

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,4-Bis[(5-phenyl-1,3,4-thiadiazol-2-yl)sulfanyl]butane

Shao-feng Li,^a Jing-jing Zhang,^a Xiao-yu Jia,^a Yan Gao^a and Wei Wang^{a,b}*

^aSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China, and ^bSchool of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, People's Republic of China

Correspondence e-mail: zhao_submit@yahoo.com.cn

Received 14 February 2011; accepted 17 February 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.088; data-to-parameter ratio = 18.8.

The asymmetric unit of the title compound, $C_{20}H_{18}N_4S_4$, contains one half-molecule situated on a twofold rotation axis, in which the thiadiazole and phenyl rings are twisted by 7.2 (3)°. In the crystal, weak intermolecular $C-H\cdots\pi$ interactions link the molecules into layers parallel to (103).

Related literature

For the biological activity of 1,3,4-triazole derivatives, see: Nakagawa *et al.* (1996); Wang *et al.* (1999). For the crystal structure of bis(5-phenyl-1,3,4-thiadiazol-2-ylsulfanyl)methane, see: Wang *et al.* (2010).

Experimental

Crystal data

 $\begin{array}{l} {\rm C}_{20}{\rm H}_{18}{\rm N}_{4}{\rm S}_{4} \\ M_{r} = 442.62 \\ {\rm Monoclinic, } P2_{1}/c \\ a = 5.7976 \ (7) \ {\rm A} \end{array}$

b = 13.4393 (14) Å c = 12.9784 (12) Å $\beta = 99.120 (7)^{\circ}$ $V = 998.44 (18) \text{ Å}^{3}$

```
Z = 2
Mo K\alpha radiation
\mu = 0.49 \text{ mm}^{-1}
```

Data collection

Rigaku Saturn CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(CrystalClear; Rigaku/MSC,	
2005)	
$T_{\rm min} = 0.908, T_{\rm max} = 0.953$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.088$ S = 1.062384 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1-C6 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$C9-H9B\cdots Cg^{i}$	0.99	2.70	3.540 (2)	144	
Symmetry code: (i) $-r \pm 1$ $y \pm \frac{1}{2} - \tau \pm \frac{1}{2}$					

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge the support of the Key Laboratory Project of Liaoning Province (grant No. 2008S127) and the Doctoral Starting Foundation of Liaoning Province (grant No. 20071103).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5053).

References

Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.

Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.
- Wang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085.

 $0.20 \times 0.18 \times 0.10 \; \mathrm{mm}$

9992 measured reflections 2384 independent reflections

1870 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 113 K

 $R_{\rm int} = 0.038$

127 parameters

 $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

supporting information

Acta Cryst. (2011). E67, o681 [doi:10.1107/S1600536811006064]

1,4-Bis[(5-phenyl-1,3,4-thiadiazol-2-yl)sulfanyl]butane

Shao-feng Li, Jing-jing Zhang, Xiao-yu Jia, Yan Gao and Wei Wang

S1. Comment

1,3,4-Thiadiazole derivatives exhibit a wide spectrum of biological activities (Nakagawa *et al.*, 1996; Wang *et al.*, 1999). Recently, we have published the crystal structure of bis(5-phenyl-1,3,4-thiadiazol-2-ylsulfanyl)methane (Wang *et al.*, 2010). Herewith we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), the molecule is situated on a twofold rotational axis so asymmetric unit contains a half of the molecule. The dihedral angle between the thiadiazole and the attached benzene rings is 7.2 (3)° indicating that two rings are almost parallel. As a result of π - π conjugation, the C_{sp}²-S bond [S2—C8 = 1.742 (2) Å] is significantly shorter than the C_{sp}³-S bond [S2—C9 = 1.813 (2) Å].

In the crystal structure, weak intermolecular C—H $\cdots \pi$ interactions (Table 1) link molecules into layers parallel to (103) plane.

S2. Experimental

A suspension of 5-diphenyl-1,3,4-thiadiazol-2-thiol (2.0 mmol) and 1,1-dibromobutane (1.0 mmol) in ethanol (10 ml) was stirred at room temperature. The reaction progress was monitored *via* TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as light yellow solid in 85% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

S3. Refinement

All H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

View of the molecule of (I) showing the atom-labelling scheme [symmetry code: (A)-x + 1, -y + 1, -z]. Displacement ellipsoids are drawn at the 85% probability level.

