Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Acetylanilinium chloride

R. Prasath, ${ }^{\text {a }}$ P. Bhavana, ${ }^{\mathbf{a}} \ddagger$ Seik Weng $\mathrm{Ng}^{\mathbf{b}}$ and Edward R. T. Tiekink ${ }^{{ }^{*}}$ *

${ }^{\text {a }}$ Department of Chemistry, BITS, Pilani - K. K. Birla Goa Campus, Goa 403 726, India, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: edward.tiekink@gmail.com

Received 7 February 2011; accepted 8 February 2011

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.029 ; w R$ factor $=0.080 ;$ data-to-parameter ratio $=12.7$.

The cation of the title salt, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}^{+} . \mathrm{Cl}^{-}$, is essentially planar $\left[\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}\right.$ torsion angle $\left.=4.6(2)^{\circ}\right]$, the conformation being stabilized by an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. In the crystal, centrosymmetric aggregates are formed via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. These dimeric aggregates are sustained in the crystal packing by a combination of C $\mathrm{H} \cdots \mathrm{Cl}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{O} \cdots \pi[\mathrm{O} \cdots$ ring centroid(benzene ring $)=3.1871$ (13) and 3.3787 (13) Å] interactions.

Related literature

For background to structural studies of quinoline derivatives, see: Kaiser et al. (2009).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=171.62$
Monoclinic, $P 2_{1} / c$
$a=4.8979$ (1) A
$b=15.8136$ (4) A
$c=10.8203$ (3) \AA
$\beta=102.569(3)^{\circ}$

Data collection

Agilent Supernova Dual	3262 measured reflections
diffractometer with an Atlas	1436 independent reflections
detector	1256 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.019$
$\quad($ CrysAlis PRO; Agilent, 2010)	
$\quad T_{\min }=0.920, T_{\max }=1.000$	

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.080$
$S=1.07$
1436 reflections
113 parameters
independent and constrained refinement
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1n \cdots Cl1	0.95 (2)	2.23 (2)	3.1463 (15)	163 (2)
$\mathrm{N} 1-\mathrm{H} 2 \mathrm{n} \cdots \mathrm{Cl}^{1}{ }^{\text {i }}$	0.92 (2)	2.24 (2)	3.1366 (15)	165 (2)
$\mathrm{N} 1-\mathrm{H} 3 \mathrm{n} \cdots \mathrm{O} 1$	0.87 (2)	1.95 (2)	2.6778 (18)	140 (2)
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cl} 1^{\text {iii }}$	0.95	2.73	3.5332 (18)	142
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1^{\text {iii }}$	0.95	2.59	3.2496 (19)	127
Symmetry codes $x-1,-y+\frac{1}{2}, z+\frac{1}{2}$	(i) $-x+1,-y+1,-z+2$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii)			

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/ 2007). The authors thank the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2797).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. \& Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

[^0]
supporting information

Acta Cryst. (2011). E67, o623 [doi:10.1107/S1600536811004739]

2-Acetylanilinium chloride

R. Prasath, P. Bhavana, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

The title salt, (I), was obtained as an unexpected product during the attempted synthesis of a quinoline derivative, investigated as a part of an on-going programme into the synthesis and structural chemistry of quinolines of interest owing to their putative anti-malarial activity (Kaiser et al., 2009).
Ionic (I), Fig. 1, comprises a 2-acetylanilinium cation and a chloride anion. The cation is essentially planar with the acetyl group only slightly twisted out of the plane of the benzene ring to which it is connected, the $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ torsion angle $=4.6(2)^{\circ}$. The observed conformation is stabilized by an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, Table 1.
In the crystal packing, centrosymmetrically related molecules are connected into a supramolecular dimer via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, Table 1 and Fig. 2. The dimeric aggregates are arranged into layers in the ac plane via a combination of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$, Table 1, and $\mathrm{C}-\mathrm{O} \cdots \pi$ contacts $\left[\mathrm{C} 2-\mathrm{O} 1 \cdots \mathrm{Cg}(\mathrm{C} 3-\mathrm{C} 8)^{\mathrm{i}}=3.1871(13) \AA\right.$ with the angle at $\mathrm{O} 1=96.44(10)^{\circ}$ for $i: 1+x, y, z$; and $\mathrm{C} 2-\mathrm{O} 1 \cdots C g(\mathrm{C} 3-\mathrm{C} 8)^{\mathrm{ii}}=3.3787(13) \AA$ with the angle at $\mathrm{O} 1=98.36(9){ }^{\circ}$ for $\left.i i: x, 1 / 2-y,-1 / 2+z\right]$. The presence of $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, Table 1, contributes to the stability of the structure along the b axis, Fig. 3 .

