

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[(2R,4aR,8R,8aR)-8-Hydroxy-4a,8-dimethylperhydronaphthalen-2-yl]ethan-1-one

Mohamed Tebbaa,^a Ahmed Benharref,^b Moha Berraho,^b Jean-Claude Daran,^c Mohamed Akssira^a and Ahmed Elhakmaoui^a*

^aLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia–Casablanca 20810 Mohammedia, Morocco, ^bLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivité, URAC16, Université Cadi Ayyad, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, and ^cLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France Correspondence e-mail: makssira@yahoo.fr

Received 1 February 2011; accepted 6 February 2011

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.119; data-to-parameter ratio = 9.0.

The title compound, C₁₄H₂₄O₂, was synthesized from ilicic acid, which was isolated from the aerial part of Inula Viscosa (L) Aiton [or Dittrichia Viscosa (L) Greuter]. The molecule contains two fused six-membered rings, which both display a chair conformation. In the crystal, molecules are linked into chains propagating along the b axis by intermolecular O- $H \cdots O$ hydrogen bonds.

Related literature

For the synthesis, see: Barrero et al. (2009). For the medicinal interest in Inula Viscosa (L) Aiton [or Dittrichia Viscosa (L) Greuter], see: Shtacher & Kasshman, (1970); Bohlmann et al. (1977); Chiappini et al. (1982) and for the pharmacological interest, see: Azoulay et al. (1986); Bohlmann et al. (1977); Ceccherelli et al. (1988). For background to phytochemical studies of plants, see: Geissman & Toribio (1967). For conformational analysis, see: Cremer & Pople (1975).

a mixture of

constrained

Experimental

stal dat C

S

1362 reflections

Crystal data	
$C_{14}H_{24}O_2$	$V = 627.71 (11) \text{ Å}^3$
$M_r = 224.33$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 6.4919 (7) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 9.4057 (9) Å	$T = 180 { m K}$
c = 10.3638 (11) Å	$0.6 \times 0.25 \times 0.15 \text{ mm}$
$\beta = 97.286 \ (10)^{\circ}$	
Data collection	
Agilent Eos Gemini Ultra diffractometer	1362 independent reflections 1262 reflections with $I > 2\sigma(I)$
6571 measured reflections	$R_{\rm int} = 0.047$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture
$wR(F^2) = 0.119$	independent and constraine
S = 1.09	refinement

$\Delta \rho_{\rm min} = -0.24$ e Å⁻³ 152 parameters 1 restraint

Table 1 Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $01 - H2 \cdots 02^{i}$ 0.84(3)2.05 (3) 2.883 (2) 169(3)

 $\Delta \rho_{\rm max} = 0.28~{\rm e}~{\rm \AA}^{-3}$

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, -z + 2.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2393).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Azoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345-352.

Barrero, A. F., Herrador, M. M., Arteaga, J. & Catalán, V. (2009). Eur. J. Org. Chem. pp. 3589-3594.

Bohlmann, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330-1334.

- Ceccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006-1009.
- Chiappini, I., Fardella, G., Menghini, A. & Rossi, C. (1982). Planta Med. 44, 159-161.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Geissman, T. A. & Toribio, F. P. (1967). Phytochemistry, 6, 1563-1567.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221-1223.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o601 [doi:10.1107/S1600536811004454]

1-[(2*R*,4a*R*,8*R*,8a*R*)-8-Hydroxy-4a,8-dimethylperhydronaphthalen-2-yl]ethan-1one

Mohamed Tebbaa, Ahmed Benharref, Moha Berraho, Jean-Claude Daran, Mohamed Akssira and Ahmed Elhakmaoui

