

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pyridinium tetrakis(1,1,1-trifluoropentane-2,4-dionato)dysprosate

Yan Wang,^{a,b}* Yuekui Wang,^b Jie Jia,^b Xiaoli Gao^b and Xiaoling Su^b

^aDepartment of Chemistry & Chemical Engineering, Luliang University, Lvliang 033000, People's Republic of China, and ^bInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular, Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China Correspondence e-mail: Illswy74@yahoo.com.cn

Received 21 January 2011; accepted 10 February 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.013 Å; disorder in main residue; R factor = 0.050; wR factor = 0.121; data-to-parameter ratio = 11.7.

In the anion of the title compound, $(C_5H_6N)[Dy(C_5H_4F_3O_2)_4]$, the central metal ion, Dy^{3+} , is coordinated by four bidentate 1,1,1-trifluoropentane-2,4-dionate (TAA) ligands, forming an approximate square-antiprismatic configuration. The pyridinium cation is connected to the complex ion by an N-H···O hydrogen bond and electrostatic interactions in the crystal. There are two kinds of disorder in the structure, one involving rotational disorder of a CF₃ group [occupancy ratio 0.560 (15):0.440 (15)] and the other involving an exchange between a CF₃ group and CH₃ group within a given bidentate ligand (occupancy ratio 0.64:0.36).

Related literature

For applications of rare earth– β -diketone complexes, see: Chu & Elgavish (1995); Tsukube & Shinoda (2002); Iwamuro *et al.* (1997). For related structures, see: Ma *et al.* (2000); Tian *et al.* (2009).

Experimental

Crystal data $(C_{5}H_{6}N)[Dy(C_{5}H_{4}F_{3}O_{2})_{4}]$ $M_{r} = 854.94$ Monoclinic, $P2_{1}/c$ a = 10.619 (4) Å b = 19.799 (7) Å

c = 15.715 (6) Å $\beta = 103.116$ (6)° V = 3217.8 (19) Å³ Z = 4Mo $K\alpha$ radiation

metal-organic compounds

 $R_{\rm int} = 0.039$

 $0.22 \times 0.22 \times 0.06 \text{ mm}$

14449 measured reflections

5670 independent reflections

4126 reflections with $I > 2\sigma(I)$

 $\mu = 2.44 \text{ mm}^{-1}$ T = 298 K

Data collection

Bruker SMART 1K CCD area detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2000) $T_{\rm min} = 0.616, T_{\rm max} = 0.868$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ 78 restraints $wR(F^2) = 0.121$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.95$ e Å $^{-3}$ 5670 reflections $\Delta \rho_{min} = -0.45$ e Å $^{-3}$ 483 parameters $\Delta \rho_{min} = -0.45$ e Å $^{-3}$

Table 1 Selected bond lengths (Å).

Dy1-O2	2.305 (5)	Dy1-O8	2.349 (4)
Dy1-O6	2.315 (5)	Dy1-O7	2.356 (5)
Dy1-O3	2.326 (5)	Dy1-O5	2.390 (5)
Dy1-O4	2.342 (5)	Dy1-O1	2.423 (5)

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	<i>D</i> -H	Н∙∙∙А	$D \cdots A$	$D - H \cdots A$
N1-H1···O5	0.86	2.10	2.947 (8)	167

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL/PC* (Sheldrick, 2008).

This research was supported by the National Natural Science Foundation of China (grant No. 20673069) and the Natural Science Foundation of Shanxi province (grant No. 2007011021).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2404).

References

- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chu, W. J. & Elgavish, G. A. (1995). NMR Biomed. 8, 159-163.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Iwamuro, M., Hasegawa, Y., Wada, Y. & Murakoshi, K. (1997). Chem. Lett. 10, 1067–1068.
- Ma, B. Q., Zhang, D. S., Gao, S., Jin, T. Z. & Yan, C. H. (2000). Angew. Chem. Int. Ed. 39, 3644–3646.
- Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Tian, L., Ren, N., Zhang, J.-J., Sun, S.-J., Ye, H.-M., Bai, J.-H. & Wang, R.-F. (2009). J. Chem. Eng. Data. 54, 69–74.
- Tsukube, H. & Shinoda, S. (2002). Chem. Rev. 102, 2389-2404.

supporting information

Acta Cryst. (2011). E67, m341 [doi:10.1107/S1600536811005034]

Pyridinium tetrakis(1,1,1-trifluoropentane-2,4-dionato)dysprosate

Yan Wang, Yuekui Wang, Jie Jia, Xiaoli Gao and Xiaoling Su

S1. Comment

Rare earth- β -diketone complexes have attracted considerable attention in the past decades owing to their important applications as laser (Iwamuro *et al.*, 1997), fluorescent probe (Tsukube & Shinoda, 2002) and NMR reagents (Chu & Elgavish, 1995). As part of our interest in this field, we have been engaged in a major effort directed toward the development of syntheses of new lanthanide- β -diketon complexes.

