Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[[[diaquasodium]- μ_{3}-5-carboxy-2-ethyl- 1 H -imidazole-4-carboxylato$\left.\kappa^{4} N^{3}, O^{4}: O^{5}: O^{5}\right]$ monohydrate]

Shi-Jie Li, ${ }^{\text {a }}$ Xiao-Tian Ma, ${ }^{\text {a }}$ Wen-Dong Song, ${ }^{\text {b }}{ }^{\text {* }}$ Xiao-Fei Li ${ }^{\text {c }}$ and Juan-Hua Liu ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, ${ }^{\text {b }}$ College of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and ${ }^{\text {c College of }}$ Agriculture, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
Correspondence e-mail: songwd60@163.com

Received 13 January 2011; accepted 20 January 2011

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.039 ; w R$ factor $=0.109$; data-to-parameter ratio $=12.3$.

In the title complex, $\left\{\left[\mathrm{Na}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the Na^{I} atom exhibits a distorted octahedral geometry and is sixcoordinated in an NO_{5} environment. The equatorial plane is defined by three O atoms and one N atom from two distinct 5-carboxy-2-ethyl- H -imidazole-4-carboxylate ($\mathrm{H}_{2} \mathrm{EIDC}$) ligands and one coordinated water molecule, and the apical sites are occupied by one carboxyl O atom from one H_{2} EIDC ligand and one O atom from the other coordinated water molecule. The Na^{I} atoms are linked by H_{2} EIDC ligands, generating an infinite double chain along the a axis. These chains are further connected via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a three-dimensional supramolecular network.

Related literature

For the rational design of metal coordination complexes, see: Sava et al. (2009); Lu et al. (2010); Xue et al. (2009). For H3IDC complexes with supramolecular architectures, see: Zou et al. (2006); Li et al. (2006); Sun et al. (2005). For related coordination polymers based on $\mathrm{H}_{3} \mathrm{EIDC}$, see: Wang et al. (2008); Zhang et al. (2010).

Experimental

Crystal data

$\left[\mathrm{Na}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

$$
V=1131.51(18) \AA^{3}
$$

$M_{r}=260.18$
=
Monoclinic, $P 2_{k} / n$
Mo $K \alpha$ radiation
$a=8.5231$ (8) A
$\mu=0.17 \mathrm{~mm}^{-1}$
$b=7.0598$ (7) A
$T=298 \mathrm{~K}$
$c=19.0329$ (17) \AA
$0.49 \times 0.48 \times 0.34 \mathrm{~mm}$
$\beta=98.880(1)^{\circ}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer

5410 measured reflections 1991 independent reflections 1549 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$ (SADABS; Bruker, 2007)
$T_{\text {min }}=0.923, T_{\text {max }}=0.946$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
H atoms treated by a mixture of independent and constrained
refinement
$\Delta \rho_{\text {max }}=0.33$ e \AA^{-3}
$S=1.04$
1991 reflections
162 parameters
9 restraints
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 W-\mathrm{H} 6 W \cdots \mathrm{O} 2 W^{\mathrm{i}}$	0.85	2.09	2.872 (3)	154
$\mathrm{O} 3 W-\mathrm{H} 5 W \cdots \mathrm{O} 2^{\text {ii }}$	0.85	2.07	2.904 (3)	165
$\mathrm{O} 2 W-\mathrm{H} 4 W \cdots \mathrm{O} 3^{\text {ii }}$	0.85	2.04	2.888 (3)	174
$\mathrm{O} 2 W-\mathrm{H} 3 W \cdots \mathrm{O} 1^{\text {iii }}$	0.85	1.96	2.812 (3)	174
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 3 W^{\text {iv }}$	0.84 (1)	1.86 (1)	2.701 (3)	178 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O}{ }^{\text {V }}$	0.84 (1)	2.33 (2)	3.096 (3)	152 (3)
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2$	0.82	1.64	2.453 (2)	168
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1 W^{\text {vi }}$	0.86	2.01	2.857 (3)	171

Symmetry codes: (i) $x-1, y, z$; (ii) $x, y-1, z ;$ (iii) $x+1, y-1, z ; \quad$ (iv)
$-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{3}{2}$; (v) $x+1, y, z ;$ (vi) $-x+2,-y+1,-z+1$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

metal-organic compounds

The work was supported by the Nonprofit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Ocean Fisheries Technology Promotion Project [grant No. A2009003-018(c)], the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121), the Guangdong Province Key Project in the Field of Social Development [grant No. A2009011-007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Fundation (No. 9252408801000002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2345).

