organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-{2-[4-(4-Fluorophenyl)piperazin-1-yl]-2-oxoethyl}-6-(morpholin-4-yl)-4-phenylpyridazin-3(2H)-one

Abdullah Aydın,^a* Murat Süküroğlu,^b Mehmet Akkurt^c and Orhan Büyükgüngör^d

^aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, ^bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: aaydin@kastamonu.edu.tr

Received 21 January 2011; accepted 10 February 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.091; data-to-parameter ratio = 15.4.

In the title compound, $C_{26}H_{28}FN_5O_3$, the morpholine ring adopts a chair conformation. The piperazine ring is puckered $[Q_{\rm T} = 0.5437 (15) \text{ Å}, \theta = 8.89 (15) \text{ and } \varphi = 357.2 (11)^{\circ}].$ The 1,6-dihydropyridazine ring makes dihedral angles of 28.03 (7) and $77.46(7)^{\circ}$ with the phenyl and benzene rings, respectively. In the crystal, molecules are linked along the c axis by C- $H \cdots O$ interactions and are flattened parallel to the *ac* plane. C-H··· π interactions also contribute to the stability of the structure.

Related literature

For the pharmacological effects, biological activity and synthesis of 3(2H)-pyridazinones, see: Şüküroğlu et al. 2006; Brogden 1986. For bond-length data, see: Allen et al. (1987). For ring conformational analysis, see: Cremer & Pople (1975). For the quantum mechanical CNDO/2 approximation, see: Pople & Beveridge (1970).

Experimental

Crystal data

C ₂₆ H ₂₈ FN ₅ O ₃	$\gamma = 83.486 \ (4)^{\circ}$
$M_r = 477.53$	V = 1171.87 (12) Å ³
Triclinic, P1	Z = 2
a = 8.9168 (5) Å	Mo $K\alpha$ radiation
b = 10.7106 (6) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 13.5147 (8) Å	T = 296 K
$\alpha = 73.489 \ (4)^{\circ}$	$0.60 \times 0.49 \times 0.20$ r
$\beta = 71.309 \ (4)^{\circ}$	

Data collection

STOE IPDS 2 diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.945, \ T_{\max} = 0.981$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.091$ S = 1.034861 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg2, Cg4 and Cg5 are the centroids of the N1/N2/C7-C10, C1-C6 and C21-C26 rings, respectively.

 \times 0.20 mm

13273 measured reflections

 $R_{\rm int} = 0.029$

316 parameters

 $\Delta \rho_{\rm max} = 0.12 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$

4861 independent reflections

3479 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11-H11B\cdots O3^{i}$	0.97	2.41	3.3306 (18)	159
$C5-H5\cdots Cg5^{ii}$	0.93	2.86	3.4941 (18)	127
$C13-H13B\cdots Cg4^{i}$	0.97	2.92	3.7395 (19)	143
$C18-H18A\cdots Cg2^{iii}$	0.97	2.73	3.5079 (16)	138

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 2, -y + 1, -z + 1; (iii) x + 1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2227).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Brogden, R. N. (1986). Drugs, 32, 60-70.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Pople, J. A. & Beveridge, D. L. (1970). Approximate Molecular Orbital Theory. New York: McGraw Hill.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Şüküroğlu, M., Küpeli, E., Banoğlu, E., Ünlü, S., Yeşilada, E. & Şahin, M. F. (2006). Arzneim.-Forsch. Drug Res. 56, 337–345.

supporting information

Acta Cryst. (2011). E67, o666-o667 [doi:10.1107/S1600536811005071]

2-{2-[4-(4-Fluorophenyl)piperazin-1-yl]-2-oxoethyl}-6-(morpholin-4-yl)-4-phenylpyridazin-3(2*H*)-one

Abdullah Aydın, Murat Şüküroğlu, Mehmet Akkurt and Orhan Büyükgüngör

S1. Comment

In recent years, the 3(2H)-pyridazinone system has aroused a great deal of attention due to its structural relationship to pyrazolone derivatives such as aminopyrine and dipyrone in view of the ring enlargement of pyrazolone to pyridazinone. These drugs possess analgesic and anti-inflammatory activities although they have limitations for their clinical use due to serious side effects such as blood dyscrasias (Şüküroğlu *et al.*, 2006; Brogden, 1986).

A series of 6-morpholino-4-aryl-3(2*H*)-pyridazinone alkanoic acids, their ester and amide derivatives were prepared and tested for their *in vivo* analgesic activity by using the *p*-benzoquinone-induced writhing test. The title compound, $C_{26}H_{28}FN_5O_3$, generally showed higher activity but caused gastric ulceration in the animals (Süküroğlu *et al.*, 2006).

In the title molecule (I), Fig. 1, the morpholine ring (N3/O2/C11–C14) adopts a chair conformation. The piperazine ring (N4/N5/C17–C20) is puckered. The conformation of this ring is described by three puckering parameters: $Q_T = 0.5437 (15) \text{ Å}$, $\theta = 8.89 (15)^{\circ}$ and, $\varphi = 357.2 (11)^{\circ}$ (Cremer & Pople, 1975). The 1,6-dihydropyridazine ring (N1/N2/C7–C10) makes dihedral angles of 28.03 (7) and 77.46 (7)^{\circ} with the C1–C6 phenyl and C21–C26 benzene rings, respectively. The phenyl and benzene rings make a dihedral angle of 50.17 (8) ° with each other. In the crystal structure, molecules are linked along the *c*-axis direction and are flattened parallel to the plane containing the a and c axes. Furthermore, C–H··· π interactions contribute to the stability of the structure (Table 1). Fig. 2 shows the packing diagram of (I) down the *b* axis.

