# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 2-(2-{2-[2-(Dibromomethyl)phenoxy]ethoxy}benzyloxy)benzaldehyde

#### Juan Xia, Xiang Liu, An-Qi Wang and Zhong-Xing Su\*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: zxsu@lzu.edu.cn

Received 21 December 2010; accepted 20 February 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.011 Å; R factor = 0.062; wR factor = 0.207; data-to-parameter ratio = 15.0.

The molecule of the title compound,  $C_{23}H_{20}Br_2O_4$ , adopts a Z conformation as a result of intermolecular C-H···Br bonding. One benzene ring, with the structure R-CHBr<sub>2</sub>, makes a dihedral angle of  $63.0(2)^{\circ}$  with the other benzene ring attached to the aldehyde group. Intermolecular  $\pi - \pi$ interactions [centroid-centroid stacking distance 3.698 (4) Å] and a weak  $C-H\cdots$ Br contact is present in the crystal structure.

#### **Related literature**

For general background to the biological activity of salicylaldehydes and their derivatives, see: Jahnke et al. (1993); Pelttari et al. (2007); Fillebeen & Pantopoulos (2010); Fan et al. (2010). For related structures, see: Mori et al. (2010); Potapov et al. (2009); Purushothaman & Raghunathan (2009). For the preparation of the title compound, see: Purushothaman & Raghunathan (2009); Zhang et al. (2010).



#### **Experimental**

#### Crystal data

| $C_{23}H_{20}Br_2O_4$           | V = 2122 (2) Å <sup>3</sup>               |
|---------------------------------|-------------------------------------------|
| $M_r = 520.19$                  | Z = 4                                     |
| Monoclinic, $P2_1/c$            | Mo $K\alpha$ radiation                    |
| a = 12.867 (7)  Å               | $\mu = 3.85 \text{ mm}^{-1}$              |
| b = 18.07 (1)  Å                | T = 296  K                                |
| c = 9.649 (5)  Å                | $0.34 \times 0.32 \times 0.28 \text{ mm}$ |
| $\beta = 108.955 \ (6)^{\circ}$ |                                           |
|                                 |                                           |

#### Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\rm min}=0.281,\;T_{\rm max}=0.341$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.062$ | 263 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.207$               | H-atom parameters constrained                              |
| S = 1.02                        | $\Delta \rho_{\rm max} = 0.79 \text{ e } \text{\AA}^{-3}$  |
| 3944 reflections                | $\Delta \rho_{\rm min} = -0.75 \text{ e } \text{\AA}^{-3}$ |

15392 measured reflections

 $R_{\rm int} = 0.063$ 

3944 independent reflections

1905 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H                                    | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|----------------------------------------|-------------------------|--------------|---------------------------|
| $C5-H5\cdots Br1^i$         | 0.93                                   | 3.03                    | 3.529 (7)    | 116                       |
| Symmetry code: (i)          | $-r + 1 v + \frac{1}{2} - \frac{1}{2}$ | 7 + <sup>1</sup>        |              |                           |

metry code: (i) -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ 

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge the Fundamental Research Funds for the Central Universities (lzujbky-2010-43) and the Research Foundation for Young Teachers Possessing a Doctoral Degree of Lanzhou University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2257).

#### References

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, C.-D., Su, H., Zhao, J., Zhao, B.-X., Zhang, S.-L. & Miao, J.-Y. (2010). Eur. J. Med. Chem. 45, 1438-1446.
- Fillebeen, C. & Pantopoulos, K. (2010). J. Hepatol. 53, 995-999.
- Jahnke, K., Podschun, B., Schnackerz, K. D., Kautz, J. & Cook, P. F. (1993). Biochemistry, 32, 5160-5166.
- Mori, K., Kawasaki, T., Sueoka, S. & Akiyama, T. (2010). Org. Lett. 12, 1732-1735.
- Pelttari, E., Karhumaki, E., Langshaw, J., Peräkylä, H. & Elo, H. (2007). Z. Naturforsch Teil C, 62, 487-497.
- Potapov, V. V., Fetisova, N. A., Nikitin, A. V. & Ivachtchenko, A. V. (2009). Mendeleev Commun. 19, 287-289.
- Purushothaman, S. & Raghunathan, R. (2009). Tetrahedron Lett. 50, 6848-6850.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, L.-W., Wu, W.-Y., Su, Z.-X., Zhang, A.-J. & Liu, X. (2010). Acta Cryst. E66. o2229.

