organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-[(*E*)-3-(4-Methoxyphenyl)prop-2enoyl]-1-(4-methylphenyl)-5-phenyl-1*H*-pyrazole-4-carbonitrile

Hatem A. Abdel-Aziz,^a Ahmed Bari^a and Seik Weng Ng^{b*}

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 14 February 2011; accepted 16 February 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.133; data-to-parameter ratio = 16.4.

In the title compound, $C_{27}H_{21}N_3O_2$, the non-H atoms of the methoxyphenylacryloyl substitutent of the pyrazolyl ring are almost co-planar (r.m.s. deviation = 0.070 Å), and the mean plane is twisted by 18.7 (1)° with respect to the pyrazolyl ring. The phenyl and tolyl substituents are aligned at 48.9 (1) and 44.5 (1)° with respect to the pyrazolyl ring. Weak intermolecular C-H···O and C-H···N hydrogen bonding is present in the crystal structure.

Related literature

For background to the biological properties of aryl-substituted pyrazoles, see: Abdel-Aziz *et al.* (2010, 2011).

Experimental

Crystal data C₂₇H₂₁N₃O₂

 $M_r = 419.47$

Triclinic, P1	
a = 10.9995 (7) Å	
b = 11.0531 (8) Å	
c = 11.4381 (8) Å	
$\alpha = 95.113 \ (6)^{\circ}$	
$\beta = 111.582 \ (6)^{\circ}$	
$\gamma = 118.219 \ (7)^{\circ}$	

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) $T_{min} = 0.984, T_{max} = 0.996$	8250 measured reflections 4779 independent reflections 3346 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$
Refinement	
$2 F^2 > 2\sigma(F^2) = 0.053$	201 narameters

 $R[F^2 > 2\sigma(F^2)] = 0.053$ 291 parameters $wR(F^2) = 0.133$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.21 \text{ e } \text{Å}^{-3}$ 4779 reflections $\Delta \rho_{min} = -0.22 \text{ e } \text{Å}^{-3}$

V = 1079.13 (18) Å³

 $0.20 \times 0.15 \times 0.05 \text{ mm}$

Mo $K\alpha$ radiation

 $\mu = 0.08 \text{ mm}^-$ T = 100 K

7 - 2

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H-	$\cdot \cdot A$
$C12-H12\cdots O1^{i}$	0.95	2.59	3.350 (3)	137	
$\begin{array}{c} C22 - H22 \cdots N3^{ii} \\ C25 - H25 \cdots O2^{iii} \end{array}$	0.95 0.95	2.61 2.56	3.487 (3) 3.484 (3)	154 164	
Symmetry codes: (i) -x, -y+1, -z+2.	-x + 1, -y -	+2, -z+1; (i	ii) $-x + 1, -y +$	1, -z + 1;	(iii)

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank King Saud University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5162).

References

Abdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427–2432.

Abdel-Aziz, H. A., Nassar, E., Ibrahim, H. S. & Mansour, A. M. (2011). Bioorg. Med. Chem. Submitted.

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o694 [doi:10.1107/S1600536811005770]

3-[(*E*)-3-(4-Methoxyphenyl)prop-2-enoyl]-1-(4-methylphenyl)-5-phenyl-1*H*-pyrazole-4-carbonitrile

Hatem A. Abdel-Aziz, Ahmed Bari and Seik Weng Ng

S1. Comment

We have reported the antitumor activity of aryl-pyrazoles against CaCo-2 and HEP-2 cell lines (Abdel-Aziz *et al.*, 2010). Among these is the title compound (Scheme I), whose biological properties will be reported elsewhere (Abdel-Aziz *et al.*, 2011). The compound has methoxyphenylacryloyl, phenyl and tolyl substituents in the pyrazolyl ring. The methoxyphenylacryloyl substituent is twisted by 18.7 (1)° with respect to the pyrazolyl ring; the phenyl and tolyl substituents are aligned at 48.9 (1)° and 44.5 (1)° with respect to the five-membered ring (Fig. 1).