The structure of the title Dy^{3+} complex is shown in Fig. 1. It contains an eight-coordinate dysprosium ion bonded to four TAA anions with bidentate chelation, forming the $[Dy(TAA)_4]^-$ anions. These are connected to pyridinium cations by a N —H···O hydrogen bond. The co-ordination polyhedron may be described as an approximate square antiprism and the two sets of four O atoms (O2, O4, O5, O7) and (O1, O3, O6, O8) form the twisted upper and lower sides respectively. The Dy —O bond lengths are in the range of 2.305 (5)–2.423 (5) Å, average 2.351 (2) Å, which is consistent with other work in literature (Ma *et al.*, 2000; Tian *et al.*, 2009). The average angle of O—Dy—O is 100.25° and the average dihydral angle (C—O—Dy—O) is -10.49°.

S2. Experimental

A mixture of Dy_2O_3 (0.186 g) and concentrated hydrochloric (5 mL) was heated and distilled to slight dryness, yielding a crystalline precipitate (DyCl₃). Then, the DyCl₃ solid was redissolved in 5 mL absolute ethanol, and heated with 10 mL of absolute ethanol solution containing HTAA (0.50 mL) and pyridine (0.32 mL) at about 363 K. The reaction mixture was maintained at ambient temperature for one month until yellow crystals formed.

S3. Refinement

All F atoms were found to be disordered. There is disorder of the two different types: 1) disorder due to rotational disorder of the CF₃ group bonded to a single carbon. F4, F5, and F6 atoms was split into to two sets of positions using restraints on their anisotropic displacement parameters. The major and minor disorder components had refined occupancies of 0.56 (2) and 0.44 (2), respectively; 2) disorder due to exchange of CH₃ and CF₃ groups on the same ligand. Namely, F10, F11, and F12 as well as related H atoms were modelled over two sets of positions using restraint on their anisotropic displacement parameters. The major and minor disorder components had refined occupancies of 0.64 (1) and 0.36 (1), respectively. In the final refinement, the occupancies of these disordered atoms were fixed to aid convergence. Atoms F11B, F4, F5, F6, F4B, F5B, and F6B were refined anisotropically using 42 restraints (ISOR) and the geometrical parameters of CF₃ group were refined using 36 restraints (*DFIX* and DANG) because of the unacceptable parameters of their ellipsoids and distances between atoms. H atoms attached to C and N were placed in geometrically idealized positions with Csp^2^—H = 0.93, Csp^3^—H = 0.96, Nsp^2^—H = 0.86 Å, and constrained to ride on their carrier atoms, with Uĩso~(H) = 1.2Ũeq~(C & N) and Uĩso~(H) = 1.5Ũeq~(C).

Figure 1

A view of the structure of the complex with displacement ellipsoids drawn at the 30% probability level. H atoms without H-bond (dotting line) and minor disorder components were omitted for clarity.

Pyridinium tetrakis(1,1,1-trifluoropentane-2,4-dionato)dysprosate

Crystal data	
$(C_5H_6N)[Dy(C_5H_4F_3O_2)_4]$	F(000) = 1668
$M_r = 854.94$	$D_{\rm x} = 1.765 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3207 reflections
a = 10.619 (4) Å	$\theta = 2.2 - 21.0^{\circ}$
b = 19.799 (7) Å	$\mu = 2.44 \text{ mm}^{-1}$
c = 15.715 (6) Å	T = 298 K
$\beta = 103.116 \ (6)^{\circ}$	Plate, colorless
$V = 3217.8 (19) Å^3$	$0.22 \times 0.22 \times 0.06 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART 1K CCD area detector	14449 measured reflections
diffractometer	5670 independent reflections
Radiation source: fine-focus sealed tube	4126 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.039$
ωscans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 1.7^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Sheldrick, 2000)	$k = -19 \rightarrow 23$
$T_{\min} = 0.616, \ T_{\max} = 0.868$	$l = -18 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.121$	neighbouring sites
S = 1.02	H-atom parameters constrained
5670 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0621P)^2]$
483 parameters	where $P = (F_o^2 + 2F_c^2)/3$
78 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.95 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.45 \ m e \ m \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Dy1	0.54349 (3)	0.155070 (15)	0.274306 (19)	0.05328 (14)	
01	0.4836 (5)	0.2430 (2)	0.3649 (3)	0.0698 (13)	
02	0.3848 (5)	0.2201 (2)	0.1874 (3)	0.0664 (13)	
C1	0.3730 (10)	0.3186 (5)	0.4363 (6)	0.105 (3)	
H1A	0.4141	0.2953	0.4889	0.157*	
H1B	0.2835	0.3259	0.4360	0.157*	
H1C	0.4147	0.3614	0.4339	0.157*	
C2	0.3834 (8)	0.2772 (4)	0.3590 (5)	0.0656 (19)	
C3	0.2847 (8)	0.2808 (4)	0.2828 (5)	0.069 (2)	
Н3	0.2086	0.3029	0.2860	0.083*	
C4	0.2930 (7)	0.2543 (4)	0.2051 (5)	0.0633 (19)	
C5	0.1851 (9)	0.2668 (5)	0.1261 (6)	0.088 (3)	
F1	0.2181 (6)	0.3041 (4)	0.0687 (4)	0.170 (3)	
F2	0.1395 (7)	0.2116 (4)	0.0866 (5)	0.165 (3)	
F3	0.0817 (7)	0.2960 (4)	0.1425 (4)	0.170 (3)	
O3	0.3793 (5)	0.1120 (2)	0.3346 (3)	0.0691 (13)	
O4	0.4291 (6)	0.0745 (3)	0.1777 (3)	0.0813 (15)	
C6	0.1664 (9)	0.1026 (6)	0.3557 (6)	0.116 (3)	
H6A	0.1652	0.0631	0.3908	0.173*	
H6B	0.0825	0.1092	0.3180	0.173*	
H6C	0.1886	0.1413	0.3930	0.173*	
C7	0.2647 (9)	0.0938 (4)	0.3014 (6)	0.076 (2)	
C8	0.2294 (10)	0.0660 (5)	0.2176 (7)	0.097 (3)	
H8	0.1438	0.0530	0.1968	0.116*	
C9	0.3145 (12)	0.0569 (4)	0.1642 (5)	0.090 (3)	

