organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[(4-Carbamovlphenyl)carbamothioyl]-2,3,4,5-tetrafluorobenzamide

Li-Dan Zhang,^a Chao Gao,^b Xue-Jiao Song^c and Luo-Ting Yu^b*

^aDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China, ^bState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China, and ^cWest China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China

Correspondence e-mail: yuluot@scu.edu.cn

Received 14 December 2010; accepted 17 February 2011

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.103; data-to-parameter ratio = 13.4.

In the title compound, $C_{15}H_9F_4N_3O_2S$, the *N*,*N*'-disubstituted thiourea fragment adopts a *cis,trans* geometry, stabilized by an intramolecular N-H···O hydrogen bond to the carbonyl O atom of the tetrafluorobenzoyl group. The central thiourea group makes dihedral angles of 47.79(7) and $35.54(8)^{\circ}$ with the two aromatic rings. In the crystal, molecules are linked via N-H···O and N-H···S hydrogen bonds into two-dimensional polymeric structures parallel to (100). In turn, $\pi - \pi$ stacking interactions between tetrafluorobenzene and benzene units [centroid–centroid distance = 3.996(10) Å; dihedral angle = $13.60 (8)^{\circ}$] organize these two-dimensional assemblies into a three-dimensional framework.

Related literature

For the biological activity of thiourea derivatives, see: Zeng et al. (2003); Saeed et al. (2010). For the synthesis of thiourea derivatives, see: Nosova et al. (2007). For related structures, see: Saeed et al. (2008, 2009).

 $M_r = 371.31$

Experimental

Crystal data $C_{15}H_{9}F_{4}N_{3}O_{2}S$ Monoclinic, $P2_1/c$ a = 7.4246 (3) Å b = 20.3368 (7) Å c = 9.8954 (4) Å $\beta = 95.554 \ (3)^{\circ}$ V = 1487.12 (9) Å³

Data collection

Oxford Diffraction Xcalibur E CCD	6598 measured reflections
diffractometer	3031 independent reflections
Absorption correction: multi-scan	2263 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Oxford	$R_{\rm int} = 0.014$
Diffraction, 2006)	
$T_{\min} = 0.860, T_{\max} = 1.0$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	226 parameters
$wR(F^2) = 0.103$	H-atom parameters constrained
S = 1.13	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
3031 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.38 \times 0.30 \times 0.26 \text{ mm}$

 $2\sigma(I)$

 $\mu = 0.28 \text{ mm}^{-1}$

T = 294 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$		$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1B \cdots S1^{i}$ $N1 - H1A \cdots O1^{ii}$ $N2 - H2 \cdots O2$ $N3 - H3 \cdots O1^{iii}$	0.86 0.86 0.86 0.86	2.69 2.23 1.97 2.09	3.4861 (1 2.8654 (1 2.6708 (1 2.9062 (1	.6) .7) .8) .8)	155 130 138 157
Symmetry codes: $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}.$	(i) $-x+1$,	$y + \frac{1}{2}, -z + \frac{1}{2};$	(ii) x	$, -y + \frac{3}{2}, z$	$-\frac{1}{2};$ (iii)

Data collection: CrvsAlis PRO (Oxford Diffraction, 2006): cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2.

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2335).

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Nosova, E. V., Lipunova, G. N., Laeva, A. A., Sidorova, L. P. & Charushin, V. N. (2007). Russ. J. Org. Chem. 43, 68-76.

Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.

- Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008). Acta Cryst. E64, 01485
- Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323-1331.
- Saeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, 01870-01871.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zeng, R. S., Zou, J. P., Zhi, S. J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657-1659

supporting information

Acta Cryst. (2011). E67, o688 [doi:10.1107/S1600536811005915]

N-[(4-Carbamoylphenyl)carbamothioyl]-2,3,4,5-tetrafluorobenzamide

Li-Dan Zhang, Chao Gao, Xue-Jiao Song and Luo-Ting Yu

S1. Comment

N-(4-Carbamoylphenylcarbamothioyl)-2,3,4,5-tetrafluorobenzamide derivatives are of great importance owing to their interesting biological properties (Zeng *et al.*, 2003; Saeed *et al.*, 2010). The title compound is one of the key intermediates in our synthetic route to antiviral drugs. We report here its crystal structure.