References

Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Li, C. J., Hu, S., Li, W., Lam, C. K., Zheng, Y. Z. \& Tong, M. L. (2006). Eur. J. Inorg. Chem. pp. 1931-1935.
Lu, J., Ting, H., Zhang, X. X., Wang, D. Q. \& Niu, M. J. (2010). Z. Anorg. Allg. Chem. 636, 641-647.
Sava, D. F., Kravtsov, V. C., Eckert, J., Eubank, J. F., Nouar, F. \& Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 10394-10396.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sun, Y. Q., Zhang, J., Chen, Y. M. \& Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814-5817.
Wang, S., Zhang, L. R., Li, G. H., Huo, Q. S. \& Liu, Y. L. (2008). CrystEngComm, 10, 1662-1666.
Xue, M., Zhu, G. S., Ding, H., Wu, L., Zhao, X. J., Jin, Z. \& Qiu, S. L. (2009). Cryst. Growth Des. 9, 1481-1488.
Zhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. \& Zhu, Y. Y. (2010). Inorg. Chem. 49, 3776-3788.

Zou, R. Q., Sakurai, H. \& Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 25422546.

supporting information

Acta Cryst. (2011). E67, m295-m296 [doi:10.1107/S1600536811002741]

Poly[[[diaquasodium]- μ_{3}-5-carboxy-2-ethyl-1 H -imidazole-4-carboxylato$\left.\kappa^{4} N^{3}, O^{4}: O^{5}: O^{5}\right]$ monohydrate]

Shi-Jie Li, Xiao-Tian Ma, Wen-Dong Song, Xiao-Fei Li and Juan-Hua Liu

S1. Comment

The rational design and synthesis of novel metal-coordination complexes via deliberate selection of metal ions and organic ligands has attracted much attention due to the fascinating structures that can be obtained and their potential applications in catalysis, magnetism, photoluminescence and gas storage (Sava et al.,2009; Lu et al., 2010; Xue et al., 2009). The 4,5-imidazoledicarboxylic acid (H_{3} IDC) ligand exhibits flexible multi-functional coordination sites involving two N atoms of the imidazole ring and four carboxyl O atoms, and has been widely used to construct novel supramolecular architectures (Zou et al., 2006; Li et al., 2006; Sun et al., 2005). To augment the data for the well studied H_{3} IDC ligand, we recently chose to study a closely related ligand, 2-ethyl-1 H -imidazole-4,5-dicarboxylic acid (H_{3} EIDC) with an ethyl substitutent in the 2-position of the imidazole group, which could be a good candidate for generating intriguing supramolecular networks. To the best of our knowledge, only a few coordination polymers based on the H_{3} EIDC ligand have been reported so far (Wang et al., 2008; Zhang et al., 2010). We report herein the hydrothermal synthesis and crystal structure of a new Na^{I} complex, the title compound.
As illustrated in Fig. 1, the title complex, $\left[\mathrm{Na}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, comprises one H_{2} EIDC ligand, one Na^{I} ion, two coordinated water molecules and one solvent water molecule. Each Na^{I} cation exhibits a distorted octahedral geometry and is six-coordinated by three oxygen ($\mathrm{O} 4, \mathrm{O1}^{\mathrm{i}}$ and O^{ii}) atoms and one nitrogen (N^{i}) atom of three distinct H_{2} EIDC ligands and two oxygen atoms (O1W and O2W) from two coordinated water molecules (symmetry codes: $\mathrm{i}=1-x, 1-y, 1-$ z; ii $=2-x, 1-y, 1-z$). The equatorial plane is built by the $\mathrm{O} 4, \mathrm{O} 1^{\mathrm{i}}, \mathrm{O} 1 \mathrm{~W}$ and $\mathrm{N} 1^{\mathrm{i}}$ atoms and the apical positions are occupied by O2W and O4 $4^{\text {ii }}$. Two adjacent Na centers are bridged by two carboxyl oxygen atoms to form a $\mathrm{Na}_{2} \mathrm{O}_{2}$ subunit with a $\mathrm{Na}-\mathrm{Na}$ distance of 3.684 (2) \AA, and the $\mathrm{Na}_{2} \mathrm{O}_{2}$ subunits are linked by $\mathrm{H}_{2} \mathrm{EIDC}$ ligands to generate a onedimensional double chain propagating along the a axis (Fig. 2a). The adjacent one-dimensional chains are connected into a three-dimensional supramolecular structure (Fig. 2 b) via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the uncoordinated imidazole N atoms, the uncoordinated and coordinated carboxylate O atoms from the H_{2} EIDC ligands and the uncoordinated and coordinated water molecules (Table 1).