S2. Experimental

The synthesis will be reported elsewhere (Abdel-Aziz *et al.*, 2011). 3-Acetyl-5-phenyl-1-*p*-tolyl-1*H*-pyrazole-4-carbonitrile (10 mmol) was reacted with 4-methoxybenzaldehyde (10 mmol) in presence of sodium ethoxide solution (prepared by dissolving 0.23 g sodium metal in 50 ml absolute ethanol). The compound was recrystallized from an ethanol-DMF (3:1) mixture.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, U_{iso} (H) 1.2 to 1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{27}H_{21}N_3O_2$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

 $l = -14 \rightarrow 14$

3-[(E)-3-(4-Methoxyphenyl)prop-2-enoyl]-1-(4-methylphenyl)-5- phenyl-1H-pyrazole-4-carbonitrile

Crystal data	
$C_{27}H_{21}N_3O_2$	Z = 2
$M_r = 419.47$	F(000) = 440
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.291 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.9995 (7) Å	Cell parameters from 2764 reflections
b = 11.0531 (8) Å	$\theta = 2.2 - 29.3^{\circ}$
c = 11.4381 (8) Å	$\mu=0.08~\mathrm{mm^{-1}}$
$\alpha = 95.113 \ (6)^{\circ}$	T = 100 K
$\beta = 111.582 \ (6)^{\circ}$	Prism, colorless
$\gamma = 118.219 \ (7)^{\circ}$	$0.20 \times 0.15 \times 0.05 \text{ mm}$
$V = 1079.13 (18) \text{ Å}^3$	
Data collection	
Agilent SuperNova Dual	$T_{\rm min} = 0.984, \ T_{\rm max} = 0.996$
diffractometer with Atlas detector	8250 measured reflections
Radiation source: SuperNova (Mo) X-ray	4779 independent reflections
Source	3346 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.033$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
ω scan	$h = -10 \rightarrow 13$
Absorption correction: multi-scan	$k = -13 \longrightarrow 14$

(CrysAlis PRO; Agilent, 2010)

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from
$wR(F^2) = 0.133$	neighbouring sites
S = 1.05	H-atom parameters constrained
4779 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0431P)^2 + 0.3112P]$
291 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.21 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{ m min}$ = -0.22 e Å ⁻³

ractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)
--

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.38684 (16)	0.57825 (15)	0.44798 (13)	0.0300 (3)	
O2	0.12051 (18)	0.40793 (16)	1.05036 (14)	0.0367 (4)	
N1	0.23698 (18)	0.80105 (17)	0.43686 (15)	0.0234 (4)	
N2	0.24257 (18)	0.88927 (17)	0.36089 (15)	0.0224 (4)	
N3	0.5147 (2)	0.73362 (19)	0.22677 (18)	0.0346 (4)	
C1	0.3312 (2)	0.9656 (2)	0.19190 (18)	0.0240 (4)	
C2	0.4740 (2)	1.0450 (2)	0.1918 (2)	0.0279 (4)	
H2	0.5633	1.0516	0.2562	0.033*	
C3	0.4859 (3)	1.1146 (2)	0.0974 (2)	0.0333 (5)	
Н3	0.5835	1.1689	0.0975	0.040*	
C4	0.3566 (3)	1.1051 (2)	0.0037 (2)	0.0345 (5)	
H4	0.3654	1.1535	-0.0602	0.041*	
C5	0.2142 (3)	1.0253 (2)	0.0027 (2)	0.0351 (5)	
Н5	0.1252	1.0183	-0.0626	0.042*	
C6	0.2004 (2)	0.9555 (2)	0.09631 (19)	0.0296 (5)	
Н6	0.1024	0.9011	0.0954	0.036*	
C7	0.3174 (2)	0.8880 (2)	0.28932 (18)	0.0232 (4)	
C8	0.3647 (2)	0.7940 (2)	0.32243 (18)	0.0231 (4)	
C9	0.3105 (2)	0.7419 (2)	0.41342 (18)	0.0230 (4)	
C10	0.4468 (2)	0.7579 (2)	0.26995 (19)	0.0253 (4)	
C11	0.1709 (2)	0.9692 (2)	0.36361 (17)	0.0219 (4)	
C12	0.2558 (2)	1.1174 (2)	0.39088 (18)	0.0242 (4)	
H12	0.3621	1.1678	0.4095	0.029*	
C13	0.1838 (2)	1.1919 (2)	0.39070 (18)	0.0258 (4)	
H13	0.2418	1.2942	0.4103	0.031*	
C14	0.0275 (2)	1.1190 (2)	0.36219 (18)	0.0237 (4)	
C15	-0.0541 (2)	0.9696 (2)	0.33824 (18)	0.0254 (4)	
H15	-0.1599	0.9188	0.3211	0.031*	
C16	0.0174 (2)	0.8946 (2)	0.33918 (17)	0.0235 (4)	
H16	-0.0386	0.7929	0.3232	0.028*	
C17	-0.0532 (3)	1.1984 (2)	0.3558 (2)	0.0328 (5)	
H17A	0.0250	1.3027	0.3984	0.049*	
H17B	-0.1163	1.1647	0.4020	0.049*	
H17C	-0.1209	1.1796	0.2627	0.049*	