S1. Comment

The ilicic acid is one of the main components of the extracts of the aerial parts Inula viscose. This natural acid is a major constituent of the dichloromethane extract of the Inula Viscosa (L) Aiton [or Dittrichia Viscosa (L) Greuter]. This plant is widespread in Mediterranean area and extends to the Atlantic cost of Morocco. It is a well known medicinal plant (Shtacher & Kasshman, 1970; Chiappini et al., 1982) and has some pharmacological activities (Azoulay et al., 1986). the Inula Viscosa (L) Aiton has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlmann et al., 1977), sesquiterpene acids (Ceccherelli et al., 1988; Geissman et al. 1967). The literature report one article on the transformation of the ilicic acid (Barrero et al., 2009). In order to prepare products with high added value, used in the industry pharmacological or cosmetic, we have studied the reactivity of this acid. Thus, with the reaction Curtius, we synthesized the title compound (1R, 2R, 6R, 9R)-9-acethyl-2,6-dimethylbicyclo [4.4.0]decan-2-ol) with à yield 50%. The structure of this new derivative of ilicic acid was determined by NMR spectral analysis of 1H, 13 C and mass spectroscopy and confirmed by its single-crystal X-ray structure. The molecule is built up from two fused sixmembered rings. The molecular structure of (I), Fig.1, shows the two rings to adopt a perfect chair conformation as indicated by Cremer & Pople (1975) puckering parameters Q(T)=0.554 (2)Å and spherical polar angle $\theta = 178.1$ (2)° with $\varphi = 36$ (7)° for the first ring (C1,C2... C6) and Q(T)= 0.597 (2)Å with a spherical polar angle $\theta = 178.71$ (19)° and φ = $108 (5)^{\circ}$ for the second ring (C1, C6...C10)(Cremer and Pople, 1975). In the crystal structure, molecules are linked into chains (Fig. 2) running along the b axis by intermolecular O—H···O hydrogen bonds (Table 1) involving the O1 and O2 atoms.

S2. Experimental

A solution containing the ilicic acid 1 g (3.96 mmol) and Et3N 0.82 ml (5.895 mmol) in dry THF (100 ml) was cooled at -10 °C. Ethyl chloroformate 0,56 ml (5.95 mm l) was added dropwise and the reaction mixture was stirred at this temperature for 1 h. A solution of NaN3 0.43 g (6.74 mmol) in H2O (10 ml) was then added in one portion. After 1.5 h at 0 °C, the resulting heterogeous mixture was filtered, the organic solvent was removed under reduced pressure and the aqueous phase was extracted tree time with ether ($3 \times 50 \text{ ml}$). The combined organic layers were dried over MgSO4, and concentrated *in vacuo*. The crude acyl-azide was then dissolved in toluene (50 ml) and the resulting solution was refluxed for 1 h. Then a solution of hydrochloric acid at 10% was added to the reaction mixture which is remized at reflux for 2 h. After extraction, the organic phase is washed with water and brine, dried over anhydrous Na2SO4, filtered and concentrated under vacuum. The product was purified by column chromatography over silica gel (hexane/ethyl acetate 95/5). The title compound was recrystallized in dichloromethane.

S3. Refinement

Except H2, all H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98Å (methine) with $U_{iso}(H) = 1.2$ Ueq(methylene, methine and OH) or $U_{iso}(H) = 1.5$ Ueq(methyl). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 1167 Friedel pairs were merged and any references to the Flack parameter were removed.

Figure 1

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Figure 2

Partial packing view showing the O—H···O interactions (dashed lines) and the formation of a chain parallel to the *b* axis. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i)1 - x,-1/2 + y,-z + 2]

1-[(2R,4aR,8R,8aR)-8-Hydroxy-4a,8- dimethylperhydronaphthalen-2-yl]ethan-1-one

Crystal data	
$C_{14}H_{24}O_2$ $M_r = 224.33$ Monoclinic, P2 ₁ Hall symbol: P 2yb $a = 6.4919 (7) \text{ Å}$ $b = 9.4057 (9) \text{ Å}$ $c = 10.3638 (11) \text{ Å}$ $\beta = 97.286 (10)^{\circ}$ $V = 627.71 (11) \text{ Å}^3$ $Z = 2$	F(000) = 248 $D_x = 1.187 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6571 reflections $\theta = 2.9-26.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 180 K Prism, colourless $0.6 \times 0.25 \times 0.15 \text{ mm}$
Data collection	
Agilent Eos Gemini Ultra diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 16.1978 pixels mm ⁻¹	φ and ω scans 6571 measured reflections 1362 independent reflections 1262 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.047$

