

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[1-(3-{2-[(2-Hydroxybenzylidene)amino]phenoxy}propyl)-1*H*-1,3-benzodiazol-2-yl]phenol

Hassan Keypour,^a* Sareh Tamizi,^a Saeed Dehghanpour,^b Reza Azadbakht^c and Mehdi Khalaj^{a,d}

^aFaculty of Chemistry, Bu-Ali Sina University, Hamedan 65174, Iran, ^bDepartment of Chemistry, Alzahra University, Vanak, Tehran, Iran, ^cDepartment of Chemistry, Payam Noor University, Hamedan, Iran, and ^dDepartment of Chemistry, Islamic Azad University, Buinzahra Branch, Buinzahra, Qazvin, Iran Correspondence e-mail: haskey1@yahoo.com

Received 30 January 2011; accepted 12 February 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.137; data-to-parameter ratio = 16.1.

In the title compound, $C_{29}H_{25}N_3O_3$, the imine double bond has an *E* configuration. The dihedral angle between the hydroxyphenyl and benzene rings in the imine moiety is 26.95 (9)°, and the dihedral angle between the hydroxyphenyl and benzimidazole rings in the other moiety is 14.83 (9)°. These angles are probably limited to small values as a consequence of two strong intramolecular O–H···N hydrogen bonds formed between the hydroxy groups and the imine and imidazole N atoms. The aliphatic chain linking the two ring systems has a *gauche* conformation, as reflected in C–C–C–O torsion angle of 70.9 (2)°.

Related literature

For related structures, see: Keypour *et al.* (2009). For background information on diimine complexes, see: Mahmoudi *et al.* (2009).

V = 2279.5 (2) Å³

Mo $K\alpha$ radiation

 $0.25 \times 0.12 \times 0.10 \ \mathrm{mm}$

16359 measured reflections

5135 independent reflections

3083 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int} = 0.054$

Z = 4

Experimental

Crystal data

 $\begin{array}{l} C_{29}H_{25}N_{3}O_{3}\\ M_{r}=463.52\\ \text{Monoclinic, }P2_{1}/c\\ a=9.1097 \ (6) \ \text{\AA}\\ b=18.1946 \ (11) \ \text{\AA}\\ c=13.7769 \ (5) \ \text{\AA}\\ \beta=93.405 \ (4)^{\circ} \end{array}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{min} = 0.866, T_{max} = 0.993$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ 1 restraint $wR(F^2) = 0.137$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$ 5135 reflections $\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$ 318 parameters $\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1 <i>O</i> ···N2	0.84	1.81	2.564 (2)	148
O3−H2 <i>O</i> ···N3	0.84	1.80	2.548 (2)	148

Data collection: *COLLECT* (Nonius, 2002); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL*.

We are grateful to Bu-Ali Sina and Alzahra Universities for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2338).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Keypour, H., Azadbakht, R., Salehzadeh, S., Rudbari, H. A. & Adams, H. (2009). Tetrahedron Lett. 50, 169–171.
- Mahmoudi, A., Dehghanpour, S., Khalaj, M. & Pakravan, S. (2009). Acta Cryst. E65, m889.
- Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o657-o658 [doi:10.1107/S1600536811005319]

2-[1-(3-{2-[(2-Hydroxybenzylidene)amino]phenoxy}propyl)-1*H*-1,3-benzodiazol-2-yl]phenol

Hassan Keypour, Sareh Tamizi, Saeed Dehghanpour, Reza Azadbakht and Mehdi Khalaj

S1. Comment

In our ongoing studies on the synthesis, structural and spectroscopic characterization of the products derived from N^1 -(3-(2-aminophenoxy)propyl)-benzene-1,2-diamine with aldehydes (Keypour *et al.*, 2009; Mahmoudi *et al.*, 2009) we report herein the crystal structure of the title compound, prepared by the reaction of N^1 -(3-(2-aminophenoxy)propyl)-benzene-1,2-diamine with salicyl aldehyde.

