Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2,2'-Bipyridine- $\kappa^2 N, N'$)bis(3-methoxybenzoato- $\kappa^2 O^1, O^{1'}$)copper(II) monohydrate

Ming-Hao Lin, Jing-Fan Zhou, Bin-Bin Liu and Jian-Li Lin*

State Key Laboratory Base of Novel Functional Materials and Preparation Science, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China Correspondence e-mail: linjianli@nbu.edu.cn

Received 24 November 2010; accepted 15 February 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.113; data-to-parameter ratio = 16.9.

The title compound, $[Cu(C_8H_7O_3)_2(C_{10}H_8N_2)]\cdot H_2O$, is comprised of a Cu^{II} ion, two 3-methoxybenzoate ligands, a 2,2'-bipyridine (bipy) ligand and one uncoordinated water molecule. The Cu^{II} ion and the water O atom lie on a twofold axis. The Cu^{II} ion exhibits a six-coordinate distorted octahedral geometry, with two N atoms from the bipy ligand [Cu-N = 1.9996 (16) Å] and four O atoms from two 3-methoxybenzoate ligands [Cu-O = 1.9551 (15) and 2.6016 (16) Å].The molecules are linked by $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, forming a three-dimensional network.

Related literature

For hydrogen bonds and crystal engineering, see: Aakeröy & Seddon (1993). For potential applications of transition metal complexes, see: Liu et al. (2007); Shibasaki & Yoshikawa (2002). For carboxylate compounds with six-coordinate metal atoms, see: Liu et al. (2010); Su et al. (2005).

Experimental

Crystal data

[Cu(C₈H₇O₃)₂(C₁₀H₈N₂)]·H₂O $M_r = 540.01$ Monoclinic, C2/c a = 19.888 (4) Å b = 10.887 (2) Å c = 11.612 (2) Å $\beta = 103.62 \ (3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.710, \ \tilde{T}_{\max} = 0.780$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	165 parameters
$wR(F^2) = 0.113$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$
2796 reflections	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

V = 2443.5 (8) Å³

Mo Ka radiation $\mu = 0.94 \text{ mm}^{-1}$

 $0.1 \times 0.1 \times 0.1 \; \mathrm{mm}$

12080 measured reflections

2796 independent reflections

2391 reflections with $I > 2\sigma(I)$

Z = 4

T = 293 K

 $R_{\rm int} = 0.054$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$04 - H41 \cdots O1$ $C12 - H12A \cdots O4^{ii}$ $C11 - H11A \cdots O3^{ii}$ $C10 - H10A \cdots O2^{iii}$	0.88 0.93 0.93 0.93	2.24 2.41 2.57 2.66	3.023 (3) 3.339 (3) 3.483 (3) 3.342 (3)	147 178 166 131

Symmetry codes: (ii) x, y + 1, z; (iii) $x, -y + 1, z + \frac{1}{2}$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

This project was supported by the Education Department of Zhejiang Province and the scientific research fund of Nibong University (grant No. XKL069). Thanks are also extended to the K. C. Wong Magna Fund, Ningbo University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2078).

References

Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Liu, Y. L., Eubank, J. F., Cairns, A. J., Eckert, J., Kravtsov, V. C., Luebke, R. & Eddaoudi, M. (2007). Angew. Chem. Int. Ed. 46, 3278-3283.
- Liu, Y., Sun, J. & Niu, X. (2010). Acta Cryst. E66, m34.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187-2209.
- Su, J.-R., Gu, J.-M. & Xu, D.-J. (2005). Acta Cryst. E61, m379-m381.

supporting information

Acta Cryst. (2011). E67, m352 [doi:10.1107/S1600536811005563]

(2,2'-Bipyridine- $\kappa^2 N,N'$)bis(3-methoxybenzoato- $\kappa^2 O^1,O^1'$)copper(II) monohydrate

Ming-Hao Lin, Jing-Fan Zhou, Bin-Bin Liu and Jian-Li Lin

S1. Comment

In the past decade, a variety of supramolecular architectures based on hydrogen bonds, $\pi \cdots \pi$ interactions have been achieved by using transition metal centers and organic ligands (Aakeroy *et al.*, 1993), they have potential application in catalysis, gas storage, and in molecular–based magnetic materials (Liu *et al.*, 2007, Shibasaki *et al.*, 2002). Herein, we are interested in self-assemblies of Cu²⁺ ions and bipy with 3–methoxybenzoic acid, which led to the preparation of [Cu(bipy)₂(C₈H₈O₃)₂].H₂O.