S2. Experimental

A mixture of $\mathrm{NaOH}(0.1 \mathrm{mmol}, 0.004 \mathrm{~g})$ and 2-ethyl-1 H -imidazole-4,5-dicarboxylic acid $(0.5 \mathrm{mmol}, 0.9 \mathrm{~g})$ in 10 ml of $\mathrm{H}_{2} \mathrm{O}$ was sealed in an autoclave equipped with a Teflon liner $(20 \mathrm{ml})$ and then heated to 433 K for 4 days. Colorless crystals were obtained by slow evaporation of the solvent at room temperature with a yield of 42% based on NaOH .

S3. Refinement

H atoms of the water molecule were located in a difference Fourier map and refined as riding with an $\mathrm{O}-\mathrm{H}$ distance restraint of $0.84(1) \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$. The $\mathrm{H} \cdots \mathrm{H}$ distances within the water molecules were restraint to 1.39 (1) \AA.

Carboxyl H atoms were located in a difference map but were refined as riding on the parent O atoms with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with $\mathrm{C}-\mathrm{H}=0.96$ (methyl), 0.97 (methylene) and $\mathrm{N}-\mathrm{H}=0.86 \AA, U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 $U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$.

Figure 1

The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. (symmetry codes: $\mathrm{i}=1-x, 1-y, 1-z ; \mathrm{ii}=2-x, 1-y, 1-z$).
(a)

(b)

Figure 2
(a) One-dimensional double chain constructed of $\mathrm{Na}_{2} \mathrm{O}_{2}$ subunits and H_{2} EIDC ligands propagating along the a axis (H atoms are omitted for clarity); (b) A view of the three-dimensional network constructed by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions (H atoms not involved in the hydrogen bonds are omitted for clarity).

Poly[[[diaquasodium]- μ_{3}-5-carboxy-2-ethyl-1 H - imidazole-4-carboxylato- $\left.\kappa^{4} \mathcal{N}^{3}, O^{4}: O^{5}: O^{5}\right]$ monohydrate]

Crystal data

$\left[\mathrm{Na}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=260.18$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=8.5231$ (8) Å
$b=7.0598$ (7) \AA
$c=19.0329(17) \AA$
$\beta=98.880(1)^{\circ}$
$V=1131.51(18) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min }=0.923, T_{\max }=0.946$
$F(000)=544$
$D_{\mathrm{x}}=1.527 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1702 reflections
$\theta=2.5-25.9^{\circ}$
$\mu=0.17 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colorless
$0.49 \times 0.48 \times 0.34 \mathrm{~mm}$