The molecular structure of the title compound is shown in Fig. 1. The molecule adopts the *E* configuration with respect to the imine C=N bond. Two hydroxyl groups are located close to N atoms, and form strong intramolecular hydrogen bonds (Table 1).

S2. Experimental

 N^{1} -(3-(2-aminophenoxy)propyl)benzene-1,2-diamine (0.064 g, 0.25 mmol) in methanol (20 ml) was added dropwise with stirring to a solution of salicylaldehyde (0.061 g, 0.5 mmol) in methanol (30 ml). The mixture was refluxed for 12 h. Then, the solution volume was reduced to 10 ml by evaporation, and a precipitate was formed. This was filtered off, washed with ether, and dried *in vacuo*. Vapour diffusion of diethyl ether into a methanolic solution of the product afforded yellow crystals in 60% yield.

S3. Refinement

All C-bonded H atoms positions were calculated and refined with a riding model and $U_{iso}(H)$ parameters set to 1.2 times $U_{eq}(\text{carrier C atom})$. Hydroxyl H atoms also ride on their O atoms, with O—H bond lengths fixed to 0.84 Å and $U_{iso}(H) = 1.5 U_{eq}(\text{carrier O atom})$.

Figure 1

A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level.

2-[1-(3-{2-[(2-Hydroxybenzylidene)amino]phenoxy}propyl)-1H- 1,3-benzodiazol-2-yl]phenol

Crystal data	
$C_{29}H_{25}N_3O_3$ $M_r = 463.52$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc	F(000) = 976 $D_x = 1.351 \text{ Mg m}^{-3}$ Mo <i>Ka</i> radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 16359 reflections
a = 9.1097 (6) Å b = 18.1946 (11) Å c = 13.7769 (5) Å $\beta = 93.405 (4)^{\circ}$ $V = 2279.5 (2) \text{ Å}^{3}$ Z = 4	$\theta = 2.7-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 150 K Needle, yellow $0.25 \times 0.12 \times 0.10 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 9 pixels mm ⁻¹	φ scans and ω scans with κ offsets Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.866, T_{\max} = 0.993$ 16359 measured reflections

5135 independent reflections	$h = -11 \rightarrow 11$
3083 reflections with $I > 2\sigma(I)$	$k = -22 \rightarrow 23$
$R_{\rm int} = 0.054$	$l = -17 \rightarrow 17$
$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
S = 1.06	H-atom parameters constrained
5135 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.4485P]$
318 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} = 0.001$
0 constraints	$\Delta ho_{ m max} = 0.23 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\min} = -0.20 \text{ e} \text{ Å}^{-3}$
direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}^{*}/U_{\rm eq}$
01	0.98262 (18)	0.22668 (8)	0.88875 (9)	0.0465 (4)
H1O	0.9212	0.1922	0.8864	0.070*
O2	0.80830 (16)	0.02045 (7)	0.35975 (9)	0.0369 (4)
O3	0.69646 (17)	-0.13681 (8)	0.49252 (9)	0.0418 (4)
H2O	0.7212	-0.1156	0.4418	0.063*
N1	0.82575 (18)	0.08636 (9)	0.66217 (11)	0.0352 (4)
N2	0.80517 (19)	0.13040 (9)	0.81279 (11)	0.0378 (4)
N3	0.70199 (18)	-0.10938 (9)	0.31140 (11)	0.0323 (4)
C1	0.8674 (2)	0.13987 (11)	0.72906 (13)	0.0348 (5)
C2	0.7258 (2)	0.04118 (11)	0.70695 (14)	0.0355 (5)
C3	0.6454 (2)	-0.01894 (12)	0.67220 (16)	0.0424 (5)
H3A	0.6527	-0.0369	0.6079	0.051*
C4	0.5538 (2)	-0.05139 (12)	0.73642 (17)	0.0461 (6)
H4A	0.4961	-0.0926	0.7155	0.055*
C5	0.5439 (2)	-0.02520 (12)	0.83139 (17)	0.0462 (6)
H5A	0.4805	-0.0492	0.8736	0.055*
C6	0.6241 (2)	0.03446 (12)	0.86451 (16)	0.0428 (5)
H6A	0.6173	0.0520	0.9290	0.051*
C7	0.7156 (2)	0.06849 (11)	0.80071 (14)	0.0371 (5)
C8	0.9683 (2)	0.20146 (11)	0.71522 (14)	0.0342 (5)
C9	1.0249 (2)	0.24102 (12)	0.79778 (14)	0.0358 (5)
C10	1.1272 (2)	0.29677 (12)	0.78825 (15)	0.0406 (5)
H10A	1.1682	0.3211	0.8445	0.049*
C11	1.1694 (2)	0.31703 (12)	0.69784 (16)	0.0433 (5)
H11A	1.2402	0.3549	0.6920	0.052*
C12	1.1092 (2)	0.28247 (12)	0.61553 (15)	0.0411 (5)
H12A	1.1353	0.2979	0.5530	0.049*
C13	1.0116 (2)	0.22574 (11)	0.62434 (14)	0.0375 (5)
H13A	0.9720	0.2021	0.5671	0.045*
C14	0.8752 (2)	0.07122 (11)	0.56509 (13)	0.0354 (5)