C18	0.3238 (2)	0.6344 (2)	0.47637 (18)	0.0238 (4)
C19	0.2638 (2)	0.6043 (2)	0.57209 (19)	0.0258 (4)
H19	0.1994	0.6368	0.5774	0.031*
C20	0.2979 (2)	0.5315 (2)	0.65250 (18)	0.0250 (4)
H20	0.3597	0.4983	0.6416	0.030*
C21	0.2506 (2)	0.4980 (2)	0.75476 (18)	0.0235 (4)
C22	0.3173 (2)	0.4435 (2)	0.84454 (19)	0.0259 (4)
H22	0.3919	0.4272	0.8368	0.031*
C23	0.2780 (2)	0.4123 (2)	0.94527 (19)	0.0274 (4)
H23	0.3254	0.3755	1.0058	0.033*
C24	0.1695 (2)	0.4353 (2)	0.95637 (19)	0.0285 (5)
C25	0.0980 (2)	0.4876 (2)	0.8662 (2)	0.0309 (5)
H25	0.0217	0.5016	0.8729	0.037*
C26	0.1392 (2)	0.5187 (2)	0.7676 (2)	0.0280 (4)
H26	0.0911	0.5550	0.7069	0.034*
C27	0.1885 (3)	0.3532 (3)	1.1453 (2)	0.0384 (5)
H27A	0.1401	0.3340	1.2040	0.058*
H27B	0.3008	0.4251	1.1981	0.058*
H27C	0.1710	0.2632	1.0988	0.058*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0359 (8)	0.0295 (8)	0.0345 (8)	0.0213 (7)	0.0202 (7)	0.0137 (7)
O2	0.0487 (10)	0.0439 (9)	0.0351 (8)	0.0303 (8)	0.0269 (8)	0.0228 (8)
N1	0.0264 (9)	0.0237 (8)	0.0233 (8)	0.0147 (8)	0.0126 (7)	0.0115 (7)
N2	0.0256 (9)	0.0241 (8)	0.0229 (8)	0.0154 (8)	0.0130 (7)	0.0111 (7)
N3	0.0394 (11)	0.0351 (10)	0.0423 (11)	0.0239 (9)	0.0255 (9)	0.0159 (9)
C1	0.0312 (11)	0.0218 (10)	0.0229 (10)	0.0155 (9)	0.0147 (9)	0.0080 (8)
C2	0.0316 (11)	0.0246 (10)	0.0310 (11)	0.0152 (9)	0.0178 (9)	0.0103 (9)
C3	0.0456 (13)	0.0264 (11)	0.0382 (12)	0.0187 (11)	0.0295 (11)	0.0137 (10)
C4	0.0575 (15)	0.0328 (12)	0.0295 (11)	0.0293 (12)	0.0278 (11)	0.0166 (10)
C5	0.0473 (14)	0.0437 (13)	0.0271 (11)	0.0306 (12)	0.0201 (10)	0.0170 (10)
C6	0.0328 (11)	0.0357 (12)	0.0274 (10)	0.0208 (10)	0.0170 (9)	0.0135 (10)
C7	0.0232 (10)	0.0252 (10)	0.0221 (9)	0.0132 (9)	0.0112 (8)	0.0080 (8)
C8	0.0227 (10)	0.0243 (10)	0.0236 (10)	0.0129 (9)	0.0116 (8)	0.0087 (8)
C9	0.0214 (10)	0.0238 (10)	0.0227 (10)	0.0118 (9)	0.0102 (8)	0.0070 (8)
C10	0.0283 (11)	0.0235 (10)	0.0289 (10)	0.0149 (9)	0.0159 (9)	0.0125 (9)
C11	0.0254 (10)	0.0271 (10)	0.0196 (9)	0.0179 (9)	0.0112 (8)	0.0099 (8)
C12	0.0213 (10)	0.0260 (10)	0.0255 (10)	0.0117 (9)	0.0122 (8)	0.0106 (9)
C13	0.0314 (11)	0.0242 (10)	0.0223 (10)	0.0155 (9)	0.0122 (9)	0.0089 (9)
C14	0.0302 (11)	0.0295 (11)	0.0186 (9)	0.0198 (9)	0.0127 (8)	0.0111 (8)
C15	0.0226 (10)	0.0335 (11)	0.0233 (10)	0.0160 (9)	0.0120 (8)	0.0123 (9)
C16	0.0252 (10)	0.0224 (10)	0.0218 (9)	0.0116 (9)	0.0113 (8)	0.0091 (8)
C17	0.0401 (13)	0.0365 (12)	0.0334 (11)	0.0266 (11)	0.0196 (10)	0.0147 (10)
C18	0.0215 (10)	0.0212 (10)	0.0251 (10)	0.0106 (9)	0.0093 (8)	0.0063 (8)
C19	0.0289 (11)	0.0245 (10)	0.0287 (10)	0.0156 (9)	0.0161 (9)	0.0108 (9)
C20	0.0250 (10)	0.0223 (10)	0.0267 (10)	0.0129 (9)	0.0114 (9)	0.0065 (9)