C10	0.2692 (12)	0.0137 (6)	0.0779 (8)	0.129 (4)	
F4	0.2652 (17)	0.0495 (7)	0.0147 (8)	0.139 (5)	0.560 (15)
F5	0.3418 (14)	-0.0434 (6)	0.0845 (8)	0.138 (5)	0.560 (15)
F6	0.1486 (13)	-0.0078 (8)	0.0698 (9)	0.152 (6)	0.560 (15)
F4B	0.237 (2)	-0.0437 (7)	0.0915 (10)	0.136 (6)	0.440 (15)
F5B	0.158 (2)	0.0463 (12)	0.0364 (15)	0.201 (10)	0.440 (15)
F6B	0.3444 (16)	0.0219 (8)	0.0223 (10)	0.123 (6)	0.440 (15)
05	0.6258 (5)	0.1812 (2)	0.1486 (3)	0.0685 (13)	
06	0.6880 (5)	0.0700 (2)	0.2623 (3)	0.0687 (13)	
C11	0.7528 (9)	0.1973 (5)	0.0427 (5)	0.103 (3)	
H11A	0.6789	0.2041	-0.0045	0.155*	
H11B	0.8178	0.1727	0.0219	0.155*	
H11C	0.7869	0.2402	0.0652	0.155*	
C12	0.7130 (8)	0.1571 (4)	0.1151 (5)	0.0664 (19)	
C13	0.7781 (8)	0.0965 (4)	0.1434 (5)	0.075 (2)	
H13	0.8392	0.0817	0.1135	0.089*	
C14	0.7591 (7)	0.0577 (3)	0.2112 (5)	0.0641 (19)	
C15	0.8293 (10)	-0.0080 (5)	0.2295 (7)	0.093 (3)	
F7	0.9130 (8)	-0.0209(3)	0.1817 (6)	0.170 (3)	
F8	0.7516 (7)	-0.0582(3)	0.2151 (6)	0.185 (4)	
F9	0.8939 (9)	-0.0126 (4)	0.3073 (5)	0.194 (4)	
O7	0.7171 (5)	0.2319 (2)	0.3091 (3)	0.0692 (13)	
08	0.6620 (5)	0.1262 (2)	0.4147 (3)	0.0624 (12)	
C16	0.9245 (11)	0.2782 (6)	0.3435 (7)	0.104 (3)	
H16A	0.9699	0.2688	0.2962	0.104*	0.64
H16B	1.0012	0.2854	0.3963	0.104*	0.64
H16C	0.8937	0.3261	0.3317	0.104*	0.64
F10B	1.0364 (15)	0.2718 (10)	0.3858 (12)	0.157 (8)	0.36
F11B	0.924 (2)	0.2781 (10)	0.2596 (11)	0.160 (7)	0.36
F12B	0.879 (2)	0.3390 (8)	0.3519 (18)	0.193 (12)	0.36
C17	0.8278 (8)	0.2252 (4)	0.3569 (5)	0.068 (2)	
C18	0.8665 (8)	0.1759 (4)	0.4206 (5)	0.070 (2)	
H18	0.9536	0.1735	0.4483	0.084*	
C19	0.7838 (7)	0.1309 (3)	0.4447 (4)	0.0589 (18)	
C20	0.8358 (10)	0.0834 (5)	0.5191 (6)	0.099 (3)	
H20A	0.7625	0.0425	0.5206	0.099*	0.36
H20B	0.8509	0.0975	0.5761	0.099*	0.36
H20C	0.9073	0.0496	0.5146	0.099*	0.36
F10	0.9621 (9)	0.0751 (5)	0.5361 (6)	0.141 (3)	0.64
F11	0.7907 (13)	0.0241 (5)	0.5025 (9)	0.243 (9)	0.64
F12	0.8159 (13)	0.1056 (7)	0.5915 (6)	0.194 (6)	0.64
N1	0.5608 (8)	0.3261 (3)	0.1375 (6)	0.096 (2)	
H1	0.5924	0.2859	0.1424	0.115*	
C21	0.5610 (9)	0.3615 (5)	0.2096 (6)	0.089(3)	
H21	0.5963	0.3435	0.2645	0.106*	
C22	0.5089 (10)	0.4241 (4)	0.2015 (6)	0.088 (3)	
H22	0.5072	0.4495	0.2510	0.105*	
C23	0.4599 (9)	0.4493 (4)	0.1219 (6)	0.089 (3)	