# supporting information

Acta Cryst. (2011). E67, o714 [doi:10.1107/S160053681100643X]

# 2-(2-{2-[2-(Dibromomethyl)phenoxy]ethoxy}benzyloxy)benzaldehyde

## Juan Xia, Xiang Liu, An-Qi Wang and Zhong-Xing Su

## S1. Comment

It is reported that salicylaldehydes and their derivatives have showed a wide variety of biological activities, such as antiseptic, labelling cell, antiproliferative and pesticidal (Jahnke *et al.*, 1993; Pelttari *et al.*, 2007; Fillebeen & Pantopoulos, 2010; Fan *et al.*, 2010). As an important class of aldehydes, substituted aldehydes also exhibit potential biological activities. The related structures also have been reported (Mori *et al.*, 2010; Potapov *et al.*, 2009; Purushothaman & Raghunathan, 2009). On this base, the title compound was synthesized.

In the title compound (Fig. 1), a dihedral angle  $63.0 (2)^{\circ}$  is observed between benzene rings on the both ends of molecule. The crystal structure is stabilized by weak intramolecular C—H…O bonds.

The molecule of the title compound is linked by the C—H···Br bonding (Fig. 2) in to the *Z* formation. Furthermore, the weak intermolecular  $\pi$ – $\pi$  stacking interactions - Cg1··· $Cg2^{ii}$ = 3.698 (4)Å, Cg3··· $Cg3^{iii}$  = 4.193 (5)Å, where Cg1 is centroid of the ring C2–C7, Cg2 is centroid of the ring C9–C14 and Cg3 is centroid of the ring C17–C22. Symmetry codes: (ii) -*x*, 1-*y*, -*z*; (iii) 1-*x*, 1-*y*, 1-*z*.

## **S2. Experimental**

All reagents and solvents were obtained from commercial sources and needed to be further purified. The title compound was synthesized according to the related literature (Purushothaman & Raghunathan, 2009). A solution of salicylaldehyde (2 mmol in 10 ml acetone) was slowly added dropwise to a suspension of 1,2-bis(2-(bromomethyl)phenoxy) ethane (1 mmol in 20 ml acetone) prepared according to the reported method (Zhang *et al.*, 2010) and anhydrous potassium carbonate (2 mmol). The mixture was refluxed for 8 h. The reaction mixture was then cooled to room temperature and filtered. After this period, the residue was dissolved and extracted by ethyl acetate. The combined organical layer was washed with water and then dried with anhydrous sodium sulfate. After that the solvent was evaporated under vacuum to give the product. The obtained residue was purified by flash column chromatography on silica gel using petroleum ether/ethylacetate (5:2) mixtures as eluent.

## **S3. Refinement**

All H atoms were found from difference Fourier maps and were subsequently refined in a riding-model approximation with C—H distances ranging from 0.93Å to 0.98Å and with  $U_{iso}(H) = 1.2 U_{eq}(C)$  of the carrier atom.



## Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.



## Figure 2

A view of the C—H···Br<sup>i</sup> interactions in the crystal structure of the title compound. Symmetry code: (i) -*x*+1, *y*+1/2, - z+1/2).

