Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-{2-[(4S)-4-tert-Butyl-4,5-dihydro-1,3oxazol-2-yl]phenyl}-5,6-diphenyl-1,2,4triazin-3-amine

Zbigniew Karczmarzyk,^a* Ewa Wolińska^a and Andrzej **Fruziński**^b

^aDepartment of Chemistry, University of Podlasie, ul. 3 Maja 54, 08-110 Siedlce, Poland, and ^bDepartment of General and Ecological Chemistry, Technical University, ul. Żeromskiego 115, 90-924 Łódź, Poland Correspondence e-mail: kar@uph.edu.pl

Received 7 February 2011; accepted 14 February 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.050; wR factor = 0.134; data-to-parameter ratio = 8.4.

The title compound, C₂₈H₂₇N₅O, was synthesized using palladium cross-coupling amination of 3-bromo-5,6-diphenyl-1.2,4-triazine with 2-[(4S)-4-tert-butyl-4,5-dihydro-1,3-oxazol-2-yl]aniline. The oxazoline ring is almost planar, with a maximum atomic deviation of 0.023 (5) Å. The phenyl rings make dihedral angles of 29.0 (1) and 54.6 (1) $^{\circ}$ with the triazine ring while the benzene ring makes a dihedral angle of $0.6 (1)^{\circ}$ with the oxazoline ring. The conformation of the molecule is influenced by strong intramolecular N-H···N and weak C-H...N hydrogen bonds. In the crystal, screw-axis related molecules are linked into supramolecular chains by intermolecular C-H···O hydrogen bonds. π - π stacking is observed between the oxazoline and triazine rings of adjacent molecules, with a centroid-centroid distance of 3.749 (2) Å.

Related literature

For applications of compounds containing a chiral oxazoline ring in asymmetric catalysis, see: Lindsey & Layton (2004); Desimoni et al. (2006); Hargaden & Guiry (2009). For related structures, see: Castro et al. (2001); Coeffard et al. (2009).

28527 measured reflections

 $R_{\rm int} = 0.090$

2625 independent reflections

1648 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C28H27N5O $V = 2419.12 (14) \text{ Å}^3$ $M_r = 449.55$ Z = 4Orthorhombic, $P2_12_12_1$ Cu Ka radiation a = 6.3306 (2) Å $\mu = 0.61 \text{ mm}^-$ T = 293 Kb = 16.9244 (6) Å c = 22.5787 (8) Å $0.54 \times 0.02 \times 0.02 \text{ mm}$

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.882, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of
$vR(F^2) = 0.134$	independent and constrained
S = 1.05	refinement
2625 reflections	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
311 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N7 - H7 \cdot \cdot \cdot N15$ C13 - H13 \cdot \cdot \cdot N2	0.97 (4) 0.93	1.87 (5) 2.31	2.671 (4) 2.919 (5)	138 (4) 122
$C53-H53\cdots O18^{i}$	0.93	2.54	3.250 (5)	133

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5158).

References

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Castro, J., Cabaleiro, S., Perez-Lourido, P., Romero, J., Garcia-Vazquez, J. A. & Sousa, A. (2001). Polyhedron, 20, 2329-2337.
- Coeffard, V., Müller-Bunz, H. & Guiry, P. J. (2009). Org. Biomol. Chem. 7, 1723-1734.

Desimoni, G., Faita, G. & Jørgensen, K. A. (2006). Chem. Rev. 106, 3561-3651.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Hargaden, G. C. & Guiry, P. J. (2009). Chem. Rev. 109, 2505-2550.