supporting information

H23	0.4224	0.4920	0.1162	0.106*
C24	0.4647 (9)	0.4130 (4)	0.0494 (6)	0.088 (3)
H24	0.4341	0.4316	-0.0057	0.106*
C25	0.5124 (10)	0.3516 (4)	0.0571 (7)	0.089 (3)
H25	0.5129	0.3259	0.0076	0.107*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Dy1	0.0585 (2)	0.0521 (2)	0.0466 (2)	0.00072 (16)	0.00630 (14)	0.00471 (15)
01	0.067 (3)	0.074 (3)	0.062 (3)	0.006 (3)	0.002 (2)	-0.007 (2)
O2	0.062 (3)	0.078 (3)	0.054 (3)	0.011 (3)	0.004 (2)	0.009 (2)
C1	0.123 (9)	0.100 (6)	0.092 (7)	0.029 (6)	0.027 (6)	-0.018 (5)
C2	0.068 (5)	0.054 (4)	0.075 (5)	0.003 (4)	0.017 (4)	0.007 (4)
C3	0.068 (5)	0.063 (5)	0.076 (5)	0.015 (4)	0.013 (4)	0.009 (4)
C4	0.058 (5)	0.062 (4)	0.063 (5)	0.004 (4)	-0.001 (4)	0.020 (4)
C5	0.072 (6)	0.108 (7)	0.077 (6)	0.010 (6)	0.000 (5)	0.014 (6)
F1	0.125 (5)	0.248 (8)	0.120 (5)	-0.011 (5)	-0.008 (4)	0.111 (6)
F2	0.137 (6)	0.161 (6)	0.148 (6)	-0.001 (5)	-0.067 (4)	-0.004 (5)
F3	0.106 (5)	0.275 (9)	0.111 (5)	0.088 (6)	-0.010 (4)	0.003 (5)
O3	0.071 (4)	0.071 (3)	0.063 (3)	-0.009 (3)	0.009 (3)	0.010 (3)
O4	0.084 (4)	0.085 (4)	0.071 (3)	-0.020 (3)	0.008 (3)	-0.026 (3)
C6	0.078 (7)	0.159 (10)	0.122 (8)	-0.001 (7)	0.049 (6)	0.015 (7)
C7	0.075 (6)	0.065 (5)	0.083 (6)	-0.013 (4)	0.007 (5)	0.014 (4)
C8	0.081 (7)	0.105 (7)	0.096 (7)	-0.021 (5)	0.002 (6)	0.004 (6)
C9	0.123 (9)	0.069 (5)	0.063 (5)	-0.020 (6)	-0.008 (5)	-0.006 (4)
C10	0.130 (11)	0.126 (11)	0.122 (10)	-0.037 (9)	0.008 (8)	0.026 (8)
F4	0.147 (7)	0.143 (7)	0.122 (6)	-0.008 (5)	0.021 (5)	-0.001 (4)
F5	0.145 (7)	0.131 (7)	0.130 (6)	0.002 (4)	0.015 (4)	-0.025 (4)
F6	0.148 (7)	0.151 (7)	0.151 (7)	-0.022 (5)	0.020 (5)	-0.006 (5)
F4B	0.143 (8)	0.128 (7)	0.137 (7)	-0.008(5)	0.030 (5)	-0.011 (5)
F5B	0.201 (11)	0.203 (11)	0.194 (11)	-0.002 (5)	0.033 (5)	-0.008 (5)
F6B	0.127 (7)	0.125 (7)	0.115 (7)	-0.006 (5)	0.025 (5)	-0.012 (5)
05	0.083 (4)	0.067 (3)	0.058 (3)	0.006 (3)	0.021 (3)	0.011 (2)
06	0.085 (4)	0.061 (3)	0.064 (3)	0.015 (3)	0.024 (3)	0.005 (2)
C11	0.118 (8)	0.129 (8)	0.078 (6)	0.001 (7)	0.053 (6)	0.021 (6)
C12	0.064 (5)	0.077 (5)	0.057 (4)	-0.002 (4)	0.013 (4)	-0.010 (4)
C13	0.078 (6)	0.081 (6)	0.071 (5)	0.001 (5)	0.030 (4)	-0.014 (4)
C14	0.065 (5)	0.051 (4)	0.070 (5)	-0.005 (4)	0.002 (4)	-0.018 (4)
C15	0.099 (8)	0.077 (6)	0.108 (8)	0.014 (6)	0.034 (6)	0.001 (6)
F7	0.184 (7)	0.125 (5)	0.231 (8)	0.067 (5)	0.112 (7)	0.020 (5)
F8	0.154 (7)	0.062 (3)	0.348 (12)	-0.006 (4)	0.074 (7)	-0.012 (5)
F9	0.267 (10)	0.153 (6)	0.129 (6)	0.118 (7)	-0.024 (6)	0.014 (5)
O7	0.061 (3)	0.072 (3)	0.071 (3)	-0.005 (3)	0.006 (3)	0.007 (3)
08	0.063 (3)	0.067 (3)	0.053 (3)	0.004 (3)	0.005 (2)	0.012 (2)
C16	0.091 (8)	0.123 (9)	0.095 (7)	-0.029 (7)	0.015 (6)	0.000 (6)
F10B	0.084 (13)	0.21 (2)	0.160 (16)	-0.055 (13)	-0.010 (11)	0.055 (14)
F11B	0.158 (8)	0.168 (8)	0.157 (8)	-0.016 (5)	0.043 (5)	0.003 (5)

