3)	0.062 (2)	0.017 (2)	0.0312 (18)	0.017 (2)
N1	0.0315 (12)	0.0328 (12)	0.0405 (13)	-0.0059 (9)	0.0020 (10)	-0.0042 (10)
C22	0.0215 (12)	0.0274 (12)	0.0248 (13)	-0.0006 (10)	0.0051 (10)	-0.0045 (10)
C12	0.0283 (13)	0.0287 (12)	0.0250 (13)	-0.0030 (10)	0.0052 (10)	-0.0035 (10)
C21	0.0309 (14)	0.0326 (14)	0.0326 (14)	-0.0038 (11)	0.0016 (11)	-0.0008 (11)
C13	0.0314 (14)	0.0352 (14)	0.0291 (14)	-0.0056 (11)	0.0040 (11)	-0.0029 (11)
C18	0.0436 (17)	0.0392 (15)	0.0453 (18)	-0.0111 (13)	0.0105 (13)	-0.0021 (13)
C14	0.0363 (15)	0.0330 (14)	0.0293 (14)	-0.0026 (11)	0.0061 (11)	0.0002 (11)
C19	0.0351 (15)	0.0317 (14)	0.0336 (15)	-0.0060 (11)	0.0107 (11)	-0.0065 (11)
C17	0.072 (2)	0.0379 (16)	0.055 (2)	-0.0167 (15)	0.0147 (17)	0.0054 (14)
C15	0.0496 (18)	0.0432 (16)	0.0461 (18)	-0.0063 (14)	-0.0005 (14)	0.0062 (13)
C16	0.073 (2)	0.0407 (17)	0.058 (2)	-0.0011 (16)	0.0035 (17)	0.0175 (15)
O3	0.0333 (9)	0.0287 (9)	0.0246 (9)	-0.0058 (7)	0.0010 (7)	-0.0030(7)
O4	0.0404 (10)	0.0370 (10)	0.0225 (9)	-0.0079 (8)	0.0019 (7)	0.0020 (7)
01	0.0460 (11)	0.0530 (11)	0.0231 (10)	0.0156 (9)	0.0070 (8)	0.0015 (8)
O2	0.0275 (9)	0.0386 (10)	0.0263 (10)	0.0074 (7)	0.0000 (7)	0.0015 (7)
O1W	0.0361 (10)	0.0431 (10)	0.0285 (10)	0.0110 (8)	0.0035 (8)	0.0025 (8)
O2W	0.0474 (12)	0.0481 (11)	0.0292 (10)	-0.0211 (9)	0.0070 (8)	-0.0055 (8)

Geometric parameters (Å, °)

Ca1—O3 ⁱ	2.3829 (16)	С5—Н5	0.9300
Ca1—O1W	2.3871 (16)	N1—C21	1.317 (3)