1,4-Bis[(5-phenyl-1,3,4-thiadiazol-2-yl)sulfanyl]butane

Crystal data

 $\begin{array}{l} C_{20}H_{18}N_4S_4\\ M_r = 442.62\\ \text{Monoclinic, } P2_1/c\\ \text{Hall symbol: -P 2ybc}\\ a = 5.7976 \ (7) \ \text{\AA}\\ b = 13.4393 \ (14) \ \text{\AA}\\ c = 12.9784 \ (12) \ \text{\AA}\\ \beta = 99.120 \ (7)^\circ\\ V = 998.44 \ (18) \ \text{\AA}^3\\ Z = 2 \end{array}$

Data collection

Rigaku Saturn CCD area-detector
diffractometer
Radiation source: rotating anode
Multilayer monochromator
Detector resolution: 14.63 pixels mm ⁻¹
φ and ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
$T_{\min} = 0.908, \ T_{\max} = 0.953$

Refinement

0	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.088$	neighbouring sites
S = 1.06	H-atom parameters constrained
2384 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0495P)^2]$
127 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.49$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 460

 $\theta = 1.5 - 27.9^{\circ}$

 $\mu = 0.49 \text{ mm}^{-1}$ T = 113 K

Prism. colorless

 $R_{\rm int} = 0.038$

 $k = -17 \rightarrow 17$ $l = -15 \rightarrow 16$

 $0.20 \times 0.18 \times 0.10 \text{ mm}$

9992 measured reflections 2384 independent reflections 1870 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$ $h = -7 \rightarrow 7$

 $D_{\rm x} = 1.472 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3630 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or equivalent	t isotropic displacement	parameters (Å ²)
-----------------------------------	-------------------------	--------------------------	----------------------------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	1.18924 (6)	0.48167 (3)	0.35236 (3)	0.01929 (12)	
S2	0.94277 (7)	0.60479 (3)	0.17655 (3)	0.02206 (13)	
N1	0.8027 (2)	0.39565 (9)	0.36814 (10)	0.0221 (3)	
N2	0.7508 (2)	0.46308 (10)	0.28684 (10)	0.0206 (3)	

C1	1.3577 (3)	0.34573 (11)	0.54385 (12)	0.0210 (3)
H1	1.4506	0.3955	0.5185	0.025*
C2	1.4532 (3)	0.28628 (12)	0.62747 (12)	0.0213 (3)
H2	1.6099	0.2969	0.6601	0.026*
C3	1.3224 (3)	0.21206 (12)	0.66341 (12)	0.0237 (4)
H3	1.3889	0.1710	0.7199	0.028*
C4	1.0921 (3)	0.19787 (12)	0.61620 (13)	0.0259 (4)
H4	1.0013	0.1469	0.6409	0.031*
C5	0.9936 (3)	0.25738 (12)	0.53341 (12)	0.0216 (3)
H5	0.8363	0.2469	0.5015	0.026*
C6	1.1262 (3)	0.33270 (11)	0.49711 (11)	0.0173 (3)
C7	1.0225 (3)	0.39663 (11)	0.40992 (12)	0.0171 (3)
C8	0.9342 (3)	0.51325 (11)	0.27088 (12)	0.0175 (3)
C9	0.6507 (3)	0.59299 (11)	0.10328 (12)	0.0211 (3)
H9A	0.5373	0.5895	0.1527	0.025*
H9B	0.6143	0.6531	0.0597	0.025*
C10	0.6215 (2)	0.50122 (11)	0.03322 (12)	0.0205 (3)
H10A	0.6445	0.4405	0.0769	0.025*
H10B	0.7419	0.5018	-0.0130	0.025*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01581 (19)	0.0215 (2)	0.0199 (2)	-0.00349 (15)	0.00081 (16)	0.00081 (15)
S2	0.0213 (2)	0.0229 (2)	0.0209 (2)	-0.00350 (16)	-0.00005 (17)	0.00217 (16)
N1	0.0185 (7)	0.0276 (7)	0.0199 (7)	-0.0024 (6)	0.0025 (6)	0.0024 (6)
N2	0.0171 (6)	0.0260 (7)	0.0185 (7)	-0.0008 (6)	0.0021 (5)	0.0017 (5)
C1	0.0198 (8)	0.0196 (8)	0.0232 (9)	-0.0048 (6)	0.0025 (7)	-0.0012 (6)
C2	0.0160 (7)	0.0247 (8)	0.0224 (9)	-0.0007 (6)	-0.0003 (6)	-0.0022 (7)
C3	0.0249 (8)	0.0251 (9)	0.0208 (8)	0.0021 (7)	0.0027 (7)	0.0039 (7)
C4	0.0235 (8)	0.0267 (9)	0.0286 (9)	-0.0040 (7)	0.0072 (7)	0.0057 (7)
C5	0.0155 (7)	0.0267 (8)	0.0223 (9)	-0.0040 (6)	0.0025 (6)	-0.0008 (7)
C6	0.0189 (7)	0.0175 (7)	0.0159 (8)	-0.0003 (6)	0.0041 (6)	-0.0036 (6)
C7	0.0168 (7)	0.0184 (7)	0.0169 (8)	-0.0024 (6)	0.0052 (6)	-0.0038 (6)
C8	0.0172 (7)	0.0208 (8)	0.0140 (8)	0.0004 (6)	0.0010 (6)	-0.0040 (6)
C9	0.0194 (8)	0.0221 (8)	0.0207 (9)	0.0017 (6)	-0.0008 (7)	0.0015 (6)
C10	0.0184 (8)	0.0224 (8)	0.0194 (8)	0.0023 (6)	-0.0007 (6)	0.0003 (6)