- Lindsey, C. W. & Layton, M. E. (2004). Science of Synthesis, Houben-Weyl Methods of Molecular Transformation, Vol. 17, p. 357. Stuttgart: Georg Thieme Verlag.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o651 [doi:10.1107/S1600536811005411]

N-{2-[(4*S*)-4-*tert*-Butyl-4,5-dihydro-1,3-oxazol-2-yl]phenyl}-5,6-diphenyl-1,2,4-triazin-3-amine

Zbigniew Karczmarzyk, Ewa Wolińska and Andrzej Fruziński

S1. Comment

Compounds containing a chiral oxazoline ring have proven to be one of the most successful ligand classes for asymmetric catalysis. A diverse range of di-, tri- and tetradentate oxazoline ligands incorporating various heteroatoms and specific structural features have been synthesized and used in a wide range of metal catalyzed asymmetric processes (Desimoni *et al.*, 2006; Hargaden *et al.*, 2009). Introduction of 1,2,4-triazine ring into ligand structure can significantly increase ligand binding properties, since 1,2,4-triazine is known as a good metal chelator (Lindsey *et al.*, 2004). Due to our interest in developing new oxazoline-based ligands the titled compound was synthesized and its application in asymmetric catalysis is currently under investigation.

The central secondary N7-amine group is planar with the sum of the angles around N atom of 359.1°. The unusually large C3—N7—C8 angle of 131.1 (3)° is constrained by the strong N7—H7…N15 intramolecular hydrogen bond (Table 1), which forced a *cis-cis* conformation of the amine spacer between 1,2,4-triazine ring and the (oxazolyl)phenyl group with the torsion angles N2—C3—N7—C8 and C3—N7—C8—C13 of 3.9 (6) and –12.4 (6)°, respectively. The similar geometry and conformation of the [(oxazolyl)phenyl]amine subunit have been reported in closely related structures (Castro *et al.*, 2001; Coeffard *et al.*, 2009). The 5- and 6-phenyl substituents of the 1,2,4-triazine ring are inclined to its mean plane with the dihedral angle of 29.0 (1) and 54.6 (1)°, respectively.

In the crystal structure, Fig. 2, the screw-related molecules are linked into chains along the [010] direction by C53— H53…O18 intermolecular hydrogen bond (Table 1). Additionally, the π -electron systems of the oxazoline and triazine rings belonging to the translation-related molecules overlap each other, with centroid-to-centroid separation of 3.749 (2) Å between the oxazoline ring at (*x*, *y*, *z*) and triazine ring at (1+*x*, *y*, *z*), and triazine ring at (*x*, *y*, *z*) and oxazoline ring at (-1+*x*, *y*, *z*). The π … π distances are 3.2389 (16) and 3.4927 (13) Å, respectively.

S2. Experimental

The titled compound was synthesized using palladium cross-coupling amination of 5,6-diphenyl-3-bromo-1,2,4-triazine with readily available 2-[(4*S*)-4-*tert*-butyl-4,5-dihydro-1,3-oxazol-2-yl]aniline as the key step. An oven dried three-necked flask was washed with argon and charged with Pd₂dba₃ (45.7 mg, 0.05 mmol), Xantphos (57.8 mg, 0.1 mmol), 2-[(4*S*)-4-*tert*-butyl-4,5-dihydro-1,3-oxazol-2-yl]aniline (0.131 g, 0.6 mmol), 3-bromo-5,6-diphenyl-1,2,4-triazine (155 mg, 0.5 mmol) and K₂CO₃ (1.38g, 10 mmol). Then, the flask was evacuated and backfilled with argon. Dioxane (10 ml) was added trough the septum. The mixture was refluxed for 24 hours. After cooling, the solid material was filtered off and washed with CH₂Cl₂. The solvent was evaporated, and the resulting crude product was purified by column chromatography using hexanes/ethyl acetate (10:1) as eluent. Product was recrystalized from ethanol to give 5,6-diphenyl-3- {2-[(4*S*)-4-*tert*-butyl-4,5-dihydro-1,3-oxazol-2-yl]phenyl}amino-1,2,4-triazine as a yellow crystals; yield: 0.095 g, 42%; mp 489-490 K; $[a]_D^{20}$ of -15.69° . Crystals suitable for X-ray diffraction analysis were grown by slow evaporation

of a methanol solution.