S2. Experimental

A mixture of 2-aminoacetophenone $(0.01 M)$, acetophenone $(0.01 M)$ and a catalytic amount of conc. HCl was heated on a water bath for 10 min . The resultant solid was filtered, dried and purified by column chromatography using a 1:5 mixture of ethyl acetate and hexane. Re-crystallization was by slow evaporation of an acetone solution of (I) which yielded colourless needles. M.pt. 421-423 K. Yield: 66\%. The X-ray study showed that the original 2-aminoacetophenone had been protonated and crystallized as a chloride salt.

S3. Refinement

Carbon-bound H -atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H} 0.95$ to $0.98 \AA$) and were included in the refinement in the riding model approximation, with $U_{\text {iso }}(\mathrm{H})$ set to 1.2 to $1.5 U_{\text {equiv }}(\mathrm{C})$. The N -bound H -atoms were located in a difference Fourier map and refined freely.

Figure 1
The constituent ions of salt (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2
Supramolecular dimer in (I) mediated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding, shown as orange dashed lines.

Figure 3
Unit-cell contents shown in projection down the a axis in (I). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{O} \cdots \pi$ contacts are shown as orange, blue, pink, and purple dashed lines, respectively.

2-Acetylanilinium chloride

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=171.62$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2 ybc
$a=4.8979$ (1) \AA
$b=15.8136$ (4) \AA
$c=10.8203(3) \AA$
$\beta=102.569(3)^{\circ}$

$$
\begin{aligned}
& V=817.98(3) \AA^{3} \\
& Z=4 \\
& F(000)=360 \\
& D_{\mathrm{x}}=1.394 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2016 \text { reflections } \\
& \theta=2.3-29.1^{\circ} \\
& \mu=0.41 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=100 \mathrm{~K}$
Pris,, colourless

Data collection

Agilent Supernova Dual
diffractometer with an Atlas detector
Radiation source: SuperNova (Mo) X-ray
Source
Mirror monochromator
Detector resolution: 10.4041 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.080$
$S=1.07$
1436 reflections
113 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

$$
\begin{aligned}
& T_{\min }=0.920, T_{\max }=1.000 \\
& 3262 \text { measured reflections } \\
& 1436 \text { independent reflections } \\
& 1256 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.019 \\
& \theta_{\max }=25.0^{\circ}, \theta_{\min }=2.3^{\circ} \\
& h=-5 \rightarrow 5 \\
& k=-18 \rightarrow 17 \\
& l=-10 \rightarrow 12
\end{aligned}
$$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.10927(9)$	$0.47141(2)$	$0.83017(4)$	$0.02647(17)$
O1	$0.8706(2)$	$0.23737(7)$	$0.91735(11)$	$0.0277(3)$
N1	$0.6529(3)$	$0.38178(9)$	$0.98223(14)$	$0.0210(3)$
H1N	$0.508(4)$	$0.4081(12)$	$0.9220(19)$	$0.036(5)^{*}$
H2N	$0.753(4)$	$0.4233(13)$	$1.0322(19)$	$0.033(5)^{*}$
H3N	$0.759(4)$	$0.3532(12)$	$0.9418(19)$	$0.034(5)^{*}$
C1	$0.7572(5)$	$0.10071(11)$	$0.97971(19)$	$0.0377(5)$
H1A	0.8665	0.0826	0.9186	0.057^{*}
H1B	0.5674	0.0776	0.9552	0.057^{*}
H1C	0.8466	0.0800	1.0642	0.057^{*}
C2	$0.7435(3)$	$0.19573(10)$	$0.98154(15)$	$0.0233(4)$
C3	$0.5701(3)$	$0.23753(10)$	$1.06204(15)$	$0.0197(4)$
C4	$0.4392(4)$	$0.18953(10)$	$1.14121(16)$	$0.0238(4)$

H4	0.4639	0.1299	1.1444	0.029^{*}
C5	$0.2751(4)$	$0.22678(11)$	$1.21474(16)$	$0.0253(4)$
H5	0.1875	0.1928	1.2673	0.030^{*}
C6	$0.2381(3)$	$0.31345(10)$	$1.21206(16)$	$0.0240(4)$
H6	0.1249	0.3391	1.2626	0.029^{*}
C7	$0.3663(3)$	$0.36268(10)$	$1.13559(15)$	$0.0219(4)$
H7	0.3423	0.4223	1.1337	0.026^{*}
C8	$0.5289(3)$	$0.32504(10)$	$1.06211(15)$	$0.0185(4)$