Theoretical calculations were carried out using the semiempirical quantum-mechanical *CNDO*/2 (Complete Neglect of Differential Overlap) method (Pople and Beveridge, 1970). The spatial view of the single molecule calculated as closed-shell in a vacuum is shown in Fig. 3 with atomic labels. The calculated dipole moment of (I) is about 2.795 Debye. The *HOMO* and *LUMO* energy levels are -10.013 and 0.832 eV, respectively.

According to the theoretical *CNDO/2* and experimental X-ray structural results, the values of the geometric parameters of (I) are almost comparable within the experimental error interval (Allen *et al.*, 1987).

The 1,6-dihydropyridazine ring (N1/N2/C7–C10) forms dihedral angles of 2.24 and 60.48° with the C1–C6 phenyl and C21–C26 benzene rings, respectively. The dihedral angle between the phenyl and benzene rings is 62.62°. The orientations of the planes of the rings are however, slightly different in the *CNDO*/2 and X-ray results. That is, intermolecular interactions play an important role in determining the crystal state conformation of (I).

S2. Experimental

A reaction mixture containing 2-[4-phenyl-6-(morpholin-4-yl)-3(2*H*)- pyridazinone-2-yl]acetic acid (0.01 mole) and triethylamine (0.011 mole) in 20 ml dichloromethane at 273 K (ice-bath) was treated with ethyl chloroformate (0,01 mole). After stirring the reaction mixture at 273 K for 15 min, 0.011 mole of 4-(4-fluorophenyl)-piperazine derivative was added to this solution. The final mixture was stirred at room temperature for 24 h and evaporated to dryness and then acetone was added. All undissolved salts were filtered off, the filtrate was evaporated to dryness and the residue was recrystallized from acetone-water (1:1) to yield 62%, [m.p.: 457 K].

¹H-NMR (CDCl₃), δ 7.75 (m, 2H, phenyl-H2, H6), 7.43 (m, 3H, phenyl-H3, H4, H5), 7.23 (s, 1H, pyridazinone-H5), 6.99 (m, 4H, 4-fluorophenyl-H2, H3, H5, H6), 4.98 (s, 2H, N—CH₂—CO), 3.82 (m, 6H, morpholine-H2, H6, piperazine-H2(6)), 3.71 (m, 2H, piperazine-H6(2)), 3.31 (t, 8H, morpholine-H3, H5), 3.15 (m, 4H, piperazine-H3, H5) p.p.m.. IR ν_{max} cm⁻¹ (KBr): 2845, 1661, 1643. Anal. C, H, N (C₂₆H₂₈FN₅O₃) (Şüküroğlu *et al.*, 2006). Elemental analysis: C₂₆H₂₈FN₅O₃, Calc.(%) / Found (%): C: 65.39/65.54, H: 5.91/5.49, N: 14.67/14.28.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and 0.97 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

View of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 2

The packing and hydrogen bonding interactions of (I) down the *b* axis. H atoms not participating in hydrogen bonding have been omitted for clarity.

Figure 3

The spatial view of the title molecule (I), calculated by the CNDO/2 aproximation.

2-{2-[4-(4-Fluorophenyl)piperazin-1-yl]-2-oxoethyl}-6-(morpholin-4-yl)- 4-phenylpyridazin-3(2H)-one

Crystal data	
$\begin{array}{l} C_{26}H_{28}FN_5O_3 \\ M_r = 477.53 \\ Triclinic, P1 \\ Hall symbol: -P1 \\ a = 8.9168 (5) Å \\ b = 10.7106 (6) Å \\ c = 13.5147 (8) Å \\ a = 73.489 (4)^{\circ} \\ \beta = 71.309 (4)^{\circ} \\ \gamma = 83.486 (4)^{\circ} \\ V = 1171.87 (12) Å^3 \end{array}$	Z = 2 F(000) = 504 $D_x = 1.353 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 19046 reflections $\theta = 1.7-28.2^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K Prism, yellow $0.60 \times 0.49 \times 0.20 \text{ mm}$
Data collection	
STOE IPDS 2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Plane graphite monochromator Detector resolution: 6.67 pixels mm ⁻¹ ω scans Absorption correction: integration (<i>X-RED32</i> ; Stoe & Cie, 2002)	$T_{\min} = 0.945, T_{\max} = 0.981$ 13273 measured reflections 4861 independent reflections 3479 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{\max} = 26.5^{\circ}, \theta_{\min} = 1.7^{\circ}$ $h = -11 \rightarrow 11$ $k = -13 \rightarrow 13$ $l = -16 \rightarrow 16$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.091$ S = 1.03 4861 reflections 316 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0469P)^2 + 0.0141P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.12$ e Å ⁻³ $\Delta\rho_{min} = -0.14$ e Å ⁻³