In the title compound, $C_{15}H_9F_4N_3O_2S$, (Fig.1), the *cis,trans* geometry of the thiourea moiety is stabilized by intramolecular N2—H2···O2 and N3—H3···F1 hydrogen bonds. The central thiourea group makes dihedral angles of 47.79 (7) and 35.54 (8)° with the benzamide unit and the fluorobenzene ring, respectively. A combination of intermolecular π - π stacking interactions, N—H···O, N—H···F and N—H···S hydrogen bonds helps to stabilize the crystal structure (Table 1 and Fig.2).

S2. Experimental

A solution of 0.23 g (3 mmol) of ammonium thiocyanate in 7 ml of acetonitrile was added to a solution of 0.64 g (3 mmol) of 2,3,4,5-tetrafluorobenzoyl chloride in 2.5 ml of toluene. The mixture was heated for 5 min at 40°C and filtered from ammonium chloride, the filtrate was added to a solution of 0.32 g (3 mmol) of 4-aminobenzamide in 5 ml of acetonitrile, the mixture was stirred for 2 h at room temperature and evaporated, and the residue was washed with ethanol and recrystallized from ethanol. Yield 0.91 g (82%). Crystals suitable for X-ray analysis were obtained by slow evaporation from ethyl acetate solution.

S3. Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and refined using a riding model approximation with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

A packing diagram of the title compound, showing classical hydrogen bonds of N1—H1A···O1, N2—H2···O2 and N3—H3···O1 as green dashed lines.

N-[(4-Carbamoylphenyl)carbamothioyl]-2,3,4,5-tetrafluorobenzamide

Crystal data

C₁₅H₉F₄N₃O₂S $M_r = 371.31$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 7.4246 (3) Å b = 20.3368 (7) Å c = 9.8954 (4) Å $\beta = 95.554$ (3)° V = 1487.12 (9) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur E CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 16.0874 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2006) $T_{\min} = 0.860, T_{\max} = 1.0$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.103$ S = 1.133031 reflections 226 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 752 $D_x = 1.658 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.7107 \text{ Å}$ Cell parameters from 3669 reflections $\theta = 3.3-29.2^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 294 KBlock, colourless $0.38 \times 0.30 \times 0.26 \text{ mm}$