Atomic displacement parameters (\AA^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0285(3)$	$0.0215(3)$	$0.0298(3)$	$0.00177(17)$	$0.00704(19)$	$-0.00224(17)$
O1	$0.0280(7)$	$0.0299(7)$	$0.0275(7)$	$0.0043(5)$	$0.0113(6)$	$-0.0002(5)$
N1	$0.0222(8)$	$0.0193(8)$	$0.0235(8)$	$-0.0005(7)$	$0.0091(7)$	$0.0013(7)$
C1	$0.0527(13)$	$0.0241(10)$	$0.0401(12)$	$0.0081(9)$	$0.0182(10)$	$-0.0017(9)$
C2	$0.0230(9)$	$0.0236(9)$	$0.0212(9)$	$0.0040(7)$	$0.0003(7)$	$-0.0008(7)$
C3	$0.0173(8)$	$0.0210(9)$	$0.0199(8)$	$0.0010(7)$	$0.0016(7)$	$0.0006(7)$
C4	$0.0251(9)$	$0.0188(9)$	$0.0262(9)$	$0.0001(7)$	$0.0027(7)$	$0.0048(7)$
C5	$0.0226(9)$	$0.0300(10)$	$0.0238(9)$	$-0.0034(8)$	$0.0060(7)$	$0.0067(8)$
C6	$0.0196(9)$	$0.0304(10)$	$0.0232(9)$	$0.0015(7)$	$0.0073(7)$	$-0.0005(8)$
C7	$0.0205(9)$	$0.0191(9)$	$0.0264(9)$	$0.0015(7)$	$0.0058(7)$	$-0.0005(7)$
C8	$0.0158(8)$	$0.0205(8)$	$0.0190(8)$	$-0.0017(6)$	$0.0031(7)$	$0.0017(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C2	1.221 (2)	C3-C8	1.399 (2)
N1-C8	1.466 (2)	C3-C4	1.400 (2)
N1-H1N	0.95 (2)	C4-C5	1.380 (2)
N1-H2N	0.92 (2)	C4-H4	0.9500
N1-H3N	0.87 (2)	C5-C6	1.382 (2)
$\mathrm{C} 1-\mathrm{C} 2$	1.504 (2)	C5-H5	0.9500
C1-H1A	0.9800	C6-C7	1.383 (2)
C1-H1B	0.9800	C6-H6	0.9500
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800	C7-C8	1.377 (2)
C2-C3	1.496 (2)	C7-H7	0.9500
C8-N1-H1N	109.3 (12)	C4-C3-C2	120.68 (15)
C8-N1-H2N	108.9 (12)	C5-C4-C3	121.54 (15)
$\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	108.2 (16)	C5-C4-H4	119.2
C8-N1-H3N	110.2 (13)	C3-C4-H4	119.2
$\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 1-\mathrm{H} 3 \mathrm{~N}$	108.7 (18)	C4-C5-C6	120.10 (16)
$\mathrm{H} 2 \mathrm{~N}-\mathrm{N} 1-\mathrm{H} 3 \mathrm{~N}$	111.5 (18)	C4-C5-H5	120.0
C2-C1-H1A	109.5	C6-C5-H5	120.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C5-C6-C7	119.76 (16)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C5-C6-H6	120.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C7-C6-H6	120.1
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C8-C7-C6	119.82 (15)

$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	120.1
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.12(15)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	120.1
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$120.10(16)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$121.98(15)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.77(15)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	$116.21(14)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4$	$116.80(15)$	$\mathrm{C} 3-\mathrm{C} 8-\mathrm{N} 1$	$121.80(14)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 2$	$122.52(14)$		
			$0.3(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$4.3(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.1(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$-175.12(16)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$178.95(14)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-176.05(15)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	$-0.4(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$179.28(15)$	
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.7(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$-179.37(15)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-179.04(15)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{N} 1$	$0.3(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.4(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{N} 1$	
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$			

Hydrogen-bond geometry ($\dot{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{n} \cdots \mathrm{Cl1}$	$0.95(2)$	$2.23(2)$	$3.1463(15)$	$163(2)$
$\mathrm{N} 1 — \mathrm{H} 2 \mathrm{n} \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	$0.92(2)$	$2.24(2)$	$3.1366(15)$	$165(2)$
$\mathrm{N} 1 — \mathrm{H} 3 \mathrm{n} \cdots \mathrm{O} 1$	$0.87(2)$	$1.95(2)$	$2.6778(18)$	$140(2)$
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{Cl} 1^{1 i}$	0.95	2.73	$3.5332(18)$	142
$\mathrm{C} 6 — \mathrm{H} 6 \cdots 1^{\mathrm{iii}}$	0.95	2.59	$3.2496(19)$	127

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $x,-y+1 / 2, z+1 / 2$; (iii) $x-1,-y+1 / 2, z+1 / 2$.

[^0]: \ddagger Additional correspondence author, e-mail: juliebhavana@gmail.com.