H14A	0.8771	0.0174	0.5545	0.042*
H14B	0.9765	0.0900	0.5607	0.042*
C15	0.7747 (2)	0.10687 (12)	0.48571 (13)	0.0372 (5)
H15A	0.6749	0.0856	0.4877	0.045*
H15B	0.7675	0.1602	0.4991	0.045*
C16	0.8287 (2)	0.09626 (11)	0.38527 (14)	0.0375 (5)
H16A	0.7725	0.1280	0.3380	0.045*
H16B	0.9341	0.1095	0.3847	0.045*
C17	0.8190 (2)	0.00152 (11)	0.26392 (13)	0.0319 (5)
C18	0.8766 (2)	0.04669 (12)	0.19473 (14)	0.0382 (5)
H18A	0.9154	0.0936	0.2127	0.046*
C19	0.8774 (2)	0.02298 (12)	0.09868 (15)	0.0420 (5)
H19A	0.9156	0.0542	0.0510	0.050*
C20	0.8233 (2)	-0.04524 (12)	0.07220 (14)	0.0408 (5)
H20A	0.8249	-0.0611	0.0066	0.049*
C21	0.7667 (2)	-0.09051 (12)	0.14125 (14)	0.0367 (5)
H21A	0.7311	-0.1379	0.1230	0.044*
C22	0.7614 (2)	-0.06751 (11)	0.23715 (13)	0.0320 (5)
C23	0.5987 (2)	-0.15625 (11)	0.29380 (14)	0.0344 (5)
H23A	0.5604	-0.1634	0.2288	0.041*
C24	0.5396 (2)	-0.19841 (11)	0.37172 (14)	0.0339 (5)
C25	0.4292 (2)	-0.25061 (12)	0.35230 (16)	0.0403 (5)
H25A	0.3930	-0.2584	0.2870	0.048*
C26	0.3717 (2)	-0.29106 (12)	0.42569 (17)	0.0458 (6)
H26A	0.2965	-0.3263	0.4114	0.055*
C27	0.4258 (2)	-0.27940 (12)	0.52143 (16)	0.0444 (6)
H27A	0.3875	-0.3073	0.5725	0.053*
C28	0.5338 (2)	-0.22813 (12)	0.54275 (15)	0.0407 (5)
H28A	0.5687	-0.2206	0.6083	0.049*
C29	0.5923 (2)	-0.18717 (11)	0.46906 (14)	0.0340 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
O1	0.0556 (11)	0.0529 (11)	0.0310 (8)	-0.0016 (8)	0.0015 (7)	-0.0072 (7)
O2	0.0491 (9)	0.0346 (8)	0.0271 (7)	-0.0053 (7)	0.0029 (6)	-0.0018 (6)
O3	0.0502 (10)	0.0431 (9)	0.0320 (8)	-0.0091 (7)	0.0014 (6)	0.0014 (6)
N1	0.0373 (10)	0.0394 (10)	0.0289 (9)	0.0047 (8)	0.0017 (7)	-0.0045 (7)
N2	0.0435 (11)	0.0402 (11)	0.0298 (9)	0.0039 (9)	0.0032 (7)	-0.0015 (7)
N3	0.0351 (10)	0.0305 (10)	0.0314 (9)	0.0023 (8)	0.0033 (7)	0.0000 (7)
C1	0.0339 (12)	0.0397 (13)	0.0307 (11)	0.0079 (9)	-0.0001 (8)	-0.0026 (9)
C2	0.0312 (12)	0.0353 (12)	0.0401 (12)	0.0057 (9)	0.0023 (9)	0.0017 (9)
C3	0.0427 (13)	0.0416 (14)	0.0423 (13)	0.0072 (11)	-0.0021 (10)	-0.0059 (10)
C4	0.0393 (14)	0.0382 (13)	0.0604 (15)	0.0013 (11)	-0.0010 (11)	-0.0007 (11)
C5	0.0420 (14)	0.0399 (14)	0.0577 (15)	0.0057 (11)	0.0120 (11)	0.0111 (11)
C6	0.0461 (14)	0.0430 (14)	0.0398 (12)	0.0082 (11)	0.0076 (10)	0.0045 (10)
C7	0.0366 (12)	0.0392 (13)	0.0354 (12)	0.0060 (10)	0.0017 (9)	-0.0001 (9)
C8	0.0298 (11)	0.0366 (12)	0.0358 (11)	0.0035 (9)	-0.0005 (8)	-0.0022 (9)