## 2-(2-{2-[2-(Dibromomethyl)phenoxy]ethoxy}benzyloxy)benzaldehyde

Crystal data

| $C_{23}H_{20}Br_2O_4$                    | F(000) = 1040                                         |
|------------------------------------------|-------------------------------------------------------|
| $M_r = 520.19$                           | $D_{\rm x} = 1.628 {\rm Mg} {\rm m}^{-3}$             |
| Monoclinic, $P2_1/c$                     | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc                     | Cell parameters from 1808 reflections                 |
| a = 12.867 (7)  Å                        | $\theta = 2.3 - 17.5^{\circ}$                         |
| b = 18.07 (1)  Å                         | $\mu = 3.85 \text{ mm}^{-1}$                          |
| c = 9.649(5) Å                           | T = 296  K                                            |
| $\beta = 108.955 \ (6)^{\circ}$          | Block, colourless                                     |
| V = 2122 (2) Å <sup>3</sup>              | $0.34 \times 0.32 \times 0.28 \text{ mm}$             |
| Z = 4                                    |                                                       |
| Data collection                          |                                                       |
| Bruker APEXII CCD                        | Graphite monochromator                                |
| diffractometer                           | $\varphi$ and $\omega$ scans                          |
| Radiation source: fine-focus sealed tube |                                                       |

Absorption correction: multi-scan<br/>(SADABS; Sheldrick, 1996) $R_{int} = 0.063$ <br/> $\theta_{max} = 25.5^{\circ}, \theta_{min} = 2.3^{\circ}$ <br/> $h = -15 \rightarrow 15$  $T_{min} = 0.281, T_{max} = 0.341$ <br/> $I = -15 \rightarrow 15$  $h = -15 \rightarrow 15$ <br/> $I = -21 \rightarrow 21$ <br/> $I = -11 \rightarrow 11$ 1905 reflections with  $I > 2\sigma(I)$  $I = -11 \rightarrow 11$ 

## Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from                                                                           |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | neighbouring sites                                                                                              |
| $R[F^2 > 2\sigma(F^2)] = 0.062$                                | H-atom parameters constrained                                                                                   |
| $wR(F^2) = 0.207$                                              | $w = 1/[\sigma^2(F_o^2) + (0.1049P)^2 + 0.4797P]$                                                               |
| S = 1.02                                                       | where $P = (F_o^2 + 2F_c^2)/3$                                                                                  |
| 3944 reflections                                               | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                             |
| 263 parameters                                                 | $\Delta  ho_{ m max} = 0.79 \ { m e} \ { m \AA}^{-3}$                                                           |
| 0 restraints                                                   | $\Delta \rho_{\min} = -0.75 \text{ e} \text{ Å}^{-3}$                                                           |
| Primary atom site location: structure-invariant direct methods | Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Secondary atom site location: difference Fourier               | Extinction coefficient: 0.0020 (3)                                                                              |
| map                                                            |                                                                                                                 |

### Special details

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | У           | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|-------------|---------------|-----------------------------|--|
| Br1 | 0.56817 (7) | 0.30130 (6) | 0.29797 (13)  | 0.1092 (5)                  |  |
| Br2 | 0.37069 (9) | 0.31794 (5) | -0.00106 (10) | 0.0986 (5)                  |  |
| C1  | -0.1269 (7) | 0.7137 (4)  | -0.1294 (8)   | 0.069 (2)                   |  |
| H1  | -0.1621     | 0.6777      | -0.0919       | 0.083*                      |  |
| C2  | -0.0059 (6) | 0.7075 (3)  | -0.0932 (6)   | 0.0509 (16)                 |  |
| C3  | 0.0495 (7)  | 0.7556 (4)  | -0.1572 (7)   | 0.0658 (19)                 |  |
| H3  | 0.0096      | 0.7922      | -0.2199       | 0.079*                      |  |
| C4  | 0.1583 (7)  | 0.7514 (4)  | -0.1323 (8)   | 0.073 (2)                   |  |
| H4  | 0.1932      | 0.7846      | -0.1761       | 0.088*                      |  |
| C5  | 0.2176 (6)  | 0.6962 (4)  | -0.0397 (8)   | 0.070 (2)                   |  |
| H5  | 0.2930      | 0.6929      | -0.0213       | 0.084*                      |  |
| C6  | 0.1660 (6)  | 0.6458 (4)  | 0.0260 (7)    | 0.0551 (16)                 |  |
| H6  | 0.2062      | 0.6085      | 0.0865        | 0.066*                      |  |
| C7  | 0.0548 (6)  | 0.6522 (3)  | -0.0001 (6)   | 0.0511 (16)                 |  |
| C8  | 0.0522 (5)  | 0.5531 (3)  | 0.1655 (7)    | 0.0487 (15)                 |  |
| H8A | 0.1057      | 0.5775      | 0.2474        | 0.058*                      |  |
| H8B | 0.0905      | 0.5182      | 0.1229        | 0.058*                      |  |
|     |             |             |               |                             |  |