S3. Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the absolute configuration of started 2-[(4*S*)-4-*tert*-butyl-4,5-dihydro-1,3-oxazol-2-yl]aniline. All H atom were located by difference Fourier synthesis. N-bound H atom was refined freely. The remaining H atoms were treated as riding on their C atoms, with C—H distances of 0.93 (aromatic) and 0.96 Å (CH₃). All H atoms were assigned U_{iso} (H) values of 1.5 U_{eq} (N,C).

Figure 1

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Figure 2

A view of the molecular packing in (I). Dashed lines indicate weak C—H···O intermolecular interaction [symmetry code: (i) -x+1, y-1/2, -z+3/2].

N-{2-[(4S)-4-tert-Butyl-4,5-dihydro-1,3-oxazol- 2-yl]phenyl}-5,6-diphenyl-1,2,4-triazin-3-amine

Crystal data	
$C_{28}H_{27}N_5O$	$D_{\rm x} = 1.234 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 449.55$	Melting point = $489-490$ K
Orthorhombic, $P2_12_12_1$	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 1210 reflections
a = 6.3306 (2) Å	$\theta = 4.6 - 30.0^{\circ}$
b = 16.9244 (6) Å	$\mu = 0.61 \text{ mm}^{-1}$
c = 22.5787 (8) Å	T = 293 K
V = 2419.12 (14) Å ³	Needle, yellow
Z = 4	$0.54 \times 0.02 \times 0.02$ mm
F(000) = 952	

Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{min} = 0.882, T_{max} = 1.000$ <i>Refinement</i>	28527 measured reflections 2625 independent reflections 1648 reflections with $I > 2\sigma(I)$ $R_{int} = 0.090$ $\theta_{max} = 70.2^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -7 \rightarrow 6$ $k = -20 \rightarrow 20$ $l = -27 \rightarrow 27$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.134$ S = 1.05 2625 reflections 311 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0683P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.15$ e Å ⁻³ $\Delta\rho_{min} = -0.17$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0053 (5)