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х v ZF1 0.0875 (4) 1.31808 (14) 0.32221 (10) 1.12298 (8) 01 0.66791 (10) 0.43998 (8) 0.0635(4)0.65668 (12) O2 0.02122 (12) 1.05391 (10) 0.84902 (8) 0.0626 (3) O3 0.78850 (9) 0.84333 (12) 0.56875 (9) 0.0627 (3) N1 0.44450(12)0.78805 (9) 0.66593 (8) 0.0437(3)N2 0.54428 (12) 0.72130 (10) 0.59688 (8) 0.0438(3)N3 0.25440 (13) 0.94880 (10) 0.69277 (8) 0.0471 (3) N4 0.93182 (13) 0.58003(10)0.61148 (9) 0.0473(4)N5 1.09333 (13) 0.46726 (10) 0.76728 (8) 0.0459(3)C1 0.0425 (4) 0.43486 (15) 0.84428 (12) 0.33963 (10) C2 0.38220(17)0.96206(13) 0.28338 (11) 0.0530(5)C3 0.3712(2)0.97650(17) 0.18124 (13) 0.0668 (6) C4 0.4089(2)0.87442 (18) 0.13408(12)0.0671 (6) C5 0.46053 (19) 0.75785 (16) 0.18863(12)0.0622(6)C6 0.47474 (17) 0.29017 (11) 0.74228 (13) 0.0523(5)C7 0.44320 (14) 0.82808 (11) 0.45042 (10) 0.0402 (4) C8 0.55601 (15) 0.73397 (12) 0.49132 (10) 0.0445(4)C9 0.35078 (14) 0.87626(11) 0.62510(10) 0.0406(4)C10 0.34782 (15) 0.89739 (11) 0.51700 (10) 0.0429 (4) C11 0.10441 (17) 1.00413 (13) 0.67498 (11) 0.0546(5)C12 0.04171 (18) 1.10537 (13) 0.73676 (12) 0.0615(5)C13 0.17058 (19) 1.00733 (16) 0.86405 (13) 0.0641 (6) C14 0.24172 (18) 0.90257 (14) 0.80774 (11) 0.0533(5)C15 0.64791 (15) 0.62509(12) 0.64412 (11) 0.0462(4)C16 0.81643 (16) 0.67228 (12) 0.60443 (10) 0.0444(4)C17 1.09342 (16) 0.61613 (15) 0.59093 (11) 0.0578(5)C18 1.12789(17) 0.59830(13)0.69637(12)0.0553(5)C19 0.93822 (16) 0.42227(12)0.78027(11) 0.0460(4)C20 0.90918 (17) 0.44392 (12) 0.67254 (11) 0.0484(4)C21 0.0446(4)1.14574 (15) 0.43318 (12) 0.85944(10)C22 0.51424 (13) 0.87566 (12) 0.0532(5)1.24267 (18) C23 1.2999 (2) 0.47658 (15) 0.96358 (13) 0.0611 (6) C24 1.26051 (19) 0.35931 (15) 1.03610 (12) 0.0599(5)C25 1.16453 (19) 0.27695 (15) 1.02480 (12) 0.0596(5)C26 1.10713 (17) 0.31386 (13) 0.93713 (11) 0.0530(5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H2	0.35420	1.03140	0.31490	0.0640*
H3	0.33800	1.05620	0.14380	0.0800*
H4	0.39940	0.88440	0.06570	0.0810*
Н5	0.48620	0.68860	0.15690	0.0750*
H6	0.51130	0.66300	0.32590	0.0630*
H10	0.27860	0.96040	0.49140	0.0510*
H11A	0.02810	0.93570	0.69910	0.0660*
H11B	0.12070	1.04350	0.59830	0.0660*
H12A	0.11470	1.17670	0.70830	0.0740*
H12B	-0.05910	1.13980	0.72630	0.0740*
H13A	0.15730	0.97320	0.94090	0.0770*
H13B	0.24260	1.07930	0.83630	0.0770*
H14A	0.34600	0.87750	0.81590	0.0640*
H14B	0.17600	0.82650	0.84070	0.0640*
H15A	0.64680	0.54450	0.62510	0.0550*
H15B	0.60890	0.60740	0.72240	0.0550*
H17A	1.10820	0.70640	0.54920	0.0690*
H17B	1.16660	0.56240	0.54900	0.0690*
H18A	1.23860	0.61530	0.68140	0.0660*
H18B	1.06480	0.66110	0.73320	0.0660*
H19A	0.85690	0.46850	0.82480	0.0550*
H19B	0.93100	0.33020	0.81730	0.0550*
H20A	0.98170	0.38910	0.63140	0.0580*
H20B	0.80200	0.41990	0.68420	0.0580*
H22	1.26910	0.59500	0.82640	0.0640*
H23	1.36500	0.53130	0.97310	0.0730*
H25	1.13830	0.19710	1.07550	0.0720*
H26	1.04120	0.25820	0.92940	0.0630*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.1156 (9)	0.0924 (7)	0.0722 (6)	0.0160 (6)	-0.0589 (6)	-0.0215 (5)
0.0598 (7)	0.0678 (6)	0.0611 (6)	0.0271 (5)	-0.0168 (5)	-0.0268 (5)
0.0534 (6)	0.0630 (6)	0.0617 (6)	0.0020 (5)	0.0024 (5)	-0.0255 (5)
0.0606 (6)	0.0408 (5)	0.0794 (7)	-0.0021 (4)	-0.0271 (5)	0.0026 (5)
0.0414 (6)	0.0417 (5)	0.0441 (6)	0.0032 (4)	-0.0094 (5)	-0.0111 (5)
0.0391 (6)	0.0427 (5)	0.0463 (6)	0.0082 (4)	-0.0124 (5)	-0.0108 (5)
0.0453 (6)	0.0442 (6)	0.0463 (6)	0.0071 (5)	-0.0075 (5)	-0.0140 (5)
0.0395 (6)	0.0438 (6)	0.0548 (7)	0.0038 (5)	-0.0182 (5)	-0.0045 (5)
0.0445 (6)	0.0450 (6)	0.0459 (6)	-0.0017 (5)	-0.0163 (5)	-0.0053 (5)
0.0356 (7)	0.0440 (7)	0.0459 (7)	-0.0017 (5)	-0.0097 (5)	-0.0114 (5)
0.0543 (9)	0.0500 (8)	0.0552 (8)	0.0054 (6)	-0.0206 (7)	-0.0127 (6)
0.0701 (11)	0.0693 (10)	0.0592 (9)	0.0068 (8)	-0.0283 (8)	-0.0077 (8)
0.0657 (11)	0.0914 (12)	0.0465 (8)	-0.0052 (9)	-0.0193 (7)	-0.0179 (8)
0.0626 (10)	0.0713 (10)	0.0561 (9)	-0.0032 (8)	-0.0116 (7)	-0.0288 (8)
0.0543 (9)	0.0508 (8)	0.0516 (8)	0.0003 (6)	-0.0137 (6)	-0.0166 (6)
0.0357 (7)	0.0375 (6)	0.0452 (7)	-0.0016 (5)	-0.0101 (5)	-0.0095 (5)
	U^{11} 0.1156 (9) 0.0598 (7) 0.0534 (6) 0.0606 (6) 0.0414 (6) 0.0391 (6) 0.0453 (6) 0.0395 (6) 0.0445 (6) 0.0356 (7) 0.0543 (9) 0.0701 (11) 0.0657 (11) 0.0626 (10) 0.0543 (9) 0.0357 (7)	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.1156 (9) & 0.0924 (7) \\ \hline 0.0598 (7) & 0.0678 (6) \\ \hline 0.0534 (6) & 0.0630 (6) \\ \hline 0.0606 (6) & 0.0408 (5) \\ \hline 0.0414 (6) & 0.0417 (5) \\ \hline 0.0391 (6) & 0.0427 (5) \\ \hline 0.0395 (6) & 0.0438 (6) \\ \hline 0.0445 (6) & 0.0450 (6) \\ \hline 0.0356 (7) & 0.0440 (7) \\ \hline 0.0543 (9) & 0.0500 (8) \\ \hline 0.0701 (11) & 0.0693 (10) \\ \hline 0.0657 (11) & 0.0713 (10) \\ \hline 0.0543 (9) & 0.0508 (8) \\ \hline 0.0357 (7) & 0.0375 (6) \\ \hline \end{array}$	U^{11} U^{22} U^{33} 0.1156 (9)0.0924 (7)0.0722 (6)0.0598 (7)0.0678 (6)0.0611 (6)0.0534 (6)0.0630 (6)0.0617 (6)0.0606 (6)0.0408 (5)0.0794 (7)0.0414 (6)0.0417 (5)0.0441 (6)0.0391 (6)0.0427 (5)0.0463 (6)0.0453 (6)0.0442 (6)0.0463 (6)0.0395 (6)0.0438 (6)0.0548 (7)0.0445 (6)0.0450 (6)0.0459 (6)0.0356 (7)0.0440 (7)0.0459 (7)0.0543 (9)0.0500 (8)0.0552 (8)0.0657 (11)0.0914 (12)0.0465 (8)0.0626 (10)0.0713 (10)0.0561 (9)0.0357 (7)0.0375 (6)0.0452 (7)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.1156 (9)0.0924 (7)0.0722 (6)0.0160 (6) $-0.0589 (6)$ 0.0598 (7)0.0678 (6)0.0611 (6)0.0271 (5) $-0.0168 (5)$ 0.0534 (6)0.0630 (6)0.0617 (6)0.0020 (5)0.0024 (5)0.0606 (6)0.0408 (5)0.0794 (7) $-0.0021 (4)$ $-0.0271 (5)$ 0.0414 (6)0.0417 (5)0.0441 (6)0.0032 (4) $-0.0094 (5)$ 0.0391 (6)0.0427 (5)0.0463 (6)0.0071 (5) $-0.0075 (5)$ 0.0453 (6)0.0442 (6)0.0463 (6)0.0071 (5) $-0.0124 (5)$ 0.0395 (6)0.0438 (6)0.0548 (7)0.0038 (5) $-0.0182 (5)$ 0.0445 (6)0.0450 (6)0.0459 (6) $-0.0017 (5)$ $-0.0097 (5)$ 0.0543 (9)0.0500 (8)0.0552 (8)0.0054 (6) $-0.0206 (7)$ 0.0657 (11)0.0914 (12)0.0465 (8) $-0.0052 (9)$ $-0.0133 (7)$ 0.0626 (10)0.0713 (10)0.0561 (9) $-0.0016 (5)$ $-0.0137 (6)$ 0.0357 (7)0.0375 (6)0.0452 (7) $-0.0016 (5)$ $-0.0101 (5)$