F12B	0.15 (2)	0.110 (14)	0.35 (4)	-0.061 (13)	0.14 (2)	-0.024 (16)
C17	0.067 (5)	0.074 (5)	0.064 (5)	-0.008 (4)	0.019 (4)	-0.016 (4)
C18	0.056 (5)	0.076 (5)	0.069 (5)	0.008 (4)	-0.002 (4)	-0.005 (4)
C19	0.060 (5)	0.058 (4)	0.050 (4)	0.017 (4)	-0.004 (3)	-0.006 (3)
C20	0.086 (7)	0.105 (8)	0.085 (7)	0.005 (6)	-0.025 (5)	0.028 (6)
F10	0.107 (8)	0.146 (8)	0.145 (8)	0.029 (6)	-0.020 (6)	0.041 (6)
F11	0.243 (14)	0.124 (8)	0.253 (15)	-0.077 (9)	-0.170 (12)	0.118 (9)
F12	0.239 (14)	0.273 (15)	0.079 (6)	0.122 (12)	0.052 (8)	0.063 (8)
N1	0.114 (7)	0.059 (4)	0.134 (7)	0.011 (4)	0.069 (6)	0.016 (5)
C21	0.098 (7)	0.094 (7)	0.073 (6)	-0.007 (5)	0.017 (5)	0.020 (5)
C22	0.126 (8)	0.065 (5)	0.074 (6)	-0.003 (5)	0.024 (5)	-0.011 (5)
C23	0.098 (7)	0.064 (5)	0.105 (7)	0.017 (5)	0.024 (6)	-0.002 (5)
C24	0.109 (7)	0.080 (6)	0.072 (5)	-0.008 (5)	0.010 (5)	0.017 (5)
C25	0.116 (8)	0.067 (6)	0.100 (7)	-0.023 (5)	0.058 (6)	-0.016 (5)

Geometric parameters (Å, °)

Dy1—O2	2.305 (5)	С13—Н13	0.9300
Dy106	2.315 (5)	C14—C15	1.494 (11)
Dy1—O3	2.326 (5)	C15—F9	1.263 (10)
Dy1—O4	2.342 (5)	C15—F8	1.278 (10)
Dy108	2.349 (4)	C15—F7	1.313 (9)
Dy1—O7	2.356 (5)	O7—C17	1.250 (9)
Dy1—O5	2.390 (5)	O8—C19	1.275 (8)
Dy1—O1	2.423 (5)	C16—F10B	1.230 (14)
O1—C2	1.247 (8)	C16—F12B	1.314 (14)
O2—C4	1.269 (8)	C16—F11B	1.317 (14)
C1—C2	1.492 (10)	C16—C17	1.517 (12)
C1—H1A	0.9600	C16—H16A	0.9912
C1—H1B	0.9600	C16—H16B	1.0321
C1—H1C	0.9600	C16—H16C	1.0056
C2—C3	1.403 (10)	F10B—H16A	1.4259
C3—C4	1.350 (10)	F10B—H16B	0.5180
С3—Н3	0.9300	F11B—H16A	0.6894
C4—C5	1.507 (11)	F12B—H16C	0.4623
C5—F1	1.275 (9)	C17—C18	1.392 (10)
C5—F2	1.295 (9)	C18—C19	1.363 (10)
C5—F3	1.317 (9)	C18—H18	0.9300
O3—C7	1.264 (8)	C19—C20	1.505 (10)
O4—C9	1.238 (11)	C20—F11	1.272 (11)
C6—C7	1.501 (11)	C20—F12	1.281 (11)
С6—Н6А	0.9600	C20—F10	1.317 (10)
C6—H6B	0.9600	C20—H20A	1.1271
С6—Н6С	0.9600	C20—H20B	0.9180
C7—C8	1.397 (12)	C20—H20C	1.0263
C8—C9	1.378 (13)	F10—H20C	0.7857
С8—Н8	0.9300	F11—H20A	0.5838
C9—C10	1.582 (14)	F11—H20C	1.3102