supporting information

C21	0.0242 (10)	0.0197 (9)	0.0255 (10)	0.0120 (9)	0.0106 (8)	0.0072 (8)
C22	0.0254 (10)	0.0233 (10)	0.0291 (10)	0.0145 (9)	0.0111 (9)	0.0087 (9)
C23	0.0271 (11)	0.0253 (10)	0.0266 (10)	0.0145 (9)	0.0088 (9)	0.0098 (9)
C24	0.0341 (12)	0.0273 (11)	0.0258 (10)	0.0158 (10)	0.0164 (9)	0.0111 (9)
C25	0.0345 (12)	0.0343 (12)	0.0380 (12)	0.0236 (10)	0.0220 (10)	0.0181 (10)
C26	0.0334 (11)	0.0284 (11)	0.0308 (11)	0.0207 (10)	0.0164 (9)	0.0158 (9)
C27	0.0477 (14)	0.0395 (13)	0.0306 (11)	0.0243 (12)	0.0184 (11)	0.0185 (11)

Geometric parameters (Å, °)

O1—C18	1.228 (2)	C13—C14	1.393 (3)
O2—C24	1.367 (2)	C13—H13	0.9500
O2—C27	1.432 (2)	C14—C15	1.394 (3)
N1—C9	1.335 (2)	C14—C17	1.505 (3)
N1—N2	1.358 (2)	C15—C16	1.386 (3)
N2—C7	1.361 (2)	C15—H15	0.9500
N2	1.440 (2)	C16—H16	0.9500
N3—C10	1.146 (2)	C17—H17A	0.9800
C1—C2	1.391 (3)	C17—H17B	0.9800
C1—C6	1.396 (3)	C17—H17C	0.9800
C1—C7	1.474 (3)	C18—C19	1.461 (3)
C2—C3	1.390 (3)	C19—C20	1.340 (3)
C2—H2	0.9500	С19—Н19	0.9500
C3—C4	1.378 (3)	C20—C21	1.456 (3)
С3—Н3	0.9500	С20—Н20	0.9500
C4—C5	1.382 (3)	C21—C22	1.390 (3)
C4—H4	0.9500	C21—C26	1.402 (3)
C5—C6	1.386 (3)	C22—C23	1.389 (3)
С5—Н5	0.9500	С22—Н22	0.9500
С6—Н6	0.9500	C23—C24	1.378 (3)
C7—C8	1.389 (3)	С23—Н23	0.9500
C8—C9	1.417 (3)	C24—C25	1.399 (3)
C8—C10	1.425 (3)	C25—C26	1.376 (3)
C9—C18	1.481 (3)	С25—Н25	0.9500
C11—C12	1.379 (3)	C26—H26	0.9500
C11—C16	1.380 (3)	С27—Н27А	0.9800
C12—C13	1.387 (3)	С27—Н27В	0.9800
C12—H12	0.9500	С27—Н27С	0.9800
C24—O2—C27	117.63 (16)	C16—C15—C14	120.69 (18)
C9—N1—N2	105.08 (14)	С16—С15—Н15	119.7
N1—N2—C7	112.95 (14)	C14—C15—H15	119.7
N1—N2—C11	118.61 (14)	C11—C16—C15	119.32 (18)
C7—N2—C11	128.44 (15)	C11—C16—H16	120.3
C2—C1—C6	119.62 (18)	C15—C16—H16	120.3
C2—C1—C7	119.97 (17)	C14—C17—H17A	109.5
C6—C1—C7	120.36 (18)	C14—C17—H17B	109.5
C3—C2—C1	119.9 (2)	H17A—C17—H17B	109.5