C8	0.0389 (7)	0.0434 (7)	0.0497 (7)	0.0048 (5)	-0.0112 (6)	-0.0145 (6)
C9	0.0371 (7)	0.0360 (6)	0.0450 (7)	-0.0004 (5)	-0.0082 (5)	-0.0100 (5)
C10	0.0388 (7)	0.0386 (6)	0.0492 (7)	0.0048 (5)	-0.0136 (5)	-0.0102 (5)
C11	0.0529 (9)	0.0497 (7)	0.0521 (8)	0.0148 (6)	-0.0100 (6)	-0.0122 (6)
C12	0.0565 (9)	0.0448 (7)	0.0671 (10)	0.0079 (6)	-0.0004 (7)	-0.0142 (7)
C13	0.0578 (10)	0.0736 (10)	0.0607 (9)	-0.0014 (8)	-0.0060 (7)	-0.0310 (8)
C14	0.0518 (8)	0.0563 (8)	0.0478 (8)	0.0018 (6)	-0.0088 (6)	-0.0158 (6)
C15	0.0420 (7)	0.0415 (6)	0.0503 (7)	0.0058 (5)	-0.0156 (6)	-0.0057 (6)
C16	0.0471 (8)	0.0411 (7)	0.0432 (7)	0.0035 (5)	-0.0178 (6)	-0.0053 (5)
C17	0.0400 (8)	0.0661 (9)	0.0545 (8)	-0.0036 (6)	-0.0137 (6)	0.0039 (7)
C18	0.0478 (8)	0.0533 (8)	0.0591 (9)	-0.0096 (6)	-0.0200 (7)	0.0015 (7)
C19	0.0476 (8)	0.0372 (6)	0.0512 (7)	0.0004 (5)	-0.0142 (6)	-0.0100 (5)
C20	0.0513 (8)	0.0384 (6)	0.0588 (8)	0.0083 (5)	-0.0240 (6)	-0.0131 (6)
C21	0.0442 (7)	0.0434 (7)	0.0448 (7)	0.0072 (5)	-0.0134 (6)	-0.0126 (5)
C22	0.0596 (9)	0.0455 (7)	0.0574 (8)	0.0032 (6)	-0.0224 (7)	-0.0144 (6)
C23	0.0685 (10)	0.0594 (9)	0.0690 (10)	0.0083 (7)	-0.0328 (8)	-0.0282 (8)
C24	0.0682 (10)	0.0666 (9)	0.0525 (8)	0.0179 (8)	-0.0302 (7)	-0.0213 (7)
C25	0.0634 (10)	0.0571 (8)	0.0518 (8)	0.0062 (7)	-0.0197 (7)	-0.0045 (7)
C26	0.0534 (9)	0.0490 (7)	0.0551 (8)	0.0000 (6)	-0.0203 (7)	-0.0077 (6)