6598 measured reflections 3031 independent reflections 2263 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 26.4^\circ, \ \theta_{min} = 3.4^\circ$ $h = -9 \rightarrow 9$ $k = -25 \rightarrow 21$ $l = -11 \rightarrow 12$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.056P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å⁻³ $\Delta\rho_{min} = -0.34$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.41600 (7)	0.40876 (2)	0.28889 (6)	0.05125 (18)
F	0.98701 (18)	0.10215 (6)	-0.07009 (12)	0.0623 (4)
F1	0.66951 (14)	0.21050 (5)	0.34645 (9)	0.0445 (3)
F2	0.72451 (16)	0.08149 (5)	0.33952 (12)	0.0543 (3)
F3	0.87569 (17)	0.02540 (5)	0.12899 (13)	0.0635 (4)
O1	0.66762 (17)	0.73716 (6)	0.33958 (11)	0.0386 (3)
O2	0.91223 (18)	0.33325 (6)	0.09914 (14)	0.0471 (3)
N1	0.7405 (2)	0.75363 (7)	0.12865 (14)	0.0434 (4)
H1B	0.7340	0.7956	0.1382	0.052*
H1A	0.7683	0.7373	0.0532	0.052*
N2	0.7175 (2)	0.43553 (7)	0.17165 (14)	0.0390 (4)
H2	0.8046	0.4200	0.1300	0.047*
N3	0.64026 (19)	0.32604 (7)	0.18763 (14)	0.0356 (3)
Н3	0.5580	0.2981	0.2036	0.043*
C1	0.7076 (2)	0.71401 (8)	0.23066 (16)	0.0304 (4)
C2	0.7164 (2)	0.64135 (8)	0.21097 (16)	0.0286 (4)
C3	0.7548 (3)	0.61151 (9)	0.09123 (18)	0.0392 (4)
H3A	0.7823	0.6372	0.0182	0.047*
C4	0.7524 (3)	0.54374 (9)	0.07970 (18)	0.0425 (5)
H4	0.7771	0.5241	-0.0013	0.051*
C5	0.7133 (2)	0.50499 (8)	0.18833 (17)	0.0343 (4)
C6	0.6795 (2)	0.53412 (8)	0.30877 (17)	0.0367 (4)
H6	0.6566	0.5083	0.3828	0.044*
C7	0.6796 (2)	0.60191 (8)	0.31958 (16)	0.0329 (4)
H7	0.6546	0.6214	0.4007	0.039*
C8	0.6006 (2)	0.39170 (8)	0.21371 (17)	0.0345 (4)
C9	0.7920 (2)	0.30012 (9)	0.14025 (17)	0.0338 (4)
C10	0.8043 (2)	0.22623 (8)	0.14010 (16)	0.0315 (4)
C11	0.8887 (2)	0.19686 (9)	0.03581 (18)	0.0369 (4)
H11	0.9315	0.2228	-0.0316	0.044*
C12	0.9089 (2)	0.13022 (9)	0.03208 (19)	0.0410 (4)
C13	0.8521 (3)	0.09051 (8)	0.1325 (2)	0.0414 (5)
C14	0.7735 (2)	0.11852 (8)	0.23825 (18)	0.0369 (4)
C15	0.7476 (2)	0.18583 (8)	0.24020 (16)	0.0326 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0543 (3)	0.0289 (3)	0.0750 (4)	0.0028 (2)	0.0295 (3)	-0.0031 (2)
F	0.0717 (9)	0.0532 (7)	0.0638 (8)	0.0202 (6)	0.0162 (6)	-0.0171 (6)
F1	0.0550 (7)	0.0402 (6)	0.0394 (6)	0.0026 (5)	0.0093 (5)	0.0001 (5)