С3—С2—Н2	120.0	C14—C17—H17C	109.5
C1—C2—H2	120.0	H17A—C17—H17C	109.5
C4—C3—C2	120.2 (2)	H17B—C17—H17C	109.5
С4—С3—Н3	119.9	O1—C18—C19	123.83 (18)
С2—С3—Н3	119.9	O1—C18—C9	118.84 (17)
C5—C4—C3	120.02 (19)	C19—C18—C9	117.31 (16)
C5—C4—H4	120.0	C20—C19—C18	121.14 (18)
C3—C4—H4	120.0	С20—С19—Н19	119.4
C4—C5—C6	120.5 (2)	C18—C19—H19	119.4
С4—С5—Н5	119.8	C19—C20—C21	127.01 (18)
С6—С5—Н5	119.8	С19—С20—Н20	116.5
C5—C6—C1	119.7 (2)	C21—C20—H20	116.5
С5—С6—Н6	120.1	C22—C21—C26	117.69 (18)
С1—С6—Н6	120.1	C22—C21—C20	119.60 (17)
N2—C7—C8	105.58 (16)	C26—C21—C20	122.71 (17)
N2—C7—C1	124.52 (16)	C21—C22—C23	121.73 (18)
C8—C7—C1	129.79 (17)	C21—C22—H22	119.1
C7—C8—C9	105.63 (16)	C23—C22—H22	119.1
C7—C8—C10	125.37 (17)	C24—C23—C22	119.28 (18)
C9—C8—C10	128.98 (17)	С24—С23—Н23	120.4
N1—C9—C8	110.75 (16)	С22—С23—Н23	120.4
N1—C9—C18	120.93 (16)	O2—C24—C23	124.75 (18)
C8—C9—C18	128.29 (17)	O2—C24—C25	114.80 (18)
N3—C10—C8	177.4 (2)	C23—C24—C25	120.44 (18)
C12—C11—C16	121.29 (17)	C26—C25—C24	119.41 (19)
C12—C11—N2	119.98 (17)	С26—С25—Н25	120.3
C16—C11—N2	118.73 (17)	C24—C25—H25	120.3
C11—C12—C13	119.05 (18)	C25—C26—C21	121.43 (18)
C11—C12—H12	120.5	C25—C26—H26	119.3
C13—C12—H12	120.5	C21—C26—H26	119.3
C12—C13—C14	120.95 (18)	O2—C27—H27A	109.5
C12—C13—H13	119.5	O2—C27—H27B	109.5
C14—C13—H13	119.5	H27A—C27—H27B	109.5
C13—C14—C15	118.65 (17)	O2—C27—H27C	109.5
C13—C14—C17	121.14 (18)	H27A—C27—H27C	109.5
C15—C14—C17	120.21 (18)	H27B—C27—H27C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C12—H12···O1 ⁱ	0.95	2.59	3.350 (3)	137
C22—H22…N3 ⁱⁱ	0.95	2.61	3.487 (3)	154
C25—H25…O2 ⁱⁱⁱ	0.95	2.56	3.484 (3)	164

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*+2.