| C9   | -0.0317 (5) | 0.5130 (3) | 0.2169 (6)  | 0.0470 (15) |
|------|-------------|------------|-------------|-------------|
| C10  | -0.1419 (6) | 0.5287 (4) | 0.1643 (7)  | 0.0617 (18) |
| H10  | -0.1676     | 0.5664     | 0.0961      | 0.074*      |
| C11  | -0.2162 (6) | 0.4878 (5) | 0.2135 (8)  | 0.070 (2)   |
| H11  | -0.2910     | 0.4979     | 0.1766      | 0.084*      |
| C12  | -0.1791 (7) | 0.4340 (4) | 0.3138 (8)  | 0.071 (2)   |
| H12  | -0.2284     | 0.4073     | 0.3465      | 0.085*      |
| C13  | -0.0685 (6) | 0.4184 (4) | 0.3684 (7)  | 0.0602 (17) |
| H13  | -0.0436     | 0.3811     | 0.4378      | 0.072*      |
| C14  | 0.0057 (5)  | 0.4576 (3) | 0.3211 (7)  | 0.0487 (16) |
| C15  | 0.1611 (5)  | 0.3890 (3) | 0.4722 (6)  | 0.0536 (16) |
| H15A | 0.1381      | 0.3412     | 0.4268      | 0.064*      |
| H15B | 0.1347      | 0.3939     | 0.5552      | 0.064*      |
| C16  | 0.2849 (6)  | 0.3950 (4) | 0.5223 (7)  | 0.0670 (19) |
| H16A | 0.3066      | 0.4437     | 0.5639      | 0.080*      |
| H16B | 0.3163      | 0.3586     | 0.5984      | 0.080*      |
| C17  | 0.3652 (5)  | 0.4407 (4) | 0.3435 (7)  | 0.0556 (17) |
| C18  | 0.3584 (6)  | 0.5154 (4) | 0.3772 (8)  | 0.0675 (19) |
| H18  | 0.3226      | 0.5295     | 0.4426      | 0.081*      |
| C19  | 0.4055 (6)  | 0.5681 (4) | 0.3121 (9)  | 0.077 (2)   |
| H19  | 0.4046      | 0.6176     | 0.3381      | 0.092*      |
| C20  | 0.4531 (6)  | 0.5485 (5) | 0.2106 (9)  | 0.076 (2)   |
| H20  | 0.4825      | 0.5846     | 0.1656      | 0.091*      |
| C21  | 0.4579 (6)  | 0.4750 (5) | 0.1743 (8)  | 0.071 (2)   |
| H21  | 0.4906      | 0.4622     | 0.1047      | 0.086*      |
| C22  | 0.4145 (5)  | 0.4197 (4) | 0.2401 (7)  | 0.0536 (16) |
| C23  | 0.4210 (6)  | 0.3400 (4) | 0.2060 (8)  | 0.0657 (19) |
| H23  | 0.3725      | 0.3135     | 0.2490      | 0.079*      |
| 01   | -0.1819 (4) | 0.7608 (3) | -0.2023 (5) | 0.0824 (16) |
| O2   | -0.0053 (3) | 0.6067 (2) | 0.0578 (4)  | 0.0549 (11) |
| 03   | 0.1171 (4)  | 0.4474 (2) | 0.3681 (4)  | 0.0560 (11) |
| O4   | 0.3266 (4)  | 0.3834 (2) | 0.4054 (5)  | 0.0737 (14) |
|      |             |            |             |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$    | $U^{12}$   | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|-------------|------------|------------|-------------|
| Br1 | 0.0693 (7) | 0.0994 (8) | 0.1485 (10) | 0.0213 (5) | 0.0212 (6) | 0.0112 (6)  |
| Br2 | 0.1243 (9) | 0.0954 (7) | 0.0791 (7)  | 0.0014 (5) | 0.0372 (6) | -0.0179 (5) |
| C1  | 0.084 (6)  | 0.059 (4)  | 0.059 (5)   | 0.000 (4)  | 0.015 (4)  | 0.000 (4)   |
| C2  | 0.070 (5)  | 0.037 (3)  | 0.042 (4)   | -0.006 (3) | 0.013 (3)  | -0.004 (3)  |
| C3  | 0.087 (6)  | 0.052 (4)  | 0.054 (4)   | -0.005 (4) | 0.017 (4)  | -0.002 (3)  |
| C4  | 0.096 (6)  | 0.059 (5)  | 0.065 (5)   | -0.022 (4) | 0.027 (5)  | 0.010 (4)   |
| C5  | 0.063 (5)  | 0.082 (5)  | 0.064 (5)   | -0.015 (4) | 0.019 (4)  | -0.008 (4)  |
| C6  | 0.058 (5)  | 0.051 (4)  | 0.049 (4)   | -0.005 (3) | 0.008 (3)  | -0.001 (3)  |
| C7  | 0.062 (5)  | 0.046 (4)  | 0.041 (4)   | -0.004 (3) | 0.011 (3)  | -0.007 (3)  |
| C8  | 0.056 (4)  | 0.040 (3)  | 0.051 (4)   | 0.001 (3)  | 0.019 (3)  | 0.004 (3)   |
| C9  | 0.056 (4)  | 0.044 (4)  | 0.042 (4)   | 0.000 (3)  | 0.016 (3)  | -0.010 (3)  |
| C10 | 0.073 (5)  | 0.055 (4)  | 0.060 (4)   | 0.005 (4)  | 0.026 (4)  | -0.005 (3)  |