Ca1—O2 ⁱⁱ	2.3877 (16)	N1	1.371 (3)
Cal—O2W	2.4202 (17)	C22—O4	1.254 (3)
Ca1—O4	2.4712 (16)	С22—ОЗ	1.258 (3)
Cal—Ol	2.5404 (17)	C22—C12	1.495 (3)
Ca1—O2	2.5538 (16)	C12—C13	1.360 (3)
Ca1—O3	2.5689 (16)	C12—C21	1.413 (3)
Ca1—H1W	2.7828	C21—H21	0.9300
C1—C2	1.362 (3)	C13—C14	1.407 (3)
C1-C10	1.408 (3)	C13—H13	0.9300
C1-C11	1 496 (3)	C18 - C17	1 350 (4)
N2-C10	1.190(3)	C_{18} C_{19}	1.330(1) 1 410(3)
N2C8	1 368 (3)	C18H18	0.9300
$C_2 C_3$	1.300(3) 1.407(3)	C_{10} C_{10}	1,412 (3)
$C_2 = C_3$	0.0300	C14 - C15	1.412(3)
C_2 —112 C_10 —1110	0.9300	C17 - C16	1.414(4)
	0.9300	C17 - C10	1.402 (4)
	1.242 (3)		0.9300
	1.261 (3)		1.360 (4)
C8—C3	1.407 (3)	С15—Н15	0.9300
C8—C7	1.408 (3)	C16—H16	0.9300
C3—C4	1.410 (4)	O3—Cal ⁿ	2.3829 (16)
C7—C6	1.352 (4)	O2—Cal ¹	2.3877 (16)
С7—Н7	0.9300	O1W—H1W	0.8432
C4—C5	1.357 (4)	O1W—H2W	0.7195
C4—H4	0.9300	O2W—H3W	0.9231
C6—C5	1.395 (4)	O2W—H4W	0.8836
С6—Н6	0.9300		
$O3^{i}$ —Ca1—O1W	86 63 (5)	01—C11—C1	119.0(2)
$O3^{i}$ Cal $O2^{ii}$	154 94 (6)	$0^{2}-C^{11}-C^{1}$	119.0(2) 118.7(2)
$01W - Ca1 - 02^{ii}$	79.95 (6)	N_{2}^{2} C_{8}^{2} C_{3}^{2}	121.8(2)
$O_{3^{i}} - C_{2^{i}} - O_{2^{i}} = O_{2^{i}}$	75.13 (6)	$N_2 = C_8 = C_7$	121.0(2) 1191(2)
$O_1 W C_{21} O_2 W$	97.97 (6)	$C_3 C_8 C_7$	119.1(2) 110.1(3)
O^{2ii} Cal O^{2W}	97.97 (0) 85.81 (5)	$C_2 = C_3 = C_3$	117.1(3)
$O_2 = Ca1 = O_2 W$	79, 90, (5)	$C_2 = C_3 = C_8$	117.0(2)
03— 04	78.80(3)	$C_2 = C_3 = C_4$	122.9(2)
O1 = Ca1 = O4	95.79 (0) 122.97 (5)	$C_{0} = C_{0} = C_{1}$	119.1 (2)
$02^{$	122.87 (5)	$C_{0} - C_{1} - C_{8}$	120.3 (3)
02w—Cal—O4	150.61 (6)	C6C7H7	119.9
O3'-Cal-Ol	122.42 (5)	C8—C/—H/	119.9
Olw—Cal—Ol	150.78 (6)	C5-C4-C3	120.1 (3)
$O2^n$ —Ca1—O1	74.02 (6)	С5—С4—Н4	119.9
O2W—Ca1—O1	93.21 (6)	C3—C4—H4	119.9
O4—Ca1—O1	89.39 (6)	C7—C6—C5	120.9 (3)
O3 ⁱ —Ca1—O2	71.54 (5)	С7—С6—Н6	119.6
O1W—Ca1—O2	158.17 (6)	С5—С6—Н6	119.6
O2 ⁱⁱ —Ca1—O2	120.27 (6)	C4—C5—C6	120.5 (3)
O2W—Ca1—O2	76.99 (6)	C4—C5—H5	119.8
O4—Ca1—O2	82 10 (5)	C6 C5 H5	110.8
	82.10(3)	С0—С3—П3	119.0