Geometric parameters (Å, °)

S1—C8	1.7289 (15)	С3—Н3	0.9500	
S1—C7	1.7400 (15)	C4—C5	1.388 (2)	
S2—C8	1.7417 (16)	C4—H4	0.9500	
S2—C9	1.8126 (15)	C5—C6	1.397 (2)	
N1—C7	1.303 (2)	С5—Н5	0.9500	
N1—N2	1.3872 (17)	C6—C7	1.471 (2)	
N2—C8	1.303 (2)	C9—C10	1.526 (2)	
C1—C2	1.390 (2)	С9—Н9А	0.9900	

supporting information

C1—C6	1.393 (2)	С9—Н9В	0.9900
C1—H1	0.9500	C10-C10 ⁱ	1.531 (3)
C2—C3	1.379 (2)	C10—H10A	0.9900
C2—H2	0.9500	C10—H10B	0.9900
C3—C4	1.391 (2)		
C8—S1—C7	86.82 (7)	C1—C6—C7	120.63 (14)
C8—S2—C9	100.29 (7)	C5—C6—C7	120.18 (13)
C7—N1—N2	112.95 (13)	N1—C7—C6	124.58 (14)
C8—N2—N1	112.01 (12)	N1—C7—S1	113.64 (12)
C2—C1—C6	120.32 (15)	C6—C7—S1	121.78 (11)
C2—C1—H1	119.8	N2—C8—S1	114.58 (12)
С6—С1—Н1	119.8	N2—C8—S2	126.30 (12)
C3—C2—C1	120.49 (14)	S1—C8—S2	119.11 (9)
С3—С2—Н2	119.8	C10—C9—S2	112.94 (11)
С1—С2—Н2	119.8	С10—С9—Н9А	109.0
C2—C3—C4	119.44 (15)	S2—C9—H9A	109.0
С2—С3—Н3	120.3	С10—С9—Н9В	109.0
С4—С3—Н3	120.3	S2—C9—H9B	109.0
C5—C4—C3	120.70 (15)	H9A—C9—H9B	107.8
С5—С4—Н4	119.6	C9-C10-C10 ⁱ	111.00 (16)
C3—C4—H4	119.6	C9—C10—H10A	109.4
C4—C5—C6	119.84 (15)	C10 ⁱ —C10—H10A	109.4
С4—С5—Н5	120.1	C9—C10—H10B	109.4
С6—С5—Н5	120.1	C10 ⁱ —C10—H10B	109.4
C1—C6—C5	119.19 (14)	H10A—C10—H10B	108.0
C7—N1—N2—C8	-0.54 (19)	C1—C6—C7—S1	6.9 (2)
C6—C1—C2—C3	1.7 (2)	C5—C6—C7—S1	-172.53 (12)
C1—C2—C3—C4	-0.9 (2)	C8—S1—C7—N1	0.48 (12)
C2—C3—C4—C5	0.2 (3)	C8—S1—C7—C6	-179.80 (13)
C3—C4—C5—C6	-0.2 (3)	N1—N2—C8—S1	0.93 (17)
C2-C1-C6-C5	-1.8 (2)	N1—N2—C8—S2	-179.93 (11)
C2-C1-C6-C7	178.80 (14)	C7—S1—C8—N2	-0.81 (13)
C4—C5—C6—C1	1.1 (2)	C7—S1—C8—S2	179.98 (10)
C4—C5—C6—C7	-179.52 (15)	C9—S2—C8—N2	-7.85 (16)
N2—N1—C7—C6	-179.79 (13)	C9—S2—C8—S1	171.26 (9)
N2-N1-C7-S1	-0.08 (17)	C8—S2—C9—C10	-75.00 (13)
C1—C6—C7—N1	-173.44 (15)	S2-C9-C10-C10 ⁱ	-175.61 (14)
C5—C6—C7—N1	7.2 (2)		

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—Н

 $H \cdots A$

D—H···A

 $D \cdots A$

supporting information

C9—H9 <i>B</i> ··· <i>Cg</i> ⁱⁱ	0.99	2.70	3.540 (2)	144	

Symmetry code: (ii) -x+1, y+1/2, -z+1/2.