F2	0.0617 (8)	0.0366 (6)	0.0643 (7)	-0.0022 (5)	0.0052 (6)	0.0184 (5)
F3	0.0688 (8)	0.0237 (6)	0.0975 (10)	0.0083 (5)	0.0051 (7)	-0.0067 (6)
01	0.0568 (8)	0.0293 (7)	0.0305 (6)	0.0036 (6)	0.0085 (6)	-0.0027 (5)
O2	0.0453 (8)	0.0312 (7)	0.0677 (9)	-0.0037 (6)	0.0199 (7)	0.0007 (6)
N1	0.0702 (11)	0.0250 (8)	0.0374 (8)	-0.0013 (7)	0.0174 (8)	0.0019 (7)
N2	0.0480 (9)	0.0228 (7)	0.0488 (9)	-0.0001 (7)	0.0181 (7)	-0.0001 (7)
N3	0.0392 (8)	0.0215 (7)	0.0481 (9)	0.0008 (6)	0.0145 (7)	0.0009 (6)
C1	0.0333 (9)	0.0274 (9)	0.0303 (9)	0.0002 (7)	0.0031 (7)	0.0003 (7)
C2	0.0310 (9)	0.0245 (9)	0.0303 (8)	0.0002 (7)	0.0028 (7)	0.0005 (7)
C3	0.0559 (12)	0.0280 (9)	0.0359 (10)	-0.0041 (8)	0.0166 (9)	0.0013 (8)
C4	0.0614 (12)	0.0293 (10)	0.0398 (10)	-0.0009 (9)	0.0206 (9)	-0.0057 (8)
C5	0.0409 (10)	0.0213 (9)	0.0416 (10)	-0.0004 (7)	0.0075 (8)	0.0002 (7)
C6	0.0509 (11)	0.0273 (9)	0.0319 (9)	-0.0022 (8)	0.0037 (8)	0.0056 (7)
C7	0.0432 (10)	0.0288 (9)	0.0269 (8)	-0.0004 (7)	0.0042 (7)	-0.0007 (7)
C8	0.0434 (10)	0.0233 (9)	0.0371 (9)	0.0023 (7)	0.0060 (8)	0.0010 (7)
C9	0.0368 (10)	0.0271 (9)	0.0377 (9)	0.0016 (7)	0.0045 (7)	0.0004 (7)
C10	0.0310 (9)	0.0252 (9)	0.0380 (9)	0.0018 (7)	0.0015 (7)	-0.0003 (7)
C11	0.0342 (9)	0.0341 (10)	0.0426 (10)	0.0040 (8)	0.0043 (8)	0.0013 (8)
C12	0.0387 (10)	0.0364 (10)	0.0475 (11)	0.0104 (8)	0.0022 (8)	-0.0113 (9)
C13	0.0389 (10)	0.0221 (9)	0.0612 (12)	0.0040 (8)	-0.0061 (9)	-0.0046 (9)
C14	0.0350 (10)	0.0275 (9)	0.0469 (10)	-0.0027 (7)	-0.0032 (8)	0.0060 (8)
C15	0.0296 (9)	0.0313 (9)	0.0366 (9)	0.0018 (7)	0.0022 (7)	-0.0011 (8)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1—C8	1.6583 (18)	C2—C7	1.389 (2)
F—C12	1.341 (2)	С3—НЗА	0.9300
F1—C15	1.3458 (18)	C3—C4	1.383 (2)
F2—C14	1.332 (2)	C4—H4	0.9300
F3—C13	1.3365 (18)	C4—C5	1.386 (2)
01—C1	1.2383 (18)	C5—C6	1.376 (2)
О2—С9	1.219 (2)	С6—Н6	0.9300
N1—H1B	0.8600	C6—C7	1.383 (2)
N1—H1A	0.8600	С7—Н7	0.9300
N1-C1	1.333 (2)	C9—C10	1.505 (2)
N2—H2	0.8600	C10—C11	1.393 (2)
N2—C5	1.423 (2)	C10—C15	1.384 (2)
N2—C8	1.338 (2)	C11—H11	0.9300
N3—H3	0.8600	C11—C12	1.364 (2)
N3—C8	1.397 (2)	C12—C13	1.378 (3)
N3—C9	1.367 (2)	C13—C14	1.370 (3)
C1—C2	1.493 (2)	C14—C15	1.383 (2)