C9	0.0358 (12)	0.0432 (13)	0.0283 (11)	0.0114 (10)	0.0000 (8)	-0.0022 (9)
C10	0.0368 (13)	0.0430 (13)	0.0410 (13)	0.0051 (11)	-0.0046 (9)	-0.0104 (10)
C11	0.0356 (13)	0.0408 (13)	0.0533 (14)	0.0008 (10)	0.0021 (10)	-0.0037 (10)
C12	0.0413 (13)	0.0444 (14)	0.0380 (12)	0.0029 (11)	0.0062 (9)	-0.0009 (10)
C13	0.0387 (13)	0.0415 (13)	0.0321 (11)	0.0024 (10)	0.0001 (9)	-0.0048 (9)
C14	0.0390 (12)	0.0399 (12)	0.0275 (11)	0.0067 (10)	0.0041 (8)	-0.0067 (9)
C15	0.0392 (12)	0.0392 (13)	0.0327 (11)	0.0039 (10)	-0.0007 (9)	-0.0045 (9)
C16	0.0437 (13)	0.0349 (12)	0.0335 (11)	-0.0050 (10)	-0.0003 (9)	-0.0007 (9)
C17	0.0323 (11)	0.0390 (12)	0.0244 (10)	0.0016 (9)	0.0011 (8)	-0.0013 (8)
C18	0.0417 (13)	0.0408 (13)	0.0325 (12)	-0.0043 (10)	0.0051 (9)	0.0012 (9)
C19	0.0448 (14)	0.0487 (14)	0.0334 (12)	-0.0011 (11)	0.0102 (9)	0.0040 (10)
C20	0.0458 (14)	0.0488 (14)	0.0286 (11)	0.0046 (11)	0.0080 (9)	-0.0028 (9)
C21	0.0398 (13)	0.0366 (13)	0.0336 (11)	0.0047 (10)	0.0024 (9)	-0.0041 (9)
C22	0.0308 (11)	0.0342 (12)	0.0310 (11)	0.0050 (9)	0.0027 (8)	0.0025 (8)
C23	0.0376 (12)	0.0333 (12)	0.0322 (11)	0.0058 (10)	0.0019 (9)	-0.0013 (9)
C24	0.0346 (12)	0.0297 (11)	0.0377 (12)	0.0050 (9)	0.0040 (9)	-0.0009 (9)
C25	0.0384 (13)	0.0353 (12)	0.0471 (13)	0.0004 (10)	0.0025 (10)	-0.0056 (10)
C26	0.0382 (14)	0.0345 (13)	0.0649 (16)	-0.0034 (10)	0.0058 (11)	0.0011 (11)
C27	0.0413 (14)	0.0381 (13)	0.0549 (14)	0.0044 (11)	0.0116 (10)	0.0133 (10)
C28	0.0406 (13)	0.0407 (13)	0.0414 (12)	0.0051 (11)	0.0061 (9)	0.0085 (10)
C29	0.0330 (12)	0.0295 (12)	0.0397 (12)	0.0026 (9)	0.0043 (9)	0.0005 (9)