Geometric parameters (Å, °)

1.369 (2)	C21—C26	1.3999 (19)
1.2343 (17)	C22—C23	1.380 (2)
1.4173 (18)	C23—C24	1.357 (2)
1.424 (2)	C24—C25	1.366 (2)
1.2215 (17)	C25—C26	1.378 (2)
1.3698 (15)	С2—Н2	0.9300
1.3098 (17)	С3—Н3	0.9300
1.3646 (16)	C4—H4	0.9300
1.4531 (18)	С5—Н5	0.9300
1.3883 (16)	С6—Н6	0.9300
1.464 (2)	C10—H10	0.9300
1.4612 (17)	C11—H11A	0.9700
1.3501 (18)	C11—H11B	0.9700
1.4532 (19)	C12—H12A	0.9700
1.4571 (17)	C12—H12B	0.9700
1.4586 (18)	C13—H13A	0.9700
1.4572 (19)	С13—Н13В	0.9700
1.4067 (17)	C14—H14A	0.9700
1.393 (2)	C14—H14B	0.9700
1.3933 (19)	C15—H15A	0.9700
1.4827 (18)	C15—H15B	0.9700
1.379 (2)	C17—H17A	0.9700
1.375 (3)	С17—Н17В	0.9700
1.371 (3)	C18—H18A	0.9700
1.380 (2)	C18—H18B	0.9700
1.4639 (19)	C19—H19A	0.9700
	$\begin{array}{c} 1.369\ (2)\\ 1.2343\ (17)\\ 1.4173\ (18)\\ 1.424\ (2)\\ 1.2215\ (17)\\ 1.3698\ (15)\\ 1.3098\ (17)\\ 1.3646\ (16)\\ 1.4531\ (18)\\ 1.3883\ (16)\\ 1.464\ (2)\\ 1.4612\ (17)\\ 1.3501\ (18)\\ 1.4532\ (19)\\ 1.4572\ (19)\\ 1.4572\ (19)\\ 1.4572\ (19)\\ 1.4572\ (19)\\ 1.4667\ (17)\\ 1.393\ (2)\\ 1.3933\ (19)\\ 1.4827\ (18)\\ 1.379\ (2)\\ 1.375\ (3)\\ 1.371\ (3)\\ 1.380\ (2)\\ 1.4639\ (19)\\ \end{array}$	1.369(2) $C21-C26$ $1.2343(17)$ $C22-C23$ $1.4173(18)$ $C23-C24$ $1.424(2)$ $C24-C25$ $1.2215(17)$ $C25-C26$ $1.3698(15)$ $C2-H2$ $1.3098(17)$ $C3-H3$ $1.3646(16)$ $C4-H4$ $1.4531(18)$ $C5-H5$ $1.3883(16)$ $C6-H6$ $1.464(2)$ $C10-H10$ $1.4612(17)$ $C11-H118$ $1.3501(18)$ $C12-H12A$ $1.4571(17)$ $C12-H12B$ $1.4586(18)$ $C13-H13A$ $1.4572(19)$ $C13-H13B$ $1.4067(17)$ $C14-H14A$ $1.393(2)$ $C14-H14B$ $1.393(2)$ $C17-H17B$ $1.379(2)$ $C17-H17B$ $1.371(3)$ $C18-H18B$ $1.4639(19)$ $C19-H19A$