The title compound, $[Cu(bipy)_2(C_8H_8O_3)_2]$.H₂O, is comprised of a Cu^{II} ion, two 3–methoxybenzoate ligands, a 2,2'–bipyridine(bipy) ligand and one lattice H₂O molecule. As illustrated in Fig.1, the Cu ion and water O atom lie on a two fold axis. The Cu^{II} ion has a six–coordinate distorted octahedral geometry with two N atoms from the bipy ligand [Cu–N =1.9996 (16) Å] and four O atoms from two 3–methoxybenzoate ligands [Cu–O = 1.9551 (15) and 2.6016 (16) Å]. Owing to geometric constraints and the Jahn–Teller effect, the Cu–O bonds in the axial direction are longer than in the equatorial plane. Two O atoms and two N atoms occupy the equatorial plane position with the r.m.s. deviation from the ideal plane of 0.214 Å, while two O atoms lie in the apical positions with an axis angle of 140.53 (5)° showing a large deviation from the normal 180°, which is also seen in similar carboxylate complexes (Liu *et al.*, 2010; Su *et al.*, 2005). For 3–methoxybenzoate anions, the plane of benzene ring and carboxylate group are nearly co–planar where the dihedral angle between the benzene ring and carboxylate plane is 5.2 (3)°. The water molecules are not coordinated to Cu and the distance between copper and water oxygen atoms is 4.019 (2) Å.

The molecules are linked *via* hydrogen bonds (O4–H41···O1, C12–H12A···O4, C11–H11A···O3) into one-dimensional supramolecular chains extending along the [100] direction, which are linked by hydrogen bonds (C5–H5A···O2) into two dimensional layers parallel to (100) (Fig. 2). The layers are arranged alternately in an ···ABAB···sequence and further assembled into there–dimensional network by hydrogen bonds (C10–H10A···O2).

S2. Experimental

CuCl₂.2H₂O (0.1705 g, 1.000 mmol) was successively added to 20 ml C₂H₅OH–H₂O(1:1, ν/ν), 3–methoxybenzoate (0.1520 g, 1.000 mmol) and bipy (0.1569 g, 1.004 mmol) were subsequently added, then 1.4 ml (1 *M*) NaOH was added dropwise and stirred continuously for 1 h to give a blue suspension. After filtration, the blue filtrate (pH = 5.80) was allowed to stand at room temperature for several weeks to give blue block–shaped crystals

S3. Refinement

H atoms bonded to C atoms were placed in geometrically calculated positions and were refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$. H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with $U_{iso}(H)$ values set at 1.2 Ueq(O).

Figure 1

The molecular structure of the title compound, with atom labels and 45% probability displacement ellipsoids for non-H atoms. Symmetry code for the symbol 'A': -x, y + 1, 0.5 - z.

Figure 2

The two-dimensional supramolecular layers of the title compound parallel to (100) showing O–H…O, C–H…O hydrogen bonds.

(2,2'-Bipyridine- $\kappa^2 N, N'$)bis(3-methoxybenzoato- $\kappa^2 O^1, O^1$)copper(II) monohydrate