5410 measured reflections
1991 independent reflections
1549 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-6 \rightarrow 10$
$k=-8 \rightarrow 8$
$l=-22 \rightarrow 21$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.109$
$S=1.04$
1991 reflections
162 parameters
9 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0431 P)^{2}+0.658 P\right]$ \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.33$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.116 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Na1	$0.93820(11)$	$0.32398(16)$	$0.56175(5)$	$0.0388(4)$
N 1	$0.3469(2)$	$0.7014(3)$	$0.42293(10)$	$0.0288(5)$
N 2	$0.5987(2)$	$0.6488(3)$	$0.41437(10)$	$0.0283(5)$
H 2	0.6816	0.6165	0.3966	0.034^{*}
O1	$0.2192(2)$	$0.822(3)$	$0.54163(10)$	$0.0413(5)$
O2	$0.4583(2)$	$0.8601(3)$	$0.60539(9)$	$0.0361(5)$
O3	$0.7371(2)$	$0.8029(3)$	$0.59418(9)$	$0.0361(5)$
H3	0.6453	0.8360	0.5953	0.054^{*}
O4	$0.8713(2)$	$0.6644(3)$	$0.51722(9)$	$0.0374(5)$
O1W	$1.1322(2)$	$0.5012(3)$	$0.63961(10)$	$0.0413(5)$
H1W	$1.132(4)$	$0.608(2)$	$0.6204(13)$	0.062^{*}
H2W	$1.152(4)$	$0.509(4)$	$0.6843(6)$	0.062^{*}
O2W	$1.0214(2)$	$0.0314(3)$	$0.61812(10)$	$0.0444(6)$
H3W	1.0861	-0.0263	0.5958	0.067^{*}
H4W	0.9347	-0.0303	0.6128	0.067^{*}
O3W	$0.3117(3)$	$0.0343(4)$	$0.71733(11)$	$0.0803(9)$
H5W	0.3704	-0.0161	0.6902	0.120^{*}
H6W	0.2135	0.0274	0.7005	0.120^{*}
C1	$0.3656(3)$	$0.8138(4)$	$0.54743(13)$	$0.0292(6)$
C2	$0.4401(3)$	$0.7466(3)$	$0.48677(12)$	$0.0256(6)$
C3	$0.5973(3)$	$0.7131(3)$	$0.48215(12)$	$0.0255(6)$
C4	$0.7464(3)$	$0.7262(4)$	$0.53360(13)$	$0.0277(6)$
C5	$0.4475(3)$	$0.6448(4)$	$0.38032(13)$	$0.0280(6)$

C6	$0.4053(3)$	$0.5841(5)$	$0.30430(13)$	$0.0391(7)$
H6A	0.4522	0.4610	0.2986	0.047^{*}
H6B	0.4512	0.6731	0.2744	0.047^{*}
C7	$0.2284(3)$	$0.5722(5)$	$0.27913(15)$	$0.0472(8)$
H7A	0.1832	0.4770	0.3059	0.071^{*}
H7B	0.2094	0.5397	0.2296	0.071^{*}
H7C	0.1804	0.6925	0.2859	0.071^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	$0.0261(6)$	$0.0525(8)$	$0.0381(6)$	$0.0021(5)$	$0.0057(4)$	$-0.0010(5)$
N1	$0.0239(11)$	$0.0336(12)$	$0.0288(11)$	$0.0004(9)$	$0.0038(9)$	$0.0000(9)$
N2	$0.0228(11)$	$0.0363(13)$	$0.0270(11)$	$0.0012(9)$	$0.0083(8)$	$-0.0012(9)$
O1	$0.0241(10)$	$0.0583(13)$	$0.0433(11)$	$0.0016(9)$	$0.0107(8)$	$-0.0118(10)$
O2	$0.0295(10)$	$0.0503(12)$	$0.0289(10)$	$0.0009(8)$	$0.0057(7)$	$-0.0098(8)$
O3	$0.0243(9)$	$0.0520(13)$	$0.0319(10)$	$0.0009(8)$	$0.0033(7)$	$-0.0077(9)$
O4	$0.0229(10)$	$0.0517(13)$	$0.0379(10)$	$0.0049(8)$	$0.0061(8)$	$-0.0022(9)$
O1W	$0.0422(11)$	$0.0494(13)$	$0.0332(10)$	$0.0032(10)$	$0.0086(9)$	$-0.0007(9)$
O2W	$0.0342(10)$	$0.0526(13)$	$0.0464(12)$	$0.0014(9)$	$0.0062(8)$	$-0.0099(10)$
O3W	$0.0568(15)$	$0.148(3)$	$0.0359(12)$	$0.0132(16)$	$0.0053(10)$	$-0.0115(15)$
C1	$0.0279(14)$	$0.0297(14)$	$0.0312(14)$	$-0.0002(11)$	$0.0082(11)$	$0.0000(11)$
C2	$0.0246(12)$	$0.0257(13)$	$0.0272(12)$	$-0.0007(10)$	$0.0056(10)$	$0.0015(10)$
C3	$0.0257(13)$	$0.0260(13)$	$0.0255(12)$	$-0.0001(10)$	$0.0060(10)$	$0.0000(10)$
C4	$0.0255(13)$	$0.0291(14)$	$0.0293(13)$	$-0.0002(11)$	$0.0062(10)$	$0.0011(11)$
C5	$0.0266(13)$	$0.0307(14)$	$0.0272(13)$	$0.0003(10)$	$0.0054(10)$	$0.0006(11)$
C6	$0.0391(16)$	$0.0506(19)$	$0.0275(14)$	$-0.0012(13)$	$0.0048(11)$	$-0.0024(13)$
C7	$0.0446(17)$	$0.058(2)$	$0.0351(15)$	$-0.0049(15)$	$-0.0052(12)$	$0.0008(14)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Na1-O4 ${ }^{\text {i }}$	2.378 (2)	$\mathrm{O} 4-\mathrm{Na} 1^{\text {i }}$	2.378 (2)
Na1-O2W	2.384 (2)	O1W-H1W	0.840 (11)
Na1-O1W	2.396 (2)	O1W-H2W	0.843 (11)
$\mathrm{Na} 1-\mathrm{O} 1^{\text {ii }}$	2.433 (2)	O2W-H3W	0.8500
$\mathrm{Na} 1-\mathrm{N} 1{ }^{\text {ii }}$	2.498 (2)	O2W-H4W	0.8500
Na1-O4	2.583 (2)	O3W-H5W	0.8500
N1-C5	1.329 (3)	O3W-H6W	0.8499
N1-C2	1.383 (3)	C1-C2	1.480 (3)
$\mathrm{N} 1-\mathrm{Na} 1^{\text {ii }}$	2.498 (2)	C2-C3	1.377 (3)
N2-C5	1.351 (3)	C3-C4	1.482 (3)
N2-C3	1.369 (3)	C5-C6	1.499 (3)
N2-H2	0.8600	C6-C7	1.512 (4)
$\mathrm{O} 1-\mathrm{C} 1$	1.237 (3)	C6-H6A	0.9700
$\mathrm{O} 1-\mathrm{Na} 1^{\text {ii }}$	2.432 (2)	C6-H6B	0.9700
$\mathrm{O} 2-\mathrm{C} 1$	1.296 (3)	C7-H7A	0.9600
O3-C4	1.287 (3)	C7-H7B	0.9600
O3-H3	0.8200	C7-H7C	0.9600