C10 F4	1 0 1 0 (1 0)		0 - 1 1 1
C10—F4	1.213 (12)	F12—H20B	0.5114
C10—F4B	1.220 (14)	N1	1.333 (11)
C10—F6B	1.321 (14)	N1—C25	1.350 (12)
C10—F6	1.328 (13)	N1—H1	0.8600
C10—F5	1 359 (13)	C21—C22	1 350 (11)
C10 F5D	1.339(13) 1.372(16)	C21 U21	0.0200
C10—13B	1.372(10)		0.9300
05-012	1.258 (8)	C22—C23	1.338 (11)
06—C14	1.245 (8)	C22—H22	0.9300
C11—C12	1.525 (10)	C23—C24	1.358 (11)
C11—H11A	0.9600	С23—Н23	0.9300
C11—H11B	0.9600	C24—C25	1.312 (11)
C11—H11C	0.9600	C24—H24	0.9300
C12-C13	1405(10)	C25—H25	0.9300
C_{12} C_{13} C_{14}	1.405(10)	023 1123	0.9500
013-014	1.505 (10)		
02 D-1 0(140.00 (17)	F(C10 C0	110.9 (11)
02—Dy1—06	140.08 (17)	F0-C10-C9	110.8 (11)
O2—Dy1—O3	86.05 (17)	F5—C10—C9	109.1 (10)
O6—Dy1—O3	109.78 (17)	F5B—C10—C9	102.3 (13)
O2—Dy1—O4	78.12 (19)	C12—O5—Dy1	134.9 (5)
O6—Dy1—O4	73.0 (2)	C14—O6—Dy1	134.8 (5)
O3—Dy1—O4	71.84 (18)	C12—C11—H11A	109.5
O2—Dv1—O8	148.85 (17)	C12—C11—H11B	109.5
06-Dv1-08	71.07 (16)	H11A—C11—H11B	109 5
03 - Dy1 - 08	79.62 (17)	$C12$ _ $C11$ _ $H11C$	109.5
04 Dyl 08	122 14 (17)		109.5
0^{-1} Dy1 07	122.14(17) 101.97(19)		109.5
02—Dy1—07	101.8/(18)		109.3
06—Dy1—07	89.42 (18)	05-012-013	123.2 (7)
O3—Dy1—O7	139.54 (17)	O5—C12—C11	118.0 (7)
O4—Dy1—O7	148.56 (18)	C13—C12—C11	118.7 (7)
O8—Dy1—O7	73.40 (16)	C14—C13—C12	125.3 (7)
O2—Dy1—O5	75.24 (17)	C14—C13—H13	117.4
O6—Dy1—O5	73.54 (16)	С12—С13—Н13	117.4
O3—Dy1—O5	149.75 (18)	O6—C14—C13	127.8 (7)
04—Dv1—05	81.05 (18)	O6—C14—C15	113.3 (7)
08-Dy1-05	127 59 (17)	C_{13} C_{14} C_{15}	119.0 (8)
00 Dyl 05	68.84(17)	F0 C15 F8	107.6(0)
$0^{2} - Dy^{1} = 0^{3}$	72 12 (16)	$F_{0} = C_{15} = F_{7}$	107.0(10)
02 - Dy1 - 01	12.12(10)	F9 - C15 - F7	104.3(9)
06—Dy1—O1	146.89 (17)	F8—C15—F/	103.9 (8)
O3—Dy1—O1	72.74 (17)	F9—C15—C14	112.7 (8)
O4—Dy1—O1	134.69 (19)	F8—C15—C14	111.7 (8)
O8—Dy1—O1	77.24 (16)	F7—C15—C14	115.7 (8)
O7—Dy1—O1	72.29 (17)	C17—O7—Dy1	130.6 (5)
O5—Dy1—O1	121.60 (16)	C19—O8—Dy1	127.7 (4)
C2	132.8 (5)	F10B—C16—F12B	112.0 (17)
C4—O2—Dy1	131.5 (4)	F10B—C16—F11B	108.9 (15)
C2—C1—HIA	109.5	F12B—C16—F11B	100.6 (16)
C2—C1—H1B	109.5	F10B—C16—C17	117.0 (12)
H1A—C1—H1B	109.5	F12B—C16—C17	110.0 (11)