| C11 | 0.051 (4) | 0.087 (5) | 0.077 (5) | -0.013 (4) | 0.030 (4) | -0.016 (5) |
|-----|-----------|-----------|-----------|------------|-----------|------------|
| C12 | 0.083 (6) | 0.078 (5) | 0.071 (5) | -0.028 (4) | 0.049 (5) | -0.019 (4) |
| C13 | 0.069 (5) | 0.062 (4) | 0.051 (4) | -0.008 (4) | 0.021 (4) | 0.002 (3)  |
| C14 | 0.058 (5) | 0.045 (4) | 0.049 (4) | -0.005 (3) | 0.025 (3) | -0.001 (3) |
| C15 | 0.071 (5) | 0.056 (4) | 0.034 (3) | 0.001 (3)  | 0.017 (3) | 0.006 (3)  |
| C16 | 0.082 (5) | 0.069 (5) | 0.053 (4) | 0.004 (4)  | 0.025 (4) | 0.006 (4)  |
| C17 | 0.047 (4) | 0.060 (4) | 0.056 (4) | 0.000 (3)  | 0.012 (3) | 0.003 (3)  |
| C18 | 0.064 (5) | 0.065 (5) | 0.075 (5) | 0.008 (4)  | 0.024 (4) | 0.011 (4)  |
| C19 | 0.064 (5) | 0.057 (4) | 0.086 (6) | 0.004 (4)  | -0.006(5) | 0.003 (4)  |
| C20 | 0.063 (5) | 0.082 (6) | 0.079 (6) | -0.023 (4) | 0.020 (4) | 0.013 (4)  |
| C21 | 0.061 (5) | 0.088 (6) | 0.064 (5) | -0.019 (4) | 0.018 (4) | -0.002 (4) |
| C22 | 0.038 (4) | 0.069 (4) | 0.052 (4) | -0.005 (3) | 0.011 (3) | -0.003 (3) |
| C23 | 0.061 (5) | 0.064 (4) | 0.081 (5) | 0.007 (3)  | 0.035 (4) | 0.001 (4)  |
| 01  | 0.089 (4) | 0.072 (3) | 0.068 (3) | 0.029 (3)  | 0.000 (3) | 0.008 (3)  |
| O2  | 0.058 (3) | 0.050 (3) | 0.057 (3) | 0.002 (2)  | 0.019 (2) | 0.014 (2)  |
| O3  | 0.061 (3) | 0.058 (3) | 0.051 (3) | -0.002 (2) | 0.021 (2) | 0.011 (2)  |
| O4  | 0.097 (4) | 0.059 (3) | 0.084 (3) | 0.006 (3)  | 0.056 (3) | 0.007 (3)  |
|     |           |           |           |            |           |            |