O4-C4	1.234 (3)
$\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Na}-\mathrm{O} 2 \mathrm{~W}$	97.45 (7)
$\mathrm{O} 4 \mathrm{i}-\mathrm{Na}-\mathrm{O} 1 \mathrm{~W}$	84.24 (7)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Na}-\mathrm{O} 1 \mathrm{~W}$	92.58 (7)
$\mathrm{O} 4-\mathrm{Na} 1-\mathrm{O}^{\text {i }}{ }^{\text {i }}$	81.27 (7)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Na} 1-\mathrm{Ol}^{\text {ii }}$	94.91 (8)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Na}-\mathrm{Ol}^{\text {ii }}$	164.44 (8)
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Na} 1-\mathrm{N} 1^{\text {ii }}$	147.95 (8)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Na} 1-\mathrm{N} 1^{\text {ii }}$	96.45 (8)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Na} 1-\mathrm{N} 1^{\text {ii }}$	123.79 (8)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Na} 1-\mathrm{N} 1^{\text {ii }}$	68.86 (7)
$\mathrm{O} 4-\mathrm{Na}-\mathrm{O} 4$	84.16 (7)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Na}-\mathrm{O} 4$	171.50 (8)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Na}-\mathrm{O} 4$	79.24 (7)
$\mathrm{O} 1{ }^{\text {ii- }}-\mathrm{Na} 1-\mathrm{O} 4$	93.59 (7)
$\mathrm{N} 1{ }^{\text {ii- }}$ - $\mathrm{Na} 1-\mathrm{O} 4$	86.31 (7)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{Na} 1^{\text {i }}$	44.22 (5)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Na} 1-\mathrm{Na} 1^{\mathrm{i}}$	140.98 (7)
O1W-Nal-Na1 ${ }^{\text {i }}$	78.72 (6)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{Na} 1^{\text {i }}$	86.90 (6)
$\mathrm{N} 1{ }^{\text {ii }}$ - $\mathrm{Na} 1-\mathrm{Na} 1^{\text {i }}$	120.13 (7)
$\mathrm{O} 4-\mathrm{Na} 1-\mathrm{Na} 1^{\text {i }}$	39.94 (4)
C5-N1-C2	105.55 (19)
C5-N1-Na1 ${ }^{\text {ii }}$	141.28 (17)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Na} 1^{1 i}$	110.58 (15)
C5-N2-C3	108.2 (2)
C5-N2-H2	125.9
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2$	125.9
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Na}{ }^{\text {ii }}$	118.37 (16)
C4-O3-H3	109.5
$\mathrm{C} 4-\mathrm{O} 4-\mathrm{Na} 1^{\text {i }}$	147.92 (17)
$\mathrm{C} 4-\mathrm{O} 4-\mathrm{Na} 1$	113.65 (16)
Na1--O4-Nal	95.84 (7)
Na1-O1W-H1W	104 (2)
O 4 - ${ }^{\text {- }}$ - $1-\mathrm{O} 4-\mathrm{C} 4$	167.0 (2)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Na} 1-\mathrm{O} 4-\mathrm{C} 4$	-107.73 (17)
$\mathrm{O} 1{ }^{\text {ii- }} \mathrm{Na}-\mathrm{N} 4-\mathrm{C} 4$	86.20 (17)
$\mathrm{N} 1{ }^{\text {ii- }} \mathrm{Na} 1-\mathrm{O} 4-\mathrm{C} 4$	17.68 (17)
$\mathrm{Na} 1{ }^{\text {i }}-\mathrm{Na} 1-\mathrm{O} 4-\mathrm{C} 4$	167.0 (2)
$\mathrm{O} 4-\mathrm{Na} 1-\mathrm{O} 4-\mathrm{Na}{ }^{\text {i }}$	0.0
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Na}-\mathrm{O} 4-\mathrm{Na} 1^{\text {i }}$	85.23 (7)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{O} 4-\mathrm{Na} 1^{\text {i }}$	-80.84 (7)
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{O} 4-\mathrm{Na} 1^{\text {i }}$	-149.36 (8)
$\mathrm{Na}{ }^{1 i}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	-168.77 (19)
$\mathrm{Na} 1{ }^{\text {ii- }} \mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	10.4 (3)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	-1.1(3)