Special details

Experimental. ¹H NMR (400 MHz, CDCl3) δ : 1.05 (*s*, 9H, (CH₃)₃C), 4.25–4.35 (*m*, 2H, (CH₂O and CHN), 4.45–4.50 (*m*, 1H, CH₂O), 7.11 (*t*, 1H, *J* = 7.6 Hz, Ph), 7.31–7.37 (*m*, 5H, Ph), 7.42–7.44 (*m*, 1H, Ph), 7.50–7.52 (*m*, 2H, Ph), 7.56–7.60 (*m*, 3H, Ph), 7.91 (*d*, 1H, *J* = 7.6 Hz, Ph), 8.89 (*d*, 1H, *J* = 8.4 Hz, Ph), 12.98 (*s*, 1H, NH); ¹³C NMR (50 MHz, CDCl₃) δ : 25.9, 34.0, 67.5, 76.1, 112.8, 118.9, 120.7, 128.2, 128.3, 128.6, 129.2, 129.3, 129.8, 130.4, 132.3, 136.0, 136.1, 140.8, 150.8, 156.0, 158.8, 163.4; Analysis calculated for C₂₈H₂₇N₅O: C 74.81; H 6.05; N 15.58; found: C 74.79; H 6.03; N 15.51.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
018	0.9330 (4)	0.61773 (16)	0.78505 (12)	0.0793 (8)	
N1	-0.0592 (5)	0.54476 (19)	0.97426 (12)	0.0735 (9)	
N2	0.0979 (5)	0.58502 (18)	0.94731 (14)	0.0728 (9)	
N4	0.1210 (5)	0.48257 (17)	0.87487 (12)	0.0640 (8)	
N7	0.3575 (5)	0.58275 (18)	0.87252 (13)	0.0697 (9)	
H7	0.411 (8)	0.548 (2)	0.8420 (18)	0.105*	
N15	0.6459 (5)	0.54077 (19)	0.79214 (13)	0.0716 (9)	
C3	0.1856 (6)	0.5505 (2)	0.90057 (16)	0.0611 (9)	
C5	-0.0365 (6)	0.4448 (2)	0.90072 (15)	0.0578 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C6	-0.1237 (6)	0.4751 (2)	0.95379 (15)	0.0613 (9)
C8	0.4787 (6)	0.6496 (2)	0.88589 (15)	0.0647 (10)
C9	0.6707 (6)	0.6585 (2)	0.85444 (16)	0.0637 (10)
C10	0.7987 (7)	0.7239 (2)	0.86881 (17)	0.0784 (11)
H10	0.9268	0.7306	0.8493	0.118*
C11	0.7389 (8)	0.7781 (3)	0.91095 (19)	0.0894 (14)
H11	0.8266	0.8205	0.9200	0.134*
C12	0.5491 (8)	0.7693 (2)	0.93957 (18)	0.0828 (12)
H12	0.5080	0.8064	0.9677	0.124*
C13	0.4183 (8)	0.7061 (2)	0.92720 (16)	0.0780 (12)
H13	0.2893	0.7014	0.9466	0.117*
C14	0.7399 (6)	0.6022 (2)	0.80992 (16)	0.0647 (10)
C16	0.7797 (6)	0.5003 (2)	0.74766 (16)	0.0668 (10)
H16	0.8305	0.4509	0.7653	0.100*
C17	0.9690 (7)	0.5565 (3)	0.74209 (19)	0.0855 (12)
H171	1.0999	0.5289	0.7504	0.128*
H172	0.9764	0.5786	0.7025	0.128*
C19	0.6617 (6)	0.4794 (2)	0.69076 (17)	0.0741 (11)
C20	0.4820 (8)	0.4227 (3)	0.7063 (2)	0.1036 (15)
H201	0.3925	0.4466	0.7357	0.155*
H202	0.5398	0.3744	0.7217	0.155*
H203	0.4007	0.4115	0.6714	0.155*
C21	0.8171 (9)	0.4373 (3)	0.64968 (19)	0.1075 (16)
H211	0.8815	0.3940	0.6704	0.161*
H212	0.9243	0.4737	0.6371	0.161*
H213	0.7429	0.4176	0.6157	0.161*
C22	0.5743 (10)	0.5535 (3)	0.6608 (2)	0.1179 (18)
H221	0.6884	0.5888	0.6516	0.177*
H222	0.4769	0.5793	0.6870	0.177*
H223	0.5026	0.5389	0.6250	0.177*
C51	-0.1113 (6)	0.3731 (2)	0.86873 (14)	0.0588 (9)
C52	0.0351 (7)	0.3342 (2)	0.83248 (16)	0.0694 (11)
H52	0.1747	0.3513	0.8317	0.104*
C53	-0.0247 (7)	0.2709 (2)	0.7979 (2)	0.0833 (12)
H53	0.0742	0.2456	0.7741	0.125*
C54	-0.2320 (7)	0.2451 (2)	0.7986 (2)	0.0828 (12)
H54	-0.2729	0.2026	0.7751	0.124*
C55	-0.3780 (7)	0.2826 (2)	0.83435 (18)	0.0802 (12)
H55	-0.5171	0.2650	0.8351	0.120*
C56	-0.3186 (6)	0.3463 (2)	0.86901 (16)	0.0684 (10)
H56	-0.4184	0.3713	0.8927	0.103*
C61	-0.2858 (6)	0.4352 (2)	0.99015 (15)	0.0676 (10)
C62	-0.2523 (8)	0.3591 (2)	1.01024 (18)	0.0882 (13)
H62	-0.1272	0.3328	1.0013	0.132*
C63	-0.4080 (12)	0.3219 (4)	1.0441 (2)	0.119 (2)
H63	-0.3863	0.2707	1.0579	0.179*
C64	-0.5935 (11)	0.3607 (5)	1.0572 (2)	0.133 (3)
H64	-0.6972	0.3355	1.0794	0.200*