O3 ⁱ —Ca1—O3	128.11 (6)	O4—C22—O3	122.3 (2)
O1W—Ca1—O3	82.58 (5)	O4—C22—C12	118.7 (2)
O2 ⁱⁱ —Ca1—O3	71.20 (5)	O3—C22—C12	119.0 (2)
O2W—Ca1—O3	156.61 (6)	C13—C12—C21	118.4 (2)
O4—Ca1—O3	51.72 (5)	C13—C12—C22	121.1 (2)
O1—Ca1—O3	76.70 (5)	C21—C12—C22	120.5 (2)
O2—Ca1—O3	110.53 (5)	N1—C21—C12	124.2 (2)
O3 ⁱ —Ca1—Ca1 ⁱ	37.49 (4)	N1—C21—H21	117.9
O1W—Ca1—Ca1 ⁱ	123.88 (4)	C12—C21—H21	117.9
O2 ⁱⁱ —Ca1—Ca1 ⁱ	151.60 (4)	C12—C13—C14	119.9 (2)
O2W—Ca1—Ca1 ⁱ	76.36 (4)	C12—C13—H13	120.1
O4—Ca1—Ca1 ⁱ	74.71 (4)	C14—C13—H13	120.1
O1—Ca1—Ca1 ⁱ	84.96 (4)	C17—C18—C19	120.3 (3)
O2—Ca1—Ca1 ⁱ	34.37 (4)	C17—C18—H18	119.9
O3—Ca1—Ca1 ⁱ	122.74 (4)	C19-C18-H18	119.9
O3 ⁱ —Ca1—Ca1 ⁱⁱ	155.93 (4)	C13—C14—C19	117.7 (2)
O1W—Ca1—Ca1 ⁱⁱ	75.75 (4)	C13—C14—C15	123.3 (2)
O2 ⁱⁱ —Ca1—Ca1 ⁱⁱ	37.14 (4)	C19—C14—C15	118.9 (2)
O2W—Ca1—Ca1 ⁱⁱ	122.94 (4)	N1-C19-C18	118.5 (2)
O4—Ca1—Ca1 ⁱⁱ	86.04 (4)	N1-C19-C14	122.3 (2)
O1—Ca1—Ca1 ⁱⁱ	75.51 (4)	C18—C19—C14	119.2 (2)
O2—Ca1—Ca1 ⁱⁱ	124.99 (4)	C18—C17—C16	120.9 (3)
O3—Ca1—Ca1 ⁱⁱ	34.37 (3)	C18—C17—H17	119.5
Ca1 ⁱ —Ca1—Ca1 ⁱⁱ	152.71 (2)	C16—C17—H17	119.5
O3 ⁱ —Ca1—H1W	102.1	C16—C15—C14	120.2 (3)
O1W—Ca1—H1W	16.6	C16—C15—H15	119.9
O2 ⁱⁱ —Ca1—H1W	68.0	C14—C15—H15	119.9
O2W—Ca1—H1W	107.6	C15—C16—C17	120.5 (3)
O4—Ca1—H1W	90.8	C15—C16—H16	119.8
O1—Ca1—H1W	134.6	C17—C16—H16	119.8
O2—Ca1—H1W	171.3	C22—O3—Ca1 ⁱⁱ	161.76 (15)
O3—Ca1—H1W	68.3	C22—O3—Ca1	89.47 (13)
Cal ⁱ —Cal—H1W	138.4	Ca1 ⁱⁱ —O3—Ca1	108.15 (6)
Ca1 ⁱⁱ —Ca1—H1W	59.2	C22—O4—Ca1	94.08 (13)
C2-C1-C10	118.0 (2)	C11—O1—Ca1	91.84 (14)
C2-C1-C11	121.0 (2)	C11—O2—Ca1 ⁱ	160.71 (15)
C10-C1-C11	121.0 (2)	C11—O2—Ca1	90.76 (13)
C10—N2—C8	118.1 (2)	Ca1 ⁱ —O2—Ca1	108.49 (6)
C1—C2—C3	120.2 (2)	Ca1—O1W—H1W	109.4
C1—C2—H2	119.9	Ca1—O1W—H2W	141.1
С3—С2—Н2	119.9	H1W—O1W—H2W	99.8
N2-C10-C1	124.0 (2)	Ca1—O2W—H3W	116.8
N2-C10-H10	118.0	Ca1—O2W—H4W	139.0
C1-C10-H10	118.0	H3W—O2W—H4W	103.8
O1—C11—O2	122.2 (2)		

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) x, -y+3/2, z+1/2.

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.88	2.01	2.880 (3)	170
0.92	1.92	2.813 (2)	163
0.72	2.18	2.885 (2)	165
0.84	1.94	2.785 (2)	174
	<i>D</i> —H 0.88 0.92 0.72 0.84	D—H H…A 0.88 2.01 0.92 1.92 0.72 2.18 0.84 1.94	D—H H···A D···A 0.88 2.01 2.880 (3) 0.92 1.92 2.813 (2) 0.72 2.18 2.885 (2) 0.84 1.94 2.785 (2)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) x, -y+3/2, z+1/2; (iii) -x+1, y+1/2, -z+1/2; (iv) -x, y+1/2, -z+1/2.