C2—C1—H1C	109.5	F11B-C16-C17	106.8 (12)
H1A—C1—H1C	109.5	C17—C16—H16A	115.7
H1B—C1—H1C	109.5	C17—C16—H16B	114.7
O1—C2—C3	123.5 (7)	H16A—C16—H16B	101.5
O1—C2—C1	117.3 (7)	C17—C16—H16C	118.4
C3—C2—C1	119.2 (8)	H16A—C16—H16C	103.4
C4—C3—C2	124.2 (7)	H16B—C16—H16C	100.6
С4—С3—Н3	117.9	H16A—F10B—H16B	96.0
С2—С3—Н3	117.9	C16—F11B—H16A	47.4
O2—C4—C3	128.1 (7)	O7—C17—C18	126.1 (7)
O2—C4—C5	112.7 (7)	O7—C17—C16	114.7 (8)
C3—C4—C5	119.2 (7)	C18—C17—C16	119.1 (8)
F1—C5—F2	106.4 (9)	C19—C18—C17	123.6 (7)
F1—C5—F3	105.0 (8)	C19—C18—H18	118.2
F2—C5—F3	103.1 (9)	C17—C18—H18	118.2
F1C5C4	113.5 (8)	O8—C19—C18	127.5 (6)
F2—C5—C4	112.8 (7)	O8—C19—C20	113.8 (7)
F3—C5—C4	115.0 (8)	C18—C19—C20	118.6 (7)
C7—O3—Dy1	132.6 (5)	F11-C20-F12	111.6 (13)
C9—O4—Dy1	130.5 (6)	F11-C20-F10	104.2 (11)
С7—С6—Н6А	109.5	F12-C20-F10	103.2 (9)
С7—С6—Н6В	109.5	F11—C20—C19	111.3 (8)
H6A—C6—H6B	109.5	F12-C20-C19	111.8 (9)
С7—С6—Н6С	109.5	F10-C20-C19	114.4 (9)
H6A—C6—H6C	109.5	C19—C20—H20A	109.4
H6B—C6—H6C	109.5	C19—C20—H20B	121.4
O3—C7—C8	121.9 (8)	H20A—C20—H20B	99.6
O3—C7—C6	117.5 (8)	C19—C20—H20C	120.1
C8—C7—C6	120.6 (9)	H20A—C20—H20C	93.3
C9—C8—C7	123.6 (9)	H20B—C20—H20C	107.3
С9—С8—Н8	118.2	C20—F10—H20C	51.2
С7—С8—Н8	118.2	C20—F11—H20A	62.4
O4—C9—C8	127.8 (8)	C20—F11—H20C	46.8
O4—C9—C10	113.3 (9)	H20A—F11—H20C	105.2
C8—C9—C10	118.7 (10)	C21—N1—C25	121.7 (7)
F4—C10—F4B	136.8 (15)	C21—N1—H1	119.2
F4—C10—F6B	45.6 (9)	C25—N1—H1	119.2
F4B-C10-F6B	117.9 (15)	N1—C21—C22	118.8 (8)
F4	104.8 (13)	N1—C21—H21	120.6
F4B—C10—F6	54.0 (10)	C22—C21—H21	120.6
F6B—C10—F6	133.7 (13)	C23—C22—C21	119.7 (8)
F4—C10—F5	117.5 (14)	C23—C22—H22	120.1
F4B—C10—F5	52.5 (10)	C21—C22—H22	120.1
F6B—C10—F5	74.6 (12)	C22—C23—C24	120.3 (8)
F6—C10—F5	105.0 (12)	C22—C23—H23	119.8
F4—C10—F5B	57.9 (11)	C24—C23—H23	119.8
F4B—C10—F5B	106.0 (15)	C25—C24—C23	120.0 (9)
F6B—C10—F5B	102.1 (14)	C25—C24—H24	120.0