supporting information

C65	-0.6258 (9)	0.4369 (4)	1.0375 (2)	0.1133 (19)	
H65	-0.7513	0.4631	1.0460	0.170*	
C66	-0.4700 (6)	0.4739 (3)	1.00486 (17)	0.0838 (13)	
H66	-0.4897	0.5258	0.9926	0.126*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
O18	0.0671 (17)	0.0869 (18)	0.0839 (17)	-0.0114 (14)	0.0118 (14)	0.0045 (16)
N1	0.079 (2)	0.074 (2)	0.068 (2)	-0.0071 (18)	0.0151 (17)	-0.0099 (17)
N2	0.078 (2)	0.072 (2)	0.0678 (19)	-0.0101 (17)	0.0166 (17)	-0.0130 (17)
N4	0.0636 (19)	0.0691 (19)	0.0592 (17)	-0.0067 (16)	0.0089 (15)	-0.0032 (15)
N7	0.072 (2)	0.070 (2)	0.067 (2)	-0.0153 (17)	0.0156 (17)	-0.0113 (16)
N15	0.074 (2)	0.073 (2)	0.0673 (19)	-0.0073 (18)	0.0152 (17)	-0.0071 (17)
C3	0.062 (2)	0.063 (2)	0.058 (2)	-0.0057 (19)	0.0050 (18)	-0.0041 (19)
C5	0.059 (2)	0.060 (2)	0.054 (2)	0.0002 (18)	0.0035 (17)	0.0006 (17)
C6	0.066 (2)	0.067 (2)	0.051 (2)	-0.0009 (19)	0.0042 (18)	-0.0020 (18)
C8	0.072 (2)	0.064 (2)	0.058 (2)	-0.007(2)	0.0023 (19)	0.0023 (19)
C9	0.066 (2)	0.065 (2)	0.059 (2)	-0.0057 (19)	-0.0018 (18)	0.0071 (19)
C10	0.080 (3)	0.078 (3)	0.076 (3)	-0.022 (2)	-0.002 (2)	0.009 (2)
C11	0.110 (4)	0.078 (3)	0.080 (3)	-0.026 (3)	-0.009 (3)	-0.005 (2)
C12	0.103 (3)	0.074 (3)	0.071 (3)	-0.013 (3)	0.001 (3)	-0.012 (2)
C13	0.093 (3)	0.075 (3)	0.066 (2)	-0.013 (2)	0.003 (2)	-0.014 (2)
C14	0.059 (2)	0.073 (2)	0.061 (2)	-0.007 (2)	0.0077 (19)	0.009 (2)
C16	0.066 (2)	0.074 (2)	0.061 (2)	0.0077 (19)	0.0127 (19)	0.0087 (19)
C17	0.075 (3)	0.101 (3)	0.080 (3)	-0.005 (3)	0.014 (2)	-0.003 (3)
C19	0.078 (3)	0.079 (3)	0.065 (2)	0.008 (2)	0.003 (2)	0.001 (2)
C20	0.095 (3)	0.108 (4)	0.108 (3)	-0.017 (3)	0.008 (3)	-0.024 (3)
C21	0.109 (4)	0.136 (4)	0.077 (3)	0.014 (3)	0.023 (3)	-0.016 (3)
C22	0.123 (4)	0.128 (4)	0.103 (4)	0.032 (4)	-0.023 (3)	0.025 (3)
C51	0.065 (2)	0.056 (2)	0.056 (2)	-0.0021 (18)	-0.0004 (18)	-0.0003 (17)
C52	0.071 (3)	0.063 (2)	0.075 (3)	0.002 (2)	0.006 (2)	-0.008 (2)
C53	0.086 (3)	0.070 (3)	0.094 (3)	0.003 (2)	0.010 (3)	-0.018 (2)
C54	0.088 (3)	0.072 (3)	0.088 (3)	-0.004 (2)	-0.008 (3)	-0.017 (2)
C55	0.076 (3)	0.073 (3)	0.092 (3)	-0.006 (2)	-0.008 (2)	-0.014 (2)
C56	0.064 (2)	0.073 (2)	0.068 (2)	-0.004 (2)	0.0008 (19)	-0.002 (2)
C61	0.072 (3)	0.080 (3)	0.051 (2)	-0.015 (2)	0.0057 (18)	0.000 (2)
C62	0.110 (4)	0.088 (3)	0.067 (2)	-0.022 (3)	0.003 (2)	0.008 (2)
C63	0.159 (6)	0.117 (4)	0.081 (3)	-0.054 (4)	-0.001 (4)	0.020 (3)
C64	0.126 (5)	0.199 (7)	0.075 (3)	-0.074 (6)	0.013 (4)	0.007 (4)
C65	0.086 (4)	0.180 (6)	0.074 (3)	-0.032 (4)	0.015 (3)	-0.001 (4)
C66	0.065 (3)	0.125 (4)	0.062 (2)	-0.011 (3)	0.009 (2)	-0.005 (2)