$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$	$k = -11 \rightarrow 11$
$h = -8 \rightarrow 8$	$l = -12 \rightarrow 12$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 1.09	H atoms treated by a mixture of independent
1362 reflections	and constrained refinement
152 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0935P)^2 + 0.0033P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Exactional	atomio	acondinator	and instruc	nia an a	animalant	inotuonia	dia	nlagament	navamatora	1 82	١
Fractional	uiomic	coordinates	unu isoiro	pic or e	quivaieni	isonopic	uisp	Jucemeni	purumeters	(<i>л</i>)	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
H2	0.822 (5)	0.709 (4)	0.829 (3)	0.039 (8)*	
C1	0.8653 (3)	0.9919 (2)	0.80775 (19)	0.0185 (4)	
H1	0.9924	0.9851	0.8695	0.022*	
C2	0.8777 (3)	0.8642 (2)	0.7154 (2)	0.0214 (4)	
C3	1.0704 (3)	0.8816 (2)	0.6454 (2)	0.0261 (5)	
H3A	1.1934	0.8693	0.7081	0.031*	
H3B	1.0705	0.8072	0.5806	0.031*	
C4	1.0826 (3)	1.0251 (3)	0.5791 (2)	0.0296 (5)	
H4A	0.9684	1.0339	0.5095	0.036*	
H4B	1.2114	1.0311	0.5411	0.036*	
C5	1.0729 (3)	1.1462 (2)	0.6757 (2)	0.0269 (5)	
H5A	1.0766	1.2360	0.6300	0.032*	
H5B	1.1947	1.1420	0.7403	0.032*	
C6	0.8776 (3)	1.1420 (2)	0.7452 (2)	0.0220 (5)	
C7	0.9014 (4)	1.2512 (2)	0.8558 (2)	0.0262 (5)	
H7A	1.0348	1.2372	0.9079	0.031*	
H7B	0.9008	1.3459	0.8186	0.031*	
C8	0.7305 (4)	1.2420 (2)	0.9442 (2)	0.0267 (5)	
H8A	0.5973	1.2638	0.8945	0.032*	
H8B	0.7565	1.3112	1.0137	0.032*	
C9	0.7245 (3)	1.0926 (2)	1.0020 (2)	0.0225 (4)	
H9	0.8596	1.0737	1.0527	0.027*	