F6-C10-F5B	53.2 (11)	C23—C24—H24	120.0
F5-C10-F5B	147.1 (15)	C24—C25—N1	119.4 (8)
F4—C10—C9	109.5 (10)	C24—C25—H25	120.3
F4B—C10—C9	113.3 (11)	N1—C25—H25	120.3
F6B—C10—C9	112.8 (11)		
O2—Dy1—O1—C2	24.6 (6)	O7—Dy1—O6—C14	-67.3 (7)
O6—Dy1—O1—C2	-166.8 (6)	O5—Dy1—O6—C14	0.8 (6)
O3—Dy1—O1—C2	-66.9 (6)	O1—Dy1—O6—C14	-122.4 (6)
O4—Dy1—O1—C2	-26.9(7)	Dy1—05—C12—C13	9.0 (11)
08—Dv1—O1—C2	-149.8(7)	Dv1—O5—C12—C11	-168.6(5)
07 - Dv1 - 01 - C2	133.8 (7)	O5-C12-C13-C14	-2.2(12)
05 - Dv1 - 01 - C2	83.7 (7)	C11—C12—C13—C14	175.4 (8)
06-Dv1-02-C4	161.1 (6)	Dv1-06-C14-C13	3.7 (12)
$O_3 - D_{v_1} - O_2 - C_4$	44.6 (6)	Dv1-O6-C14-C15	-176.3(5)
04—Dv1— 02 —C4	116.9 (6)	C_{12} C_{13} C_{14} C_{16}	-42(13)
08 - Dy1 - 02 - C4	-17.8(8)	C12 - C13 - C14 - C15	175 7 (8)
0.00 Dyl 0.02 C4	-953(6)	06-C14-C15-F9	-54.8(11)
07 Dy1 02 C4	-1594(6)	C13 - C14 - C15 - F9	125.2 (9)
03 - Dy1 - 02 - C4 01 - Dy1 - 02 - C4	-285(6)	06-C14-C15-F8	66.5(10)
$D_{y1} = 01 = 02 = 04$	169.3 (5)	C13 - C14 - C15 - F8	-1135(9)
$C_1 - C_2 - C_3 - C_4$	169.1 (8)	06-C14-C15-F7	-175.0(8)
$D_{1}^{-} C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-}$	-158 1 (5)	$C_{13} = C_{14} = C_{15} = F_7$	173.0(8)
$C_{2} = C_{2} = C_{4} = C_{5}$	-174.7(7)	C13 - C14 - C13 - C17	5.0(12)
$C_2 - C_3 - C_4 - C_3$	-1/4.7(7)	$O_2 - D_y I - O_7 - C_{17}$	-41.1(6)
$C_{3} - C_{4} - C_{5} - F_{1}$	112.4(10)	$O_0 - D_y - O_1 - O_1 - O_1$	41.1(0)
$C_2 = C_4 = C_3 = F_2$	33.4(10)	03 - Dy1 - 07 - C17	(7)
$C_{3} - C_{4} - C_{5} - F_{2}$	-120.4(9)	04 - Dy1 - 07 - C17	-93.9(7)
02 - 04 - 03 - F3	1/3.3(8)	08 - Dy1 - 07 - C17	29.3 (0)
02 - Dy1 - 03 - C7	42.0(7)	03 - Dy1 - 07 - C17	-113.0(0)
06-Dy1-03-C7	-100.4(7)	01 - Dy - 07 - C17	110.9 (6)
04 - Dy1 - 03 - C7	-36.8(7)	02 - Dy1 - 08 - C19	-119.0(6)
08—Dy1—03—C7	-165.8 (7)	06—Dy1—08—C19	61.8 (5)
0/—Dy1—03—C/	145.7 (6)	03—Dy1—08—C19	1//.0 (6)
05-Dy1-03-C7	-9.3 (9)	04—Dy1—08—C19	116.3 (5)
OI = DyI = O3 = C7	114.5 (7)	0/08019	-33.5 (5)
02—Dy1—04—C9	-60.3 (7)	05—Dy1—08—C19	11.7 (6)
06—Dy1—04—C9	147.6 (7)	O1—Dy1—O8—C19	-108.5 (6)
O3—Dy1—O4—C9	29.4 (7)	Dy1-07-C17-C18	-18.4 (11)
08—Dy1—O4—C9	93.9 (7)	Dy1—07—C17—C16	163.5 (6)
O7—Dy1—O4—C9	-153.7 (6)	F10B—C16—C17—O7	-176.4 (14)
O5—Dy1—O4—C9	-137.0(7)	F12B—C16—C17—O7	54.3 (17)
O1—Dy1—O4—C9	-10.8 (8)	F11B—C16—C17—O7	-54.0 (14)
Dy1	-148.8 (6)	F10B—C16—C17—C18	5.4 (18)
C6—C7—C8—C9	179.6 (9)	F12B—C16—C17—C18	-123.9 (16)
Dy1-04-C9-C10	166.1 (6)	F11B—C16—C17—C18	127.7 (12)
C7—C8—C9—C10	169.6 (8)	O7—C17—C18—C19	-5.8 (12)
O4—C9—C10—F6B	-20.3 (15)	C16—C17—C18—C19	172.2 (8)
C8—C9—C10—F6B	164.5 (13)	Dy1-08-C19-C18	28.9 (10)

O4—C9—C10—F6	175.6 (11)	Dy1-08-C19-C20	-155.5 (6)
C8—C9—C10—F6	0.5 (15)	C17—C18—C19—O8	-0.1 (12)
O4—C9—C10—F5	60.6 (12)	C17—C18—C19—C20	-175.5 (7)
C8—C9—C10—F5	-114.6 (12)	O8—C19—C20—F11	46.0 (14)
O4—C9—C10—F5B	-129.3 (15)	C18-C19-C20-F11	-138.1 (12)
O2—Dy1—O5—C12	-162.0(7)	O8—C19—C20—F12	-79.5 (12)
O6—Dy1—O5—C12	-7.2 (7)	C18-C19-C20-F12	96.5 (12)
O3—Dy1—O5—C12	-108.4 (7)	O8—C19—C20—F10	163.7 (8)
O4—Dy1—O5—C12	-82.0 (7)	C18-C19-C20-F10	-20.3 (13)
O8—Dy1—O5—C12	41.9 (7)	C25—N1—C21—C22	1.3 (13)
O7—Dy1—O5—C12	88.7 (7)	N1-C21-C22-C23	-0.7 (14)
O1—Dy1—O5—C12	140.3 (6)	C21—C22—C23—C24	-1.4 (15)
O2—Dy1—O6—C14	40.7 (8)	C22—C23—C24—C25	3.0 (14)
O3—Dy1—O6—C14	149.1 (6)	C23—C24—C25—N1	-2.4 (14)
O4—Dy1—O6—C14	86.2 (7)	C21—N1—C25—C24	0.3 (14)
O8—Dy1—O6—C14	-139.9 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…O5	0.86	2.10	2.947 (8)	167