Geometric parameters (Å, °)

O18—C14	1.370 (4)	C19—C21	1.529 (6)
O18—C17	1.437 (5)	C20—H201	0.9600
N1—C6	1.330 (4)	C20—H202	0.9600

N1—N2	1.351 (4)	С20—Н203	0.9600
N2—C3	1.328 (4)	C21—H211	0.9600
N4—C5	1.320 (4)	C21—H212	0.9600
N4—C3	1.351 (4)	C21—H213	0.9600
N7—C3	1 372 (4)	C^{22} H ²²¹	0.9600
N7—C8	1 399 (4)	C22_H222	0.9600
N7—H7	0.97 (4)	C22_H223	0.9600
N15-C14	1 264 (5)	$C_{51} - C_{56}$	1 389 (5)
N15-C16	1.201(5) 1 482(5)	$C_{51} - C_{52}$	1.309(0)
C5-C6	1.102(5) 1.415(5)	$C_{52} - C_{53}$	1 379 (5)
C5-C51	1 490 (5)	C52—H52	0.9300
C6—C61	1 478 (5)	C53—C54	1 383 (6)
C8-C13	1 390 (5)	C53—H53	0.9300
C8—C9	1.390(5)	C54—C55	1 382 (6)
C9—C10	1410(5)	C54—H54	0.9300
C9-C14	1 452 (5)	C55—C56	1 383 (5)
C10-C11	1.375 (6)	C55—H55	0.9300
C10—H10	0.9300	C56—H56	0.9300
C11-C12	1 372 (6)	C_{61} $-C_{66}$	1.377(5)
C11—H11	0.9300	$C_{61} - C_{62}$	1.377(5)
C12-C13	1 381 (6)	C62 - C63	1.302(3) 1 397(7)
C12—H12	0.9300	C62—H62	0.9300
C13—H13	0.9300	C63—C64	1 378 (9)
C16-C19	1 527 (5)	C63—H63	0.9300
C16—C17	1.527 (5)	C64—C65	1 380 (8)
C16—H16	0.9800	C64—H64	0.9300
C17—H171	0.9700	C65—C66	1 381 (6)
C17—H172	0.9700	C65—H65	0.9300
C19-C22	1 528 (5)	C66—H66	0.9300
C19 - C20	1 530 (6)		0.9500
01) 020	1.550 (0)		
C14—O18—C17	106.3 (3)	C20—C19—C21	109.0 (3)
C6—N1—N2	121.1 (3)	C19—C20—H201	109.5
C3—N2—N1	116.3 (3)	С19—С20—Н202	109.5
C5—N4—C3	116.8 (3)	H201—C20—H202	109.5
C3—N7—C8	131.1 (3)	С19—С20—Н203	109.5
C3—N7—H7	111 (3)	H201—C20—H203	109.5
C8—N7—H7	117 (3)	H202—C20—H203	109.5
C14—N15—C16	109.1 (3)	C19—C21—H211	109.5
N2—C3—N4	126.1 (3)	C19—C21—H212	109.5
N2—C3—N7	121.5 (3)	H211—C21—H212	109.5
N4—C3—N7	112.4 (3)	C19—C21—H213	109.5
N4—C5—C6	119.6 (3)	H211—C21—H213	109.5
N4—C5—C51	114.8 (3)	H212—C21—H213	109.5
C6—C5—C51	125.6 (3)	C19—C22—H221	109.5
N1—C6—C5	119.7 (3)	C19—C22—H222	109.5
N1-C6-C61	115.2 (3)	H221—C22—H222	109.5
C5—C6—C61	125.1 (3)	C19—C22—H223	109.5

