organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 5-bromo-1-benzofuran-2carboxylate

Hatem A. Abdel-Aziz,^a Ahmed Bari^a and Seik Weng Ng^b*

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 14 February 2011; accepted 16 February 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; R factor = 0.055; wR factor = 0.109; data-to-parameter ratio = 16.5.

In the title compound, $C_{11}H_9BrO_3$, the benzofuran fused-ring system is almost planar, with a maximum atomic deviation of 0.024 (5) Å; the carboxyl $-CO_2$ fragment is aligned at 4.8 (7)° with respect to the fused-ring plane. Weak intermolecular C-H···O hydrogen bonding is present in the crystal structure. π - π stacking is also observed between parallel molecules, the centroid-centroid distance between benzene and furan rings of adjacent molecules being 3.662 (3) Å.

Related literature

For our previous reports of the pharmacological properties of benzofurans, see: Abdel-Aziz & Mekawey (2009); Abdel-Aziz et al. (2009). For a related structure, see: Kossakowski et al. (2005).

Experimental

Crystal data C11H9BrO3

 $M_r = 269.09$

	b = 23.780(2) A	$\mu = 4.02 \text{ mm}^{-1}$
	c = 11.0820 (7) Å	T = 100 K
	$\beta = 96.905 \ (8)^{\circ}$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
	$V = 1016.89 (13) \text{ Å}^3$	
	Data collection	
	Agilent SuperNova Dual	6060 measured reflections
	diffractometer with an Atlas	2250 independent reflections
	detector	1843 reflections with $I > 2\sigma(I)$
k	Absorption correction: multi-scan	$R_{\rm int} = 0.045$
	(CrysAlis PRO; Agilent, 2010)	
	$T_{\min} = 0.378, \ T_{\max} = 0.689$	
/	Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.055$	136 parameters
$wR(F^2) = 0.109$	H-atom parameters constrained
S = 1.18	$\Delta \rho_{\rm max} = 0.97 \ {\rm e} \ {\rm \AA}^{-3}$
2250 reflections	$\Delta \rho_{\rm min} = -0.71 \ {\rm e} \ {\rm \AA}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $> 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

Monoclinic, $P2_1/n$

a = 3.8869 (3) Å

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots O2^{i}$	0.95	2.57	3.400 (6)	146
$C11 - H11A \cdots O2^{ii}$	0.98	2.53	3.472 (6)	160

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank King Saud University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5164).

References

- Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985-3997
- Abdel-Aziz, H. A., Mekawey, A. A. I. & Dawood, K. M. (2009). Eur. J. Med. Chem. 44, 3637-3644.
- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Kossakowski, J., Ostrowska, K., Hejchman, E. & Wolska, I. (2005). Farmaco, 60, 519-527.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o696 [doi:10.1107/S1600536811005897]

Ethyl 5-bromo-1-benzofuran-2-carboxylate

Hatem A. Abdel-Aziz, Ahmed Bari and Seik Weng Ng

S1. Comment

Ethyl 5-bromobenzofuran-2-carboxylate (Scheme I) is a commercially available chemical that has been evaluated for its pharmacological properties. We have reported the pharmacological properties of related compounds (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz *et al.*, 2009). The title compound is an approximately planar molecule; the carboxyl $-CO_2$ fragment is aligned at 4.8 (7)° with respect to the benzofuran fused-ring (Fig. 1). Bond dimensions are similar to those found in methyl 7-methoxybenzofuran-2-carboxylate (Kossakowski *et al.*, 2005).

S2. Experimental

5-Bromosalicyladehyde (2.01 g, 10 mm l), diethyl bromomalonate (2.63 g 11 mmol) and potassium carbonate (2.28 g, 20 mmol) were heated in 2-butanone (20 ml) for 14 h. The solvent was evaporated and water was added to the residue. The organic compound was extracted by ether. The ether phase was washed with 5% sodium hydroxide. The ether was then evaporated and the product recrystallized from ethanol to give the title ester, m.p. 333–335 K.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, U_{iso} (H) 1.2 to 1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{11}H_9BrO_3$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Ethyl 5-bromo-1-benzofuran-2-carboxylate

Crystal data

C₁₁H₉BrO₃ $M_r = 269.09$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 3.8869 (3) Å b = 23.780 (2) Å c = 11.0820 (7) Å $\beta = 96.905$ (8)° V = 1016.89 (13) Å³ Z = 4