Geometric parameters (Å, °)

01—C9	1.358 (2)	C12—H12A	0.9500
01—H10	0.8400	C13—H13A	0.9500
O2—C17	1.373 (2)	C14—C15	1.528 (3)
O2—C16	1.433 (2)	C14—H14A	0.9900
O3—C29	1.344 (2)	C14—H14B	0.9900
O3—H2O	0.8400	C15—C16	1.508 (3)
N1-C1	1.378 (2)	C15—H15A	0.9900
N1-C2	1.397 (3)	C15—H15B	0.9900
N1-C14	1.462 (2)	C16—H16A	0.9900
N2-C1	1.326 (2)	C16—H16B	0.9900
N2C7	1.395 (3)	C17—C18	1.385 (3)
N3—C23	1.282 (2)	C17—C22	1.402 (3)
N3—C22	1.409 (2)	C18—C19	1.392 (3)
C1—C8	1.469 (3)	C18—H18A	0.9500
C2—C3	1.386 (3)	C19—C20	1.377 (3)
C2—C7	1.392 (3)	C19—H19A	0.9500
C3—C4	1.384 (3)	C20—C21	1.381 (3)
С3—НЗА	0.9500	C20—H20A	0.9500
C4—C5	1.400 (3)	C21—C22	1.390 (3)
C4—H4A	0.9500	C21—H21A	0.9500
C5—C6	1.371 (3)	C23—C24	1.449 (3)
С5—Н5А	0.9500	C23—H23A	0.9500
С6—С7	1.392 (3)	C24—C25	1.397 (3)
С6—Н6А	0.9500	C24—C29	1.412 (3)
			. ,