C10	0.6895 (3)	0.9817 (2)	0.89272 (19)	0.0208 (4)
H10A	0.6867	0.8871	0.9298	0.025*
H10B	0.5572	0.9987	0.8402	0.025*
C11	0.6816 (3)	0.8367 (3)	0.6205 (2)	0.0281 (5)
H11A	0.5633	0.8342	0.6674	0.042*
H11B	0.6942	0.7472	0.5776	0.042*
H11C	0.6643	0.9114	0.5570	0.042*
C12	0.6859 (4)	1.1824 (3)	0.6488 (2)	0.0291 (5)
H12A	0.6890	1.1314	0.5688	0.044*
H12B	0.6873	1.2827	0.6321	0.044*
H12C	0.5619	1.1581	0.6854	0.044*
C13	0.5607 (4)	1.0824 (2)	1.0919 (2)	0.0254 (5)
C14	0.6262 (4)	1.0246 (3)	1.2248 (2)	0.0365 (6)
H14A	0.5094	1.0239	1.2732	0.055*
H14B	0.7341	1.0832	1.2688	0.055*
H14C	0.6770	0.9293	1.2181	0.055*
O1	0.9229 (2)	0.73764 (16)	0.79125 (15)	0.0258 (4)
O2	0.3823 (3)	1.1216 (2)	1.05879 (17)	0.0368 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0181 (9)	0.0150 (9)	0.0221 (10)	0.0001 (7)	0.0013 (7)	0.0000 (7)
C2	0.0234 (11)	0.0173 (9)	0.0236 (10)	0.0027 (8)	0.0035 (8)	0.0001 (8)
C3	0.0265 (11)	0.0247 (11)	0.0283 (11)	0.0026 (8)	0.0079 (8)	-0.0005 (9)
C4	0.0300 (11)	0.0311 (12)	0.0299 (11)	-0.0018 (9)	0.0119 (9)	0.0033 (9)
C5	0.0256 (11)	0.0237 (11)	0.0322 (11)	-0.0027 (8)	0.0065 (8)	0.0053 (9)
C6	0.0200 (10)	0.0188 (10)	0.0269 (10)	-0.0005 (7)	0.0017 (7)	0.0025 (8)
C7	0.0299 (11)	0.0163 (10)	0.0319 (11)	-0.0033 (8)	0.0016 (9)	-0.0003 (8)
C8	0.0308 (11)	0.0180 (10)	0.0309 (11)	0.0017 (9)	0.0024 (9)	-0.0025 (8)
С9	0.0258 (10)	0.0185 (10)	0.0229 (10)	0.0003 (8)	0.0026 (8)	-0.0020(7)
C10	0.0236 (10)	0.0149 (9)	0.0241 (10)	0.0001 (8)	0.0040 (7)	-0.0014 (7)
C11	0.0253 (11)	0.0266 (11)	0.0321 (11)	-0.0011 (8)	0.0024 (9)	-0.0068 (9)
C12	0.0298 (12)	0.0263 (11)	0.0304 (11)	0.0037 (9)	0.0003 (9)	0.0055 (9)
C13	0.0325 (12)	0.0149 (9)	0.0296 (11)	0.0006 (8)	0.0070 (8)	-0.0058 (8)
C14	0.0463 (14)	0.0321 (13)	0.0324 (12)	-0.0030 (11)	0.0097 (10)	0.0025 (10)
01	0.0279 (8)	0.0172 (7)	0.0341 (8)	0.0036 (6)	0.0103 (6)	0.0028 (6)
02	0.0336 (9)	0.0360 (10)	0.0429 (9)	0.0095 (7)	0.0132 (7)	0.0005 (8)

Geometric parameters (Å, °)

C1-C10	1.530 (3)	C8—C9	1.530 (3)	
C1—C2	1.545 (3)	C8—H8A	0.9700	
C1—C6	1.560 (3)	C8—H8B	0.9700	
C1—H1	0.9800	C9—C13	1.503 (3)	
C2—O1	1.436 (3)	C9—C10	1.535 (3)	
C2—C11	1.529 (3)	С9—Н9	0.9800	
C2—C3	1.532 (3)	C10—H10A	0.9700	