C13—C8—N7	123.4 (3)	H221—C22—H223	109.5
C13—C8—C9	119.9 (3)	H222—C22—H223	109.5
N7—C8—C9	116.7 (3)	C56—C51—C52	118.3 (3)
С10—С9—С8	117.5 (4)	C56—C51—C5	124.4 (3)
C10—C9—C14	120.0 (4)	C52—C51—C5	117.1 (3)
C8—C9—C14	122.4 (3)	C53—C52—C51	120.9 (4)
C11—C10—C9	121.7 (4)	С53—С52—Н52	119.5
C11—C10—H10	119.2	С51—С52—Н52	119.5
C9-C10-H10	119.2	C52 - C53 - C54	120.0 (4)
C10-C11-C12	119.6 (4)	$C_{52} = C_{53} = 0.51$	120.0 (1)
C10-C11-H11	120.2	C54_C53_H53	120.0
C_{12} C_{11} H_{11}	120.2	C_{53} C_{54} C_{55}	120.0 110 7 (4)
C_{12} C_{12} C_{13}	120.2	$C_{53} = C_{54} = C_{55}$	119.7 (4)
$C_{11} = C_{12} = C_{13}$	121.0 (4)	C55 C54 U54	120.1
C12 - C12 - H12	119.5	C53-C54-H54	120.1
C13—C12—H12	119.5	C54—C55—C56	120.4 (4)
	120.3 (4)	C54—C55—H55	119.8
С12—С13—Н13	119.9	С56—С55—Н55	119.8
C8—C13—H13	119.9	C55—C56—C51	120.6 (4)
N15—C14—O18	116.6 (4)	C55—C56—H56	119.7
N15—C14—C9	128.1 (3)	C51—C56—H56	119.7
O18—C14—C9	115.3 (3)	C66—C61—C62	119.6 (4)
N15—C16—C19	113.4 (3)	C66—C61—C6	120.3 (4)
N15—C16—C17	102.4 (3)	C62—C61—C6	120.1 (4)
C19—C16—C17	117.1 (3)	C61—C62—C63	119.4 (5)
N15-C16-H16	107.8	С61—С62—Н62	120.3
С19—С16—Н16	107.8	С63—С62—Н62	120.3
С17—С16—Н16	107.8	C64—C63—C62	120.2 (6)
O18—C17—C16	105.5 (3)	С64—С63—Н63	119.9
O18—C17—H171	110.6	С62—С63—Н63	119.9
C16—C17—H171	110.6	C65—C64—C63	120.2 (6)
O18—C17—H172	110.6	C65—C64—H64	119.9
C16—C17—H172	110.6	C63—C64—H64	119.9
Н171—С17—Н172	108.8	C64—C65—C66	119.3 (6)
C16-C19-C22	111.1 (3)	C64—C65—H65	120.3
C16-C19-C20	108.4(3)	C66—C65—H65	120.3
C_{22} C_{19} C_{20} C_{20}	100.1(3) 110.3(4)	C61 - C66 - C65	120.3 121.2(5)
C_{16} C_{19} C_{21}	107.7(3)	C61_C66_H66	119.4
$C_{10} = C_{10} = C_{21}$	107.7(3) 110.3(4)	C65 C66 H66	119.4
C22-C19-C21	110.3 (4)	005-000-1100	119.4
C6 N1 N2 C3	-1.4(5)	C14 N15 C16 C19	-130.0(4)
$N_1 = N_2 = C_3 = N_4$	5.9.(6)	C14 N15 C16 C17	-2.9(4)
N1 = N2 = C3 = N7	3.9(0)	C14 - N15 - C10 - C17	-2.9(4)
$\frac{1}{2} \frac{1}{2} \frac{1}$	-1/4.7(5)	14 - 010 - 017 - 010	-3.3(4)
C_{5} N_{4} C_{2} N_{7}	-4.1(3)	N13 - C10 - C17 - O18	3.8 (4) 128 ((4)
$C_{3} = N_{4} = C_{3} = N_{7}$	1/0.4 (3)	U19 - U10 - U17 - U18	128.0 (4)
$V_{0} = N / - V_{0} = N / - $	3.9 (b)	N15-C16-C19-C22	59.9 (5)
$C_{0} = N_{1} = C_{0}$	-1/6.7(3)	C17—C16—C19—C22	-59.1 (5)
C3—N4—C5—C6	-1.9 (5)	N15—C16—C19—C20	-61.5 (4)
C3—N4—C5—C51	176.3 (3)	C17—C16—C19—C20	179.5 (3)