C7—C10	1 3528 (18)	C19—H19B	0 9700
C9—C10	1 4219 (18)	C20—H20A	0.9700
$C_{11} - C_{12}$	1 504 (2)	C20—H20B	0 9700
C13—C14	1.502(2)	C22—H22	0.9300
C15—C16	1.502(2) 1.518(2)	C23—H23	0.9300
C17-C18	1.518(2) 1 508(2)	C25—H25	0.9300
C19-C20	1.509(2)	C26—H26	0.9300
C_{21} C_{22}	1 396 (2)		0.9500
021 022	1.590 (2)		
F1···H3 ⁱ	2.7700	H2…H10	2.1900
F1…H15B ⁱⁱ	2.6900	H2···O3 ⁱⁱⁱ	2.9100
F1…H19A ⁱⁱ	2.7100	H2…N1 ⁱⁱⁱ	2.9000
O1…C6	2.8742 (19)	H3…F1 ^{xii}	2.7700
O1…C16	3.0123 (18)	H3····C25 ^{xii}	3.0300
O2…N3	2.8383 (15)	H3····H25 ^{xii}	2.4400
Q3…N2	2.7209 (16)	H5····C22 ^{iv}	3.0700
03···C11 ⁱⁱⁱ	3.3306 (18)	H5····C23 ^{iv}	2.8800
03…C8	3.2257 (18)	H5…C24 ^{iv}	2.9800
O1…H12A ⁱⁱⁱ	2.6800	H6…O1	2.3200
01H15A	2.4500	H6…C8	2.7100
O1…H6	2.3200	H6…H15A ^{xi}	2.5800
O1…H17B ^{iv}	2.7700	H10…C2	2.6600
O2…H13A ^v	2.7200	H10…C11	2.6100
O2…H26 ^{vi}	2.7500	H10…H2	2.1900
O3…H17A	2.3800	H10…H11B	2.0000
O3…H2 ⁱⁱⁱ	2.9100	H10…O3 ⁱⁱⁱ	2.7800
O3…H10 ⁱⁱⁱⁱ	2.7800	H11B…C10	2.5700
O3…H11B ⁱⁱⁱ	2.4100	H11B…H10	2.0000
N2…O3	2.7209 (16)	H11B····O3 ⁱⁱⁱ	2.4100
N3…O2	2.8383 (15)	H12A…H13B	2.3100
N4…N5	2.8407 (16)	H12A…H20A ^{vi}	2.5500
N5…N4	2.8407 (16)	H12A…O1 ⁱⁱⁱ	2.6800
N1…H22 ^{vii}	2.7300	H12B····C3 ^x	2.9200
N1…H2 ⁱⁱⁱ	2.9000	H12B····C4 ^x	3.0800
N1…H18A ^{vii}	2.6700	H13A····O2 ^v	2.7200
N1…H14A	2.3600	H13B…H12A	2.3100
N1…H14B	2.8600	H13B…C6 ⁱⁱⁱ	3.0700
N2…H18A ^{vii}	2.8300	H14A…N1	2.3600
C2…C14 ⁱⁱⁱ	3.508 (2)	H14A…C2 ⁱⁱⁱ	2.8600
C6…O1	2.8742 (19)	H14B…N1	2.8600
C7····C9 ⁱⁱⁱ	3.5673 (18)	H14B…H22 ^{vii}	2.5600
C8…O3	3.2257 (18)	H15A…O1	2.4500
C9…C7 ⁱⁱⁱ	3.5673 (18)	H15A…C20	2.6500
C9…C18 ^{vii}	3.497 (2)	H15A…H20B	2.0000
C9…C10 ⁱⁱⁱ	3.5089 (18)	H15A····H6 ^{xi}	2.5800
C10····C9 ⁱⁱⁱ	3.5089 (18)	H15B…C20	3.0200
C10C10 ⁱⁱⁱ	3.5197 (19)	H15B…H20B	2.5500
C11···O3 ⁱⁱⁱ	3.3306 (18)	H15B…F1 ⁱⁱ	2.6900