Geometric parameters (Å, °)

| Br1—C23  | 1.941 (7)  | C12—C13    | 1.377 (10) |
|----------|------------|------------|------------|
| Br2—C23  | 1.931 (7)  | C12—H12    | 0.9300     |
| C1—O1    | 1.182 (8)  | C13—C14    | 1.380 (8)  |
| C1—C2    | 1.485 (10) | С13—Н13    | 0.9300     |
| C1—H1    | 0.9300     | C14—O3     | 1.368 (7)  |
| C2—C3    | 1.389 (9)  | C15—O3     | 1.441 (7)  |
| C2—C7    | 1.400 (8)  | C15—C16    | 1.510 (9)  |
| C3—C4    | 1.344 (10) | C15—H15A   | 0.9700     |
| С3—Н3    | 0.9300     | C15—H15B   | 0.9700     |
| C4—C5    | 1.389 (10) | C16—O4     | 1.414 (7)  |
| C4—H4    | 0.9300     | C16—H16A   | 0.9700     |
| C5—C6    | 1.395 (9)  | C16—H16B   | 0.9700     |
| С5—Н5    | 0.9300     | C17—O4     | 1.367 (7)  |
| C6—C7    | 1.376 (9)  | C17—C18    | 1.397 (9)  |
| С6—Н6    | 0.9300     | C17—C22    | 1.397 (9)  |
| C7—O2    | 1.366 (7)  | C18—C19    | 1.385 (10) |
| C8—O2    | 1.437 (7)  | C18—H18    | 0.9300     |
| C8—C9    | 1.510 (8)  | C19—C20    | 1.361 (11) |
| C8—H8A   | 0.9700     | С19—Н19    | 0.9300     |
| C8—H8B   | 0.9700     | C20—C21    | 1.379 (11) |
| C9—C10   | 1.372 (9)  | C20—H20    | 0.9300     |
| C9—C14   | 1.390 (8)  | C21—C22    | 1.394 (9)  |
| C10—C11  | 1.408 (9)  | C21—H21    | 0.9300     |
| C10—H10  | 0.9300     | C22—C23    | 1.486 (9)  |
| C11—C12  | 1.344 (10) | С23—Н23    | 0.9800     |
| C11—H11  | 0.9300     |            |            |
| O1—C1—C2 | 124.9 (7)  | O3—C14—C13 | 125.8 (6)  |