Crystal data	
$[Cu(C_8H_7O_3)_2(C_{10}H_8N_2)] \cdot H_2O$	F(000) = 1116
$M_r = 540.01$	$D_{\rm x} = 1.468 {\rm Mg} {\rm m}^{-3}$
Monoclinic, C2/c	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 12080 reflections
a = 19.888 (4) Å	$\theta = 3.6 - 27.5^{\circ}$
b = 10.887 (2) Å	$\mu = 0.94 \text{ mm}^{-1}$
c = 11.612 (2) Å	T = 293 K
$\beta = 103.62 \ (3)^{\circ}$	Block, blue
V = 2443.5 (8) Å ³	$0.1 \times 0.1 \times 0.1 \text{ mm}$
Z = 4	
Data collection	
Rigaku R-AXIS RAPID	12080 measured reflections
diffractometer	2796 independent reflections
Radiation source: fine-focus sealed tube	2391 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.054$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.6^{\circ}$
ω scans	$h = -25 \rightarrow 25$
Absorption correction: multi-scan	$k = -14 \rightarrow 14$
(ABSCOR; Higashi, 1995)	$l = -15 \rightarrow 14$
$T_{\min} = 0.710, \ T_{\max} = 0.78$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.113$	neighbouring sites
S = 1.05	H-atom parameters constrained
2796 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0638P)^2 + 0.7842P]$
165 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.35 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.39 \text{ e} \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu	0.0000	0.52776 (3)	0.7500	0.04304 (15)
O1	-0.04555 (7)	0.40392 (14)	0.82712 (14)	0.0539 (4)
O2	-0.12489 (8)	0.44707 (15)	0.66421 (15)	0.0598 (4)
O3	-0.15000 (9)	0.11263 (17)	1.05759 (15)	0.0669 (5)
N1	-0.03034 (8)	0.66715 (15)	0.83787 (14)	0.0426 (4)
C1	-0.10582 (10)	0.39069 (18)	0.75900 (19)	0.0470 (5)
C2	-0.15286 (10)	0.30133 (18)	0.79947 (19)	0.0475 (5)
C3	-0.21724 (12)	0.2726 (2)	0.7265 (2)	0.0611 (6)
H3A	-0.2317	0.3089	0.6523	0.073*
C4	-0.25923 (13)	0.1895 (3)	0.7658 (3)	0.0724 (7)
H4A	-0.3021	0.1702	0.7170	0.087*
C5	-0.23949 (12)	0.1344 (2)	0.8754 (3)	0.0646 (6)
H5A	-0.2688	0.0790	0.9003	0.078*
C6	-0.17571 (11)	0.16247 (19)	0.9479 (2)	0.0534 (5)
C7	-0.13269 (10)	0.24562 (19)	0.9099 (2)	0.0498 (5)
H7A	-0.0898	0.2643	0.9590	0.060*
C8	-0.19197 (18)	0.0270 (3)	1.1014 (3)	0.0818 (9)
H8A	-0.1674	-0.0022	1.1777	0.123*
H8B	-0.2028	-0.0410	1.0476	0.123*
H8C	-0.2340	0.0664	1.1085	0.123*
C9	-0.06227 (11)	0.6578 (2)	0.92759 (18)	0.0492 (5)
H9A	-0.0705	0.5802	0.9549	0.059*
C10	-0.08304 (12)	0.7594 (2)	0.97979 (19)	0.0557 (5)
H10A	-0.1055	0.7507	1.0411	0.067*
C11	-0.07033 (13)	0.8737 (2)	0.9407 (2)	0.0599 (6)

supporting information

H11A	-0.0838	0.9434	0.9757	0.072*
C12	-0.03730 (12)	0.8849 (2)	0.8490 (2)	0.0552 (5)
H12A	-0.0282	0.9619	0.8215	0.066*
C13	-0.01811 (10)	0.77943 (18)	0.79901 (17)	0.0426 (4)
O4	0.0000	0.1586 (2)	0.7500	0.0842 (8)
H41	-0.0138	0.2109	0.7975	0.126*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	0.0395 (2)	0.0333 (2)	0.0560 (2)	0.000	0.01071 (15)	0.000
01	0.0423 (8)	0.0427 (8)	0.0740 (10)	-0.0074 (6)	0.0083 (7)	0.0071 (7)
O2	0.0532 (9)	0.0576 (9)	0.0692 (10)	0.0083 (7)	0.0159 (8)	0.0082 (8)
03	0.0646 (10)	0.0641 (11)	0.0774 (11)	-0.0110 (8)	0.0277 (9)	0.0081 (8)
N1	0.0407 (9)	0.0405 (9)	0.0468 (9)	-0.0013 (7)	0.0108 (7)	0.0020 (6)
C1	0.0435 (11)	0.0356 (10)	0.0642 (12)	0.0055 (8)	0.0174 (9)	-0.0021 (9)
C2	0.0367 (10)	0.0361 (10)	0.0696 (13)	0.0015 (8)	0.0125 (9)	-0.0064 (9)
C3	0.0457 (12)	0.0546 (13)	0.0777 (15)	-0.0014 (10)	0.0040 (11)	-0.0038 (11)
C4	0.0400 (12)	0.0667 (16)	0.103 (2)	-0.0126 (11)	0.0024 (12)	-0.0111 (15)
C5	0.0459 (13)	0.0512 (13)	0.1009 (19)	-0.0111 (10)	0.0258 (12)	-0.0081 (12)
C6	0.0478 (12)	0.0425 (11)	0.0754 (14)	-0.0041 (9)	0.0254 (10)	-0.0069 (10)
C7	0.0383 (10)	0.0447 (11)	0.0671 (13)	-0.0052 (8)	0.0135 (9)	-0.0048 (9)
C8	0.093 (2)	0.0693 (19)	0.098 (2)	-0.0154 (15)	0.0526 (19)	0.0040 (14)
C9	0.0461 (11)	0.0513 (12)	0.0508 (11)	-0.0028 (9)	0.0127 (9)	0.0042 (9)
C10	0.0557 (13)	0.0657 (14)	0.0502 (11)	0.0017 (11)	0.0211 (10)	-0.0018 (10)
C11	0.0696 (15)	0.0536 (13)	0.0614 (13)	0.0079 (11)	0.0255 (11)	-0.0082 (10)
C12	0.0679 (14)	0.0386 (11)	0.0629 (13)	0.0042 (10)	0.0232 (11)	-0.0006 (9)
C13	0.0430 (10)	0.0384 (10)	0.0462 (10)	0.0013 (8)	0.0100 (8)	-0.0011 (7)
O4	0.124 (3)	0.0464 (14)	0.0887 (18)	0.000	0.0370 (17)	0.000