Data collection

Agilent SuperNova Dual	$T_{\min} = 0.378, T_{\max} = 0.689$
diffractometer with an Atlas detector	6060 measured reflections
Radiation source: SuperNova (Mo) X-ray	2250 independent reflections
Source	1843 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.045$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
ω scans	$h = -3 \rightarrow 5$
Absorption correction: multi-scan	$k = -30 \rightarrow 30$
(CrysAlis PRO; Agilent, 2010)	$l = -13 \rightarrow 14$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.109$	neighbouring sites
S = 1.18	H-atom parameters constrained
2250 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0086P)^2 + 5.1797P]$
136 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.97$ e Å $^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$

F(000) = 536

 $\theta = 2.5 - 29.3^{\circ}$

 $\mu = 4.02 \text{ mm}^{-1}$ T = 100 K

Prism, colorless

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $D_x = 1.758 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2599 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
Br1	0.84947 (14)	0.52531 (2)	0.18162 (5)	0.02119 (16)	
01	0.2581 (9)	0.32380 (14)	0.4040 (3)	0.0157 (7)	
O2	0.0007 (10)	0.25870 (14)	0.5783 (3)	0.0228 (9)	
O3	0.1752 (9)	0.32488 (14)	0.7194 (3)	0.0165 (8)	
C1	0.3994 (13)	0.3662 (2)	0.3427 (4)	0.0146 (10)	
C2	0.4194 (14)	0.3670 (2)	0.2183 (4)	0.0189 (11)	
H2	0.3416	0.3363	0.1672	0.023*	
C3	0.5588 (15)	0.4150 (2)	0.1733 (4)	0.0216 (12)	
H3	0.5746	0.4181	0.0886	0.026*	
C4	0.6767 (13)	0.4590 (2)	0.2510 (4)	0.0163 (11)	
C5	0.6666 (13)	0.4576 (2)	0.3740 (4)	0.0151 (10)	
Н5	0.7541	0.4878	0.4248	0.018*	
C6	0.5205 (12)	0.4095 (2)	0.4220 (4)	0.0135 (10)	

C7	0.4517 (13)	0.3916 (2)	0.5397 (4)	0.0153 (10)	
H7	0.5060	0.4113	0.6141	0.018*	
C8	0.2932 (14)	0.3408 (2)	0.5243 (4)	0.0161 (11)	
C9	0.1403 (13)	0.3029 (2)	0.6073 (4)	0.0157 (10)	
C10	0.0273 (14)	0.2924 (2)	0.8131 (4)	0.0202 (11)	
H10A	0.1957	0.2639	0.8488	0.024*	
H10B	-0.1857	0.2728	0.7775	0.024*	
C11	-0.0555 (14)	0.3333 (2)	0.9091 (4)	0.0202 (11)	
H11A	-0.1540	0.3130	0.9738	0.030*	
H11B	-0.2234	0.3611	0.8728	0.030*	
H11C	0.1571	0.3526	0.9433	0.030*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0225 (3)	0.0210 (3)	0.0205 (3)	-0.0006 (2)	0.0046 (2)	0.0051 (2)
O1	0.020 (2)	0.0151 (17)	0.0107 (15)	-0.0015 (15)	-0.0019 (14)	-0.0010 (14)
O2	0.032 (2)	0.0169 (19)	0.0191 (18)	-0.0038 (17)	0.0022 (17)	-0.0014 (15)
O3	0.019 (2)	0.0196 (18)	0.0108 (15)	-0.0032 (15)	0.0007 (14)	0.0015 (14)
C1	0.015 (3)	0.016 (2)	0.013 (2)	0.003 (2)	-0.0009 (19)	0.0018 (19)
C2	0.021 (3)	0.022 (3)	0.013 (2)	0.002 (2)	-0.001 (2)	-0.002(2)
С3	0.032 (3)	0.021 (3)	0.013 (2)	0.004 (2)	0.006 (2)	0.002 (2)
C4	0.013 (3)	0.018 (2)	0.019 (2)	0.002 (2)	0.005 (2)	0.007 (2)
C5	0.013 (3)	0.014 (2)	0.018 (2)	0.000 (2)	0.001 (2)	-0.003 (2)
C6	0.008 (2)	0.018 (2)	0.012 (2)	0.001 (2)	-0.0063 (19)	-0.0007 (19)
C7	0.016 (3)	0.016 (2)	0.013 (2)	0.004 (2)	-0.001 (2)	-0.0006 (19)
C8	0.021 (3)	0.016 (2)	0.010 (2)	0.007 (2)	0.000 (2)	0.0000 (19)
С9	0.014 (3)	0.019 (3)	0.013 (2)	0.005 (2)	-0.003 (2)	0.001 (2)
C10	0.023 (3)	0.022 (3)	0.016 (2)	-0.003 (2)	0.004 (2)	0.006 (2)
C11	0.020 (3)	0.027 (3)	0.014 (2)	-0.007(2)	0.001 (2)	0.003 (2)