C12…C19 ^{vi}	3.577 (2)	H17A…O3	2.3800
C14…C2 ⁱⁱⁱ	3.508 (2)	H17A…C10 ^{viii}	2.9700
C16…O1	3.0123 (18)	H17B…H20A	2.4000
C18····C9 ^{viii}	3.497 (2)	H17B…O1 ^{iv}	2.7700
C19C12 ^{ix}	3 577 (2)	H18A…N1 ^{viii}	2.6700
C2H14A ⁱⁱⁱ	2,8600	H18A…N2 ^{viii}	2.8300
C2···H10	2.6600	H18A····C9 ^{viii}	2.8900
C3···H12B ^x	2,9200	H18AC22	2,5500
C4H12B ^x	3 0800	H18AH22	2.0200
C5···H20B ^{xi}	2.9400	H18B···C22	2.8900
C6···H20B ^{xi}	3 0500	H18B…H22	2,4700
C6H13B ⁱⁱⁱ	3 0700	H19A····F1 ⁱⁱ	2.7100
C8H6	2 7100	H19AC23 ⁱⁱ	2.9500
C9H18A ^{vii}	2 8900	$H19A \cdots C24^{ii}$	2.9500
C10···H17A ^{vii}	2.000	H19R···C12 ^{ix}	2.8800
С10…Н2	2.5700	H19B···C26	2.5700
C10H11B	2.5700	H19BH26	1 9900
C11H10	2.5700	$H_{20} \Delta \cdots C_{12} h_{20}$	3.0300
$C12H20A^{vi}$	3 0300	$H_{20}A \cdots H_{12}A^{ix}$	2 5500
C12 H20A	2 8700	H20AH17R	2.3300
$C12 \cdot H19B$	2.8700	H20RC15	2.4000
C15H20B	2 4800	H20BH15A	2.4000
C18H22	2.4600	H20BH15R	2.0000
C10H26	2.4000		2.5500
C20H154	2.6100	H20B···C6 ^{xi}	2.9400
C20 H15A	2.0300	$H22N1^{viii}$	2 7300
C220 H15B	2 5500	H22C18	2.7500
C22H18B	2.5500	$H22 \cdots H1/4 R^{viii}$	2.4000
$C22 mmodermode{modermatrix}$	2.0900	H22H18A	2.3000
C22 H5	2 8800	H22H18R	2.0100
C23H10A ⁱⁱ	2.8800	H22H2i	2.4700
C24H5iv	2.9300		2.4400
	2.9800	H26C13 ^{ix}	2.7500
C25H2i	2.0000	H26C10	2.6100
C25H10P	2,5500	H26H10P	2.0100
H2C10	2.5500	H20H19B	1.9900
H2C10	2.0900		
$C_{12} = 0_{2} = C_{13}$	108 95 (12)	C4—C5—H5	120.00
$N_{2} N_{1} C_{9}$	116.01 (10)	С6—С5—Н5	120.00
N1—N2—C8	127.91 (11)	C1—C6—H6	120.00
N1 - N2 - C15	114 75 (10)	C5-C6-H6	120.00
C8-N2-C15	117 34 (11)	C7—C10—H10	119.00
C9-N3-C11	119 14 (11)	C9—C10—H10	119.00
C9—N3—C14	117.13 (11)	N3—C11—H11A	110.00
C11 - N3 - C14	112.25 (11)	N3—C11—H11B	110.00
C16 - N4 - C17	120.60 (12)	C12—C11—H11A	110.00
C16 - N4 - C20	126.08 (12)	C12—C11—H11B	110.00
C17 - N4 - C20	110.06 (12)	H11A—C11—H11B	108.00
			100.00

C18—N5—C19	114.00 (11)	O2—C12—H12A	109.00
C18—N5—C21	116.78 (11)	O2—C12—H12B	109.00
C19—N5—C21	117.13 (10)	C11—C12—H12A	109.00
C2—C1—C6	118.22 (12)	C11—C12—H12B	109.00
C2—C1—C7	120.29 (12)	H12A—C12—H12B	108.00
C6—C1—C7	121.46 (12)	O2—C13—H13A	109.00
C1—C2—C3	120.40 (14)	O2—C13—H13B	109.00
C2—C3—C4	120.71 (16)	C14—C13—H13A	109.00
C3—C4—C5	119.50 (15)	C14—C13—H13B	109.00
C4—C5—C6	120.59 (15)	H13A—C13—H13B	108.00
C1—C6—C5	120.57 (14)	N3—C14—H14A	110.00
C1—C7—C8	120.11 (11)	N3—C14—H14B	110.00
C1—C7—C10	122.01 (12)	C13—C14—H14A	110.00
C8—C7—C10	117.88 (11)	C13—C14—H14B	110.00
O1—C8—N2	119.12 (12)	H14A—C14—H14B	108.00
O1—C8—C7	126.40 (12)	N2—C15—H15A	109.00
N2—C8—C7	114.49 (11)	N2—C15—H15B	109.00
N1—C9—N3	116.54 (11)	C16—C15—H15A	109.00
N1-C9-C10	121.96 (11)	C16—C15—H15B	109.00
N3—C9—C10	121.49 (11)	H15A—C15—H15B	108.00
C7—C10—C9	121.60 (12)	N4—C17—H17A	110.00
N3—C11—C12	109.61 (12)	N4—C17—H17B	110.00
O2—C12—C11	112.03 (12)	C18—C17—H17A	110.00
O2—C13—C14	112.09 (14)	C18—C17—H17B	110.00
N3—C14—C13	110.40 (12)	H17A—C17—H17B	108.00
N2—C15—C16	111.27 (11)	N5—C18—H18A	109.00
O3—C16—N4	122.80 (14)	N5—C18—H18B	109.00
O3—C16—C15	120.54 (13)	C17—C18—H18A	109.00
N4—C16—C15	116.67 (11)	C17—C18—H18B	109.00
N4—C17—C18	110.23 (12)	H18A—C18—H18B	108.00
N5-C18-C17	112.17 (12)	N5—C19—H19A	109.00
N5-C19-C20	111.62 (11)	N5—C19—H19B	109.00
N4—C20—C19	110.40 (11)	С20—С19—Н19А	109.00
N5-C21-C22	121.73 (12)	C20—C19—H19B	109.00
N5-C21-C26	121.14 (12)	H19A—C19—H19B	108.00
C22—C21—C26	117.10 (13)	N4—C20—H20A	110.00
C21—C22—C23	121.10 (14)	N4—C20—H20B	110.00
C22—C23—C24	119.61 (16)	С19—С20—Н20А	110.00
F1-C24-C23	119.38 (15)	C19—C20—H20B	110.00
F1—C24—C25	118.95 (14)	H20A—C20—H20B	108.00
C23—C24—C25	121.67 (15)	C21—C22—H22	119.00
C24—C25—C26	119.02 (14)	С23—С22—Н22	119.00
C21—C26—C25	121.49 (14)	С22—С23—Н23	120.00
C1—C2—H2	120.00	С24—С23—Н23	120.00
C3—C2—H2	120.00	С24—С25—Н25	121.00
С2—С3—Н3	120.00	С26—С25—Н25	120.00
С4—С3—Н3	120.00	C21—C26—H26	119.00
C3—C4—H4	120.00	C25—C26—H26	119.00