Geometric parameters (Å, °)

Cu-Oli	1.9551 (15)	C5—C6	1.381 (3)
Cu—O1	1.9551 (15)	С5—Н5А	0.9300
Cu—N1 ⁱ	1.9996 (16)	C6—C7	1.387 (3)
Cu—N1	1.9996 (16)	С7—Н7А	0.9300
01—C1	1.279 (3)	C8—H8A	0.9600
O2—C1	1.239 (3)	C8—H8B	0.9600
O3—C6	1.368 (3)	C8—H8C	0.9600
O3—C8	1.423 (3)	C9—C10	1.371 (3)
N1—C13	1.345 (2)	С9—Н9А	0.9300
N1—C9	1.346 (3)	C10—C11	1.369 (3)
C1—C2	1.500 (3)	C10—H10A	0.9300
C2—C7	1.390 (3)	C11—C12	1.382 (3)
С2—С3	1.395 (3)	C11—H11A	0.9300
C3—C4	1.380 (4)	C12—C13	1.380 (3)
С3—НЗА	0.9300	C12—H12A	0.9300
C4—C5	1.378 (4)	C13—C13 ⁱ	1.483 (4)

supporting information

C4—H4A	0.9300	O4—H41	0.8800
01 ⁱ —Cu—O1	92.80 (10)	O3—C6—C7	115.6 (2)
$O1^{i}$ — Cu — $N1^{i}$	93.53 (7)	C5—C6—C7	119.8 (2)
O1—Cu—N1 ⁱ	170.12 (6)	C6—C7—C2	120.8 (2)
O1 ⁱ —Cu—N1	170.12 (6)	С6—С7—Н7А	119.6
O1—Cu—N1	93.53 (7)	С2—С7—Н7А	119.6
N1 ⁱ —Cu—N1	81.25 (9)	O3—C8—H8A	109.5
C1—O1—Cu	105.20 (13)	O3—C8—H8B	109.5
C6—O3—C8	118.1 (2)	H8A—C8—H8B	109.5
C13—N1—C9	118.97 (17)	O3—C8—H8C	109.5
C13—N1—Cu	114.74 (12)	H8A—C8—H8C	109.5
C9—N1—Cu	126.27 (14)	H8B—C8—H8C	109.5
O2-C1-O1	122.66 (19)	N1	121.83 (19)
O2—C1—C2	121.1 (2)	N1—C9—H9A	119.1
O1—C1—C2	116.23 (18)	С10—С9—Н9А	119.1
C7—C2—C3	119.2 (2)	C11—C10—C9	119.26 (19)
C7—C2—C1	120.43 (19)	C11—C10—H10A	120.4
C3—C2—C1	120.4 (2)	C9—C10—H10A	120.4
C4—C3—C2	119.1 (2)	C10-C11-C12	119.6 (2)
C4—C3—H3A	120.4	C10-C11-H11A	120.2
С2—С3—НЗА	120.4	C12—C11—H11A	120.2
C5—C4—C3	121.9 (2)	C13—C12—C11	118.6 (2)
C5—C4—H4A	119.1	C13—C12—H12A	120.7
C3—C4—H4A	119.1	C11—C12—H12A	120.7
C4—C5—C6	119.2 (2)	N1-C13-C12	121.68 (17)
С4—С5—Н5А	120.4	N1-C13-C13 ⁱ	114.60 (10)
С6—С5—Н5А	120.4	C12-C13-C13 ⁱ	123.71 (12)
O3—C6—C5	124.6 (2)		

Symmetry code: (i) -x, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O4—H41…O1	0.88	2.24	3.023 (3)	147
C12—H12A····O4 ⁱⁱ	0.93	2.41	3.339 (3)	178
С11—Н11А…ОЗіі	0.93	2.57	3.483 (3)	166
C10—H10A····O2 ⁱⁱⁱ	0.93	2.66	3.342 (3)	131

Symmetry codes: (ii) *x*, *y*+1, *z*; (iii) *x*, -*y*+1, *z*+1/2.