Geometric parameters (Å, °)

Br1—C4	1.912 (5)	C5—C6	1.410 (7)	
01—C1	1.367 (6)	С5—Н5	0.9500	
O1—C8	1.384 (5)	C6—C7	1.428 (6)	
О2—С9	1.208 (6)	C7—C8	1.357 (7)	
О3—С9	1.340 (5)	С7—Н7	0.9500	
O3—C10	1.465 (6)	C8—C9	1.464 (7)	
C1—C2	1.390 (6)	C10—C11	1.505 (7)	
C1—C6	1.398 (7)	C10—H10A	0.9900	
C2—C3	1.382 (7)	C10—H10B	0.9900	
С2—Н2	0.9500	C11—H11A	0.9800	
C3—C4	1.397 (7)	C11—H11B	0.9800	
С3—Н3	0.9500	C11—H11C	0.9800	
C4—C5	1.369 (6)			
C1—O1—C8	105.3 (4)	С8—С7—Н7	126.8	

C9—O3—C10	116.5 (4)	С6—С7—Н7	126.8
O1—C1—C2	125.2 (4)	C7—C8—O1	111.9 (4)
O1—C1—C6	110.8 (4)	C7—C8—C9	133.0 (4)
C2—C1—C6	124.0 (5)	O1—C8—C9	115.1 (4)
C3—C2—C1	116.1 (5)	O2—C9—O3	125.3 (5)
С3—С2—Н2	121.9	O2—C9—C8	124.9 (4)
C1—C2—H2	121.9	O3—C9—C8	109.8 (4)
C2—C3—C4	120.6 (4)	O3—C10—C11	107.2 (4)
С2—С3—Н3	119.7	O3—C10—H10A	110.3
С4—С3—Н3	119.7	C11-C10-H10A	110.3
C5—C4—C3	123.4 (5)	O3—C10—H10B	110.3
C5-C4-Br1	118.2 (4)	C11—C10—H10B	110.3
C3—C4—Br1	118.4 (4)	H10A-C10-H10B	108.5
C4—C5—C6	117.1 (4)	C10-C11-H11A	109.5
С4—С5—Н5	121.5	C10-C11-H11B	109.5
С6—С5—Н5	121.5	H11A-C11-H11B	109.5
C1—C6—C5	118.8 (4)	C10-C11-H11C	109.5
C1—C6—C7	105.6 (4)	H11A-C11-H11C	109.5
C5—C6—C7	135.6 (5)	H11B-C11-H11C	109.5
C8—C7—C6	106.4 (4)		
C8-01-C1-C2	-179.8 (5)	C4—C5—C6—C7	-178.1 (5)
C8—O1—C1—C6	-0.3 (5)	C1—C6—C7—C8	-1.0 (6)
O1—C1—C2—C3	177.3 (5)	C5—C6—C7—C8	177.8 (6)
C6—C1—C2—C3	-2.1 (8)	C6—C7—C8—O1	0.9 (6)
C1—C2—C3—C4	1.2 (8)	C6—C7—C8—C9	-175.5 (5)
C2—C3—C4—C5	0.7 (8)	C1—O1—C8—C7	-0.4 (6)
C2-C3-C4-Br1	-177.6 (4)	C1—O1—C8—C9	176.7 (4)
C3—C4—C5—C6	-1.6 (7)	C10—O3—C9—O2	-0.7 (7)
Br1-C4-C5-C6	176.6 (4)	C10—O3—C9—C8	178.6 (4)
O1—C1—C6—C5	-178.3 (4)	C7—C8—C9—O2	178.6 (6)
C2-C1-C6-C5	1.2 (8)	01—C8—C9—O2	2.3 (7)
O1—C1—C6—C7	0.8 (5)	C7—C8—C9—O3	-0.7 (8)
C2-C1-C6-C7	-179.7 (5)	01—C8—C9—O3	-177.1 (4)
C4—C5—C6—C1	0.7 (7)	C9—O3—C10—C11	-154.2 (4)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D··· A	D—H···A
C2—H2···O2 ⁱ	0.95	2.57	3.400 (6)	146
C11—H11 <i>A</i> ···O2 ⁱⁱ	0.98	2.53	3.472 (6)	160

Symmetry codes: (i) *x*+1/2, *-y*+1/2, *z*-1/2; (ii) *x*-1/2, *-y*+1/2, *z*+1/2.