N2—N1—C6—C5	-4.2 (5)	N15-C16-C19-C21	-179.2 (3)
N2—N1—C6—C61	175.7 (3)	C17—C16—C19—C21	61.8 (5)
N4—C5—C6—N1	6.0 (5)	N4-C5-C51-C56	-148.3 (4)
C51—C5—C6—N1	-172.0 (3)	C6-C5-C51-C56	29.8 (6)
N4—C5—C6—C61	-174.0 (3)	N4—C5—C51—C52	26.6 (4)
C51—C5—C6—C61	8.0 (6)	C6-C5-C51-C52	-155.3 (3)
C3—N7—C8—C13	-12.4 (6)	C56—C51—C52—C53	0.0 (5)
C3—N7—C8—C9	168.3 (4)	C5—C51—C52—C53	-175.1 (3)
C13—C8—C9—C10	2.8 (5)	C51—C52—C53—C54	0.1 (6)
N7—C8—C9—C10	-177.8 (3)	C52—C53—C54—C55	-0.4 (7)
C13—C8—C9—C14	-178.7 (3)	C53—C54—C55—C56	0.5 (7)
N7—C8—C9—C14	0.7 (5)	C54—C55—C56—C51	-0.4 (6)
C8—C9—C10—C11	-1.1 (6)	C52—C51—C56—C55	0.1 (5)
C14—C9—C10—C11	-179.6 (4)	C5-C51-C56-C55	174.9 (3)
C9—C10—C11—C12	-0.7 (6)	N1-C6-C61-C66	54.0 (5)
C10-C11-C12-C13	0.8 (7)	C5-C6-C61-C66	-126.1 (4)
C11—C12—C13—C8	0.9 (6)	N1—C6—C61—C62	-125.2 (4)
N7—C8—C13—C12	177.9 (4)	C5—C6—C61—C62	54.7 (5)
C9—C8—C13—C12	-2.8 (6)	C66—C61—C62—C63	1.4 (6)
C16—N15—C14—O18	0.8 (5)	C6—C61—C62—C63	-179.4 (4)
C16—N15—C14—C9	-178.1 (3)	C61—C62—C63—C64	0.2 (8)
C17—O18—C14—N15	1.9 (4)	C62—C63—C64—C65	-0.7 (9)
C17—O18—C14—C9	-179.1 (3)	C63—C64—C65—C66	-0.4 (8)
C10—C9—C14—N15	179.6 (4)	C62—C61—C66—C65	-2.5 (6)
C8—C9—C14—N15	1.2 (6)	C6—C61—C66—C65	178.3 (4)
C10-C9-C14-O18	0.7 (5)	C64—C65—C66—C61	2.0 (7)
C8—C9—C14—O18	-177.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N7—H7…N15	0.97 (4)	1.87 (5)	2.671 (4)	138 (4)
C13—H13…N2	0.93	2.31	2.919 (5)	122
C53—H53…O18 ⁱ	0.93	2.54	3.250 (5)	133

Symmetry code: (i) -x+1, y-1/2, -z+3/2.