C8—C13	1.406 (3)	C25—C26	1.379 (3)
C8—C9	1.417 (3)	С25—Н25А	0.9500
C9—C10	1.388 (3)	C26—C27	1.397 (3)
C10—C11	1.376 (3)	C26—H26A	0.9500
C10—H10A	0.9500	C27—C28	1.374 (3)
C11—C12	1.381 (3)	С27—Н27А	0.9500
C11—H11A	0.9500	C28—C29	1.391 (3)
C12—C13	1.372 (3)	C28—H28A	0.9500
С9—01—Н1О	109.5	H14A—C14—H14B	107.9
C17—O2—C16	117.50 (14)	C16—C15—C14	112.85 (17)
С29—О3—Н2О	109.5	C16—C15—H15A	109.0
C1—N1—C2	106.32 (16)	C14—C15—H15A	109.0
C1—N1—C14	131.09 (17)	C16—C15—H15B	109.0
C2—N1—C14	122.48 (16)	C14—C15—H15B	109.0
C1—N2—C7	106.17 (16)	H15A—C15—H15B	107.8
C23—N3—C22	122.11 (16)	O2—C16—C15	107.68 (16)
N2—C1—N1	112.02 (18)	O2—C16—H16A	110.2
N2—C1—C8	121.00 (17)	C15—C16—H16A	110.2
N1—C1—C8	126.98 (18)	O2—C16—H16B	110.2
C3—C2—C7	122.6 (2)	C15—C16—H16B	110.2
C3—C2—N1	131.05 (19)	H16A—C16—H16B	108.5
C7—C2—N1	106.32 (18)	O2—C17—C18	124.33 (18)
C4—C3—C2	116.2 (2)	O2—C17—C22	115.51 (17)
С4—С3—НЗА	121.9	C18—C17—C22	120.12 (17)
С2—С3—НЗА	121.9	C17—C18—C19	119.6 (2)
C3—C4—C5	121.8 (2)	C17—C18—H18A	120.2
C3—C4—H4A	119.1	C19—C18—H18A	120.2
С5—С4—Н4А	119.1	C20-C19-C18	120.6 (2)
C6—C5—C4	121.2 (2)	С20—С19—Н19А	119.7
С6—С5—Н5А	119.4	C18—C19—H19A	119.7
С4—С5—Н5А	119.4	C19—C20—C21	119.83 (19)
C5—C6—C7	118.0 (2)	C19—C20—H20A	120.1
С5—С6—Н6А	121.0	C21—C20—H20A	120.1
С7—С6—Н6А	121.0	C20—C21—C22	120.7 (2)
C6—C7—C2	120.2 (2)	C20—C21—H21A	119.6
C6—C7—N2	130.68 (19)	C22—C21—H21A	119.6
C2—C7—N2	109.13 (17)	C21—C22—C17	119.08 (18)
C13—C8—C9	116.56 (19)	C21—C22—N3	124.35 (18)
C13—C8—C1	124.48 (18)	C17—C22—N3	116.57 (16)
C9—C8—C1	118.95 (18)	N3—C23—C24	120.85 (18)
O1—C9—C10	117.15 (18)	N3—C23—H23A	119.6
O1—C9—C8	122.22 (19)	С24—С23—Н23А	119.6
С10—С9—С8	120.63 (18)	C25—C24—C29	118.71 (18)
C11—C10—C9	120.45 (19)	C25—C24—C23	120.85 (18)
C11—C10—H10A	119.8	C29—C24—C23	120.43 (18)
C9—C10—H10A	119.8	C26—C25—C24	121.5 (2)
C10-C11-C12	120.2 (2)	C26—C25—H25A	119.2

C10 C11 H11A	110.0	C24 C25 H25A	110.2
	119.9	С24—С23—П23А	119.2
C12—C11—H11A	119.9	C25—C26—C27	118.9 (2)
C13—C12—C11	119.8 (2)	С25—С26—Н26А	120.6
C13—C12—H12A	120.1	С27—С26—Н26А	120.6
C11—C12—H12A	120.1	C28—C27—C26	120.9 (2)
C12—C13—C8	122.18 (18)	С28—С27—Н27А	119.6
C12—C13—H13A	118.9	С26—С27—Н27А	119.6
C8—C13—H13A	118.9	C27—C28—C29	120.5 (2)
N1-C14-C15	111.78 (16)	C27—C28—H28A	119.7
N1-C14-H14A	109.3	C29—C28—H28A	119.7
C15—C14—H14A	109.3	O3—C29—C28	119.03 (18)
N1-C14-H14B	109.3	O3—C29—C24	121.48 (18)
C15—C14—H14B	109.3	C28—C29—C24	119.48 (19)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1 <i>O</i> …N2	0.84	1.81	2.564 (2)	148
O3—H2 <i>O</i> …N3	0.84	1.80	2.548 (2)	148