C2—C3	1.385 (2)		
F—C12—C11	119.99 (18)	С4—С3—НЗА	119.8
F—C12—C13	118.62 (16)	C4—C5—N2	117.77 (15)
F1-C15-C10	121.45 (14)	C5—N2—H2	116.5
F1—C15—C14	116.81 (15)	C5—C4—H4	119.8
F2—C14—C13	120.47 (15)	С5—С6—Н6	120.1
F2—C14—C15	120.04 (16)	C5—C6—C7	119.84 (15)
F3—C13—C12	120.80 (18)	C6—C5—N2	122.40 (15)
F3—C13—C14	119.87 (18)	C6—C5—C4	119.77 (15)
01—C1—N1	120.43 (15)	C6—C7—C2	120.96 (15)
O1—C1—C2	120.47 (14)	С6—С7—Н7	119.5
O2—C9—N3	123.76 (16)	C7—C2—C1	117.15 (14)
O2—C9—C10	120.32 (15)	С7—С6—Н6	120.1
N1—C1—C2	119.09 (14)	C8—N2—H2	116.5
H1B—N1—H1A	120.0	C8—N2—C5	127.09 (15)
N2—C8—S1	126.10 (13)	C8—N3—H3	115.6
N2—C8—N3	115.14 (15)	C9—N3—H3	115.6
N3—C8—S1	118.75 (12)	C9—N3—C8	128.85 (14)
N3—C9—C10	115.92 (14)	C10—C11—H11	119.9
C1—N1—H1B	120.0	C11—C10—C9	117.41 (15)
C1—N1—H1A	120.0	C11—C12—C13	121.38 (17)
С2—С3—НЗА	119.8	C12—C11—C10	120.29 (17)
С2—С7—Н7	119.5	C12—C11—H11	119.9
C3—C2—C1	124.10 (15)	C13—C14—C15	119.49 (16)
C3—C2—C7	118.74 (15)	C14—C13—C12	119.32 (15)
С3—С4—Н4	119.8	C14—C15—C10	121.71 (15)
C3—C4—C5	120.31 (16)	C15—C10—C9	124.72 (15)
C4—C3—C2	120.34 (16)	C15—C10—C11	117.75 (15)
F	0.6 (3)	C5—N2—C8—N3	-178.02 (15)
F-C12-C13-C14	179.40 (16)	C5—C6—C7—C2	-1.1 (3)
F2-C14-C15-F1	-1.0 (2)	C7—C2—C3—C4	1.4 (3)
F2-C14-C15-C10	177.00 (15)	C8—N2—C5—C4	-138.63 (19)
F3—C13—C14—F2	1.7 (3)	C8—N2—C5—C6	44.1 (3)
F3—C13—C14—C15	-179.20 (15)	C8—N3—C9—O2	-8.1 (3)
O1—C1—C2—C3	178.02 (16)	C8—N3—C9—C10	172.27 (16)
O1—C1—C2—C7	-0.5 (2)	C9—N3—C8—S1	-172.62 (14)
O2-C9-C10-C11	-33.5 (2)	C9—N3—C8—N2	8.7 (3)
O2—C9—C10—C15	142.48 (18)	C9—C10—C11—C12	178.10 (15)
N1—C1—C2—C3	-0.9 (3)	C9—C10—C15—F1	2.2 (2)
N1—C1—C2—C7	-179.44 (15)	C9—C10—C15—C14	-175.74 (15)
N2—C5—C6—C7	179.11 (16)	C10-C11-C12-F	178.65 (16)
N3—C9—C10—C11	146.16 (16)	C10-C11-C12-C13	-2.0 (3)
N3—C9—C10—C15	-37.9 (2)	C11-C10-C15-F1	178.11 (14)
C1—C2—C3—C4	-177.14 (16)	C11—C10—C15—C14	0.2 (2)
C1—C2—C7—C6	178.11 (16)	C11—C12—C13—F3	-178.74 (16)
C2—C3—C4—C5	-0.6 (3)	C11—C12—C13—C14	0.1 (3)

C3—C2—C7—C6	-0.5 (3)	C12—C13—C14—F2	-177.14 (15)
C3—C4—C5—N2	-178.38 (17)	C12—C13—C14—C15	2.0 (3)
C3—C4—C5—C6	-1.0 (3)	C13-C14-C15-F1	179.87 (15)
C4—C5—C6—C7	1.9 (3)	C13-C14-C15-C10	-2.1 (3)
C5—N2—C8—S1	3.4 (3)	C15-C10-C11-C12	1.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
N1—H1 <i>B</i> ···S1 ⁱ	0.86	2.69	3.4861 (16)	155
N1—H1A····O1 ⁱⁱ	0.86	2.23	2.8654 (17)	130
N2—H2…O2	0.86	1.97	2.6708 (18)	138
N3—H3…F1	0.86	2.37	2.8234 (17)	113
N3—H3…O1 ⁱⁱⁱ	0.86	2.09	2.9062 (18)	157

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) x, -y+3/2, z-1/2; (iii) -x+1, y-1/2, -z+1/2.