| 01 C1 U1                   | 1175                 | $O_{2}$ $C_{14}$ $C_{0}$       | 114(.5)             |
|----------------------------|----------------------|--------------------------------|---------------------|
|                            | 117.5                | 03-014-09                      | 114.6 (5)           |
| C2—C1—H1                   | 11/.5                |                                | 119.7 (6)           |
| C3—C2—C7                   | 118.2 (7)            | 03-015-016                     | 107.8 (5)           |
| C3—C2—C1                   | 119.9 (6)            | O3—C15—H15A                    | 110.1               |
| C7—C2—C1                   | 121.9 (6)            | C16—C15—H15A                   | 110.1               |
| C4—C3—C2                   | 122.7 (7)            | O3—C15—H15B                    | 110.1               |
| C4—C3—H3                   | 118.7                | C16—C15—H15B                   | 110.1               |
| С2—С3—Н3                   | 118.7                | H15A—C15—H15B                  | 108.5               |
| C3—C4—C5                   | 118.6 (7)            | O4—C16—C15                     | 111.6 (5)           |
| C3—C4—H4                   | 120.7                | O4—C16—H16A                    | 109.3               |
| C5—C4—H4                   | 120.7                | C15—C16—H16A                   | 109.3               |
| C4—C5—C6                   | 121.2 (7)            | O4—C16—H16B                    | 109.3               |
| C4—C5—H5                   | 119.4                | C15—C16—H16B                   | 109.3               |
| С6—С5—Н5                   | 119.4                | H16A—C16—H16B                  | 108.0               |
| C7-C6-C5                   | 118.8 (6)            | 04-C17-C18                     | 124 7 (6)           |
| C7—C6—H6                   | 120.6                | 04-C17-C22                     | 114 9 (6)           |
| C5-C6-H6                   | 120.6                | C18 - C17 - C22                | 120.4 (6)           |
| $0^{2}-0^{7}-0^{6}$        | 124.6 (6)            | C19 - C18 - C17                | 120.4(0)<br>1193(7) |
| 02 - 07 - 00               | 124.0(0)<br>114.0(6) | $C_{10} = C_{10} = C_{17}$     | 119.5 (7)           |
| 02 - 07 - 02               | 114.9(0)             | $C_{17} = C_{18} = H_{18}$     | 120.4               |
| $C_0 - C_2$                | 120.3(0)<br>107.8(5) | $C_{1}^{} C_{10}^{} C_{18}^{}$ | 120.4               |
| 02 - 03 - 09               | 107.8 (3)            | $C_{20} = C_{19} = C_{18}$     | 120.8 (7)           |
| 02-08-H8A                  | 110.1                | C20—C19—H19                    | 119.6               |
| C9—C8—H8A                  | 110.1                | С18—С19—Н19                    | 119.6               |
| O2—C8—H8B                  | 110.1                | C19—C20—C21                    | 120.1 (7)           |
| С9—С8—Н8В                  | 110.1                | С19—С20—Н20                    | 119.9               |
| H8A—C8—H8B                 | 108.5                | С21—С20—Н20                    | 119.9               |
| C10—C9—C14                 | 119.3 (6)            | C20—C21—C22                    | 121.1 (7)           |
| С10—С9—С8                  | 122.8 (6)            | C20—C21—H21                    | 119.5               |
| C14—C9—C8                  | 117.8 (5)            | C22—C21—H21                    | 119.5               |
| C9—C10—C11                 | 120.0 (7)            | C17—C22—C21                    | 118.2 (7)           |
| С9—С10—Н10                 | 120.0                | C17—C22—C23                    | 119.5 (6)           |
| C11—C10—H10                | 120.0                | C21—C22—C23                    | 122.3 (6)           |
| C12—C11—C10                | 120.1 (7)            | C22—C23—Br2                    | 113.9 (5)           |
| C12—C11—H11                | 120.0                | C22—C23—Br1                    | 111.4 (5)           |
| C10—C11—H11                | 120.0                | Br2—C23—Br1                    | 110.4 (3)           |
| $C_{11} - C_{12} - C_{13}$ | 120.3 (6)            | C22—C23—H23                    | 106.9               |
| $C_{11} - C_{12} - H_{12}$ | 119.8                | Br2—C23—H23                    | 106.9               |
| C13 - C12 - H12            | 119.8                | Br1H23                         | 106.9               |
| $C_{13} = C_{12} = 112$    | 120.6 (7)            | C7  C2  C8                     | 118.4(5)            |
| $C_{14} = C_{13} = C_{12}$ | 120.0 (7)            | $C_1 = 02 = C_0^3$             | 1175(5)             |
| $C_{14} = C_{13} = 1113$   | 119.7                | C17 - O4 - C16                 | 117.5(5)            |
| С12—С13—Н13                | 119.7                | UI/                            | 121.0 (5)           |
| O1—C1—C2—C3                | -6.0 (10)            | O3—C15—C16—O4                  | -63.5 (7)           |
| O1—C1—C2—C7                | 176.8 (6)            | O4—C17—C18—C19                 | 176.8 (6)           |
| C7—C2—C3—C4                | -0.6 (10)            | C22-C17-C18-C19                | -3.0 (10)           |
| C1—C2—C3—C4                | -178.0 (6)           | C17—C18—C19—C20                | 3.4 (11)            |
| C2—C3—C4—C5                | 0.6 (10)             | C18—C19—C20—C21                | -1.9 (11)           |
| C3—C4—C5—C6                | 0.3 (10)             | C19—C20—C21—C22                | 0.0 (11)            |
|                            | ~ /                  |                                |                     |