C5—C4—H4	120.00		
C13—O2—C12—C11	60.78 (16)	C6—C1—C7—C10	-151.12 (14)
C12—O2—C13—C14	-59.74 (16)	C6—C1—C7—C8	28.3 (2)
C9—N1—N2—C8	-1.23 (19)	C6—C1—C2—C3	-0.4 (2)
N2—N1—C9—C10	2.71 (18)	C7—C1—C2—C3	-178.64 (14)
C9—N1—N2—C15	179.39 (11)	C2—C1—C7—C8	-153.52 (13)
N2—N1—C9—N3	-177.06 (11)	C2—C1—C6—C5	-0.7 (2)
C15—N2—C8—O1	-2.74 (19)	C7—C1—C6—C5	177.56 (14)
N1—N2—C8—C7	-2.13 (19)	C2-C1-C7-C10	27.1 (2)
C15—N2—C8—C7	177.24 (11)	C1—C2—C3—C4	1.3 (3)
N1—N2—C15—C16	-105.23 (12)	C2—C3—C4—C5	-1.1 (3)
C8—N2—C15—C16	75.32 (14)	C3—C4—C5—C6	0.1 (3)
N1—N2—C8—O1	177.89 (12)	C4—C5—C6—C1	0.9 (3)
C14—N3—C11—C12	52.25 (15)	C1C7C10C9	176.59 (12)
C14—N3—C9—N1	-12.56 (18)	C8—C7—C10—C9	-2.82 (19)
C14—N3—C9—C10	167.66 (13)	C1C7C8O1	4.6 (2)
C9—N3—C14—C13	165.09 (13)	C10—C7—C8—N2	3.99 (18)
C11—N3—C14—C13	-51.70 (16)	C1C7C8N2	-175.43 (12)
C9—N3—C11—C12	-165.36 (11)	C10—C7—C8—O1	-176.03 (14)
C11—N3—C9—N1	-153.17 (12)	N1-C9-C10-C7	-0.7 (2)
C11—N3—C9—C10	27.06 (18)	N3—C9—C10—C7	179.07 (12)
C16—N4—C20—C19	-98.68 (16)	N3-C11-C12-O2	-57.26 (16)
C17—N4—C16—O3	8.9 (2)	O2-C13-C14-N3	55.52 (17)
C17—N4—C16—C15	-170.73 (11)	N2-C15-C16-N4	-158.32 (11)
C20—N4—C16—C15	-13.24 (19)	N2-C15-C16-O3	22.07 (17)
C20—N4—C17—C18	-60.28 (15)	N4—C17—C18—N5	53.86 (16)
C16—N4—C17—C18	100.50 (15)	N5-C19-C20-N4	-54.43 (15)
C20—N4—C16—O3	166.37 (13)	N5-C21-C22-C23	-176.61 (14)
C17—N4—C20—C19	60.79 (15)	C26—C21—C22—C23	1.2 (2)
C19—N5—C18—C17	-48.75 (16)	N5-C21-C26-C25	176.70 (14)
C21—N5—C19—C20	-169.67 (11)	C22—C21—C26—C25	-1.1 (2)
C19—N5—C21—C26	34.26 (18)	C21—C22—C23—C24	-0.5 (2)
C18—N5—C19—C20	48.87 (15)	C22—C23—C24—F1	179.76 (15)
C18—N5—C21—C26	174.65 (13)	C22—C23—C24—C25	-0.3 (3)
C18—N5—C21—C22	-7.63 (19)	F1-C24-C25-C26	-179.68 (14)
C21—N5—C18—C17	169.65 (12)	C23—C24—C25—C26	0.4 (3)
C19—N5—C21—C22	-148.02 (13)	C24—C25—C26—C21	0.4 (2)

Symmetry codes: (i) x+1, y-1, z+1; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+2, -z+1; (iv) -x+2, -y+1, -z+1; (v) -x, -y+2, -z+2; (vi) x-1, y+1, z; (vii) x-1, y, z; (viii) x+1, y, z; (ix) x+1, y-1, z; (x) -x, -y+2, -z+1; (xi) -x+1, -y+1, -z+1; (xii) x-1, y+1, z-1.

Hydrogen-bond geometry (Å, °)

Cg2, Cg4 and Cg5 are the centroids of the N1/N2/C7-C10, C1-C6 and C21-C26 rings, respectively.

D—H···A	D—H	H···A	D···· A	D—H···A	
С6—Н6…О1	0.93	2.32	2.8742 (19)	117	
C11—H11 <i>B</i> ····O3 ⁱⁱⁱ	0.97	2.41	3.3306 (18)	159	
С17—Н17А…ОЗ	0.97	2.38	2.7660 (19)	103	

supporting information

C5—H5··· $Cg5^{iv}$	0.93	2.86	3.4941 (18)	127
C13—H13 <i>B</i> ··· <i>Cg</i> 4 ⁱⁱⁱ	0.97	2.92	3.7395 (19)	143
C18—H18 A ···· $Cg2^{viii}$	0.97	2.73	3.5079 (16)	138

Symmetry codes: (iii) -x+1, -y+2, -z+1; (iv) -x+2, -y+1, -z+1; (viii) x+1, y, z.