C_2 C_4	1 521 (2)	C10 UI0D	0.0700
$C_3 = U_2 A$	1.321 (3)		0.9700
C3—H3A	0.9700	CII—HIIA	0.9600
C3—H3B	0.9700		0.9600
C4—C5	1.524 (3)	C11—H11C	0.9600
C4—H4A	0.9700	C12—H12A	0.9600
C4—H4B	0.9700	C12—H12B	0.9600
C5—C6	1.536 (3)	C12—H12C	0.9600
С5—Н5А	0.9700	C13—O2	1.222 (3)
С5—Н5В	0.9700	C13—C14	1.493 (3)
C6—C7	1.533 (3)	C14—H14A	0.9600
C6—C12	1.541 (3)	C14—H14B	0.9600
C7—C8	1.528 (3)	C14—H14C	0.9600
C7—H7A	0.9700	O1—H2	0.85(3)
C7—H7B	0 9700		
0, II,B	0.7700		
C10-C1-C2	114 14 (16)	H7A—C7—H7B	107 7
C10-C1-C6	112 18 (15)	C7 - C8 - C9	110,07,(17)
C_{2} C_{1} C_{6}	115.90 (15)	C7 - C8 - H8A	109.6
$C_1 = C_1 = C_0$	104.3	C_{0} C_{8} H_{8A}	109.6
$C_{10} = C_{11} = H_{11}$	104.3	$C_{2} = C_{2} = H_{2} = H_{2}$	109.0
$C_2 = C_1 = H_1$	104.5	C = C = C = C = C = C = C = C = C = C =	109.0
	104.3		109.0
01 - 02 - 01	107.93 (18)	$H\delta A = C\delta = H\delta B$	108.2
01 - 02 - 03	103.02 (16)	013-09-08	110.87 (17)
C11—C2—C3	112.14 (17)	C13—C9—C10	111.32 (17)
O1—C2—C1	109.18 (15)	C8—C9—C10	110.12 (16)
C11—C2—C1	115.19 (16)	С13—С9—Н9	108.1
C3—C2—C1	108.64 (17)	С8—С9—Н9	108.1
C4—C3—C2	113.69 (17)	С10—С9—Н9	108.1
С4—С3—Н3А	108.8	C1—C10—C9	109.28 (15)
С2—С3—Н3А	108.8	C1-C10-H10A	109.8
С4—С3—Н3В	108.8	C9-C10-H10A	109.8
С2—С3—Н3В	108.8	C1-C10-H10B	109.8
НЗА—СЗ—НЗВ	107.7	С9—С10—Н10В	109.8
C3—C4—C5	110.96 (17)	H10A—C10—H10B	108.3
C3—C4—H4A	109.4	C2—C11—H11A	109.5
C5—C4—H4A	109.4	C2—C11—H11B	109.5
C3—C4—H4B	109.4	H11A—C11—H11B	109.5
C5—C4—H4B	109.4	C2-C11-H11C	109.5
H4A - C4 - H4B	108.0	$H_{11}A = C_{11} = H_{11}C$	109.5
C4-C5-C6	113 21 (17)	H11B—C11—H11C	109.5
C4-C5-H5A	108.9	C6-C12-H12A	109.5
C6-C5-H5A	108.9	C6-C12-H12B	109.5
C_{4} C_{5} H5B	108.0	$H_{12A} = C_{12} = H_{12B}$	109.5
C6_C5_H5B	108.9	C6_C12_H12C	109.5
	100.9	H_{12} H_{12} H_{12}	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10/./	H12A - C12 - H12C	109.5
$C_{1} = C_{0} = C_{1}$	100.80(10)	$\Pi L B \longrightarrow U L \longrightarrow \Pi L L$	109.5
	108.44 (18)	02 - 013 - 014	121.2 (2)
C5-C6-C12	109.67 (17)	02	121.8 (2)

C7—C6—C1	107.52 (17)	C14—C13—C9	117.03 (19)	
C5—C6—C1	107.90 (16)	C13—C14—H14A	109.5	
C12—C6—C1	114.38 (18)	C13—C14—H14B	109.5	
C8—C7—C6	113.48 (17)	H14A—C14—H14B	109.5	
С8—С7—Н7А	108.9	C13—C14—H14C	109.5	
С6—С7—Н7А	108.9	H14A—C14—H14C	109.5	
С8—С7—Н7В	108.9	H14B—C14—H14C	109.5	
С6—С7—Н7В	108.9	C2—O1—H2	113 (2)	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H····A	D····A	D—H···A
01—H2···O2 ⁱ	0.84 (3)	2.05 (3)	2.883 (2)	169 (3)

Symmetry code: (i) –*x*+1, *y*–1/2, –*z*+2.