| C4—C5—C6—C7     | -1.1 (10)  | O4—C17—C22—C21  | -178.7 (6) |
|-----------------|------------|-----------------|------------|
| C5—C6—C7—O2     | -179.8 (5) | C18—C17—C22—C21 | 1.1 (9)    |
| C5—C6—C7—C2     | 1.1 (9)    | O4—C17—C22—C23  | 0.1 (9)    |
| C3—C2—C7—O2     | -179.5 (5) | C18—C17—C22—C23 | 179.9 (6)  |
| C1—C2—C7—O2     | -2.2 (8)   | C20-C21-C22-C17 | 0.4 (10)   |
| C3—C2—C7—C6     | -0.3 (9)   | C20—C21—C22—C23 | -178.3 (7) |
| C1—C2—C7—C6     | 177.0 (6)  | C17—C22—C23—Br2 | 130.6 (5)  |
| O2-C8-C9-C10    | 0.0 (8)    | C21—C22—C23—Br2 | -50.7 (8)  |
| O2—C8—C9—C14    | 179.3 (5)  | C17—C22—C23—Br1 | -103.8 (6) |
| C14—C9—C10—C11  | -1.3 (9)   | C21—C22—C23—Br1 | 75.0 (7)   |
| C8—C9—C10—C11   | 178.0 (5)  | C6—C7—O2—C8     | 6.8 (8)    |
| C9-C10-C11-C12  | 1.0 (10)   | C2—C7—O2—C8     | -174.1 (5) |
| C10-C11-C12-C13 | -0.4 (10)  | C9—C8—O2—C7     | 177.1 (4)  |
| C11—C12—C13—C14 | 0.0 (10)   | C13—C14—O3—C15  | 2.5 (8)    |
| C12—C13—C14—O3  | 179.5 (6)  | C9—C14—O3—C15   | -177.8 (5) |
| C12—C13—C14—C9  | -0.3 (9)   | C16—C15—O3—C14  | -172.6 (5) |
| C10-C9-C14-O3   | -178.8 (5) | C18—C17—O4—C16  | -6.4 (10)  |
| C8—C9—C14—O3    | 1.8 (7)    | C22—C17—O4—C16  | 173.5 (5)  |
| C10-C9-C14-C13  | 1.0 (9)    | C15—C16—O4—C17  | 105.9 (7)  |
| C8—C9—C14—C13   | -178.4 (5) |                 |            |
|                 |            |                 |            |

## Hydrogen-bond geometry (Å, °)

| D—H···A                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|--------------------------|-------------|--------------|--------------|---------|
| С1—Н1…О2                 | 0.93        | 2.42         | 2.753 (9)    | 101     |
| C10—H10…O2               | 0.93        | 2.35         | 2.710 (8)    | 102     |
| C23—H23…O4               | 0.98        | 2.19         | 2.700 (8)    | 111     |
| C5—H5···Br1 <sup>i</sup> | 0.93        | 3.03         | 3.529 (7)    | 116     |
|                          |             |              |              |         |

Symmetry code: (i) -x+1, y+1/2, -z+1/2.