Na1-O1W-H2W	132 (2)
H1W-O1W-H2W	111.4 (15)
Na1-O2W-H3W	111.2
Na1-O2W-H4W	101.4
H3W-O2W-H4W	108.2
H5W-O3W-H6W	112.6
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	122.6 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	119.6 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.8 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	109.7 (2)
C3-C2-C1	130.1 (2)
N1-C2-C1	120.1 (2)
N2-C3-C2	105.48 (19)
N2-C3-C4	120.8 (2)
C2-C3-C4	133.7 (2)
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{O} 3$	123.3 (2)
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	119.7 (2)
O3-C4-C3	116.9 (2)
N1-C5-N2	111.0 (2)
N1-C5-C6	126.4 (2)
N2-C5-C6	122.6 (2)
C5-C6-C7	113.6 (2)
C5-C6-H6A	108.8
C7-C6-H6A	108.8
C5-C6-H6B	108.8
C7-C6-H6B	108.8
H6A-C6-H6B	107.7
C6-C7-H7A	109.5
C6-C7-H7B	109.5
H7A-C7-H7B	109.5
C6-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
N1-C2-C3-N2	0.6 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	178.7 (2)
N1-C2-C3-C4	-176.6 (3)
C1-C2-C3-C4	1.5 (5)
Na1--O4-C4-O3	-121.0 (3)
Na1-O4-C4-O3	83.8 (3)
$\mathrm{Na} 1-\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	59.2 (4)
Na1-O4-C4-C3	-96.0 (2)
N2-C3-C4-O4	-5.9 (4)
C2-C3-C4-O4	171.0 (3)
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	174.3 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	-8.9 (4)

$\mathrm{Na} 1 \mathrm{ii}^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$164.78(16)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$-179.3(2)$
$\mathrm{Na} 1{ }^{\mathrm{ii}}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$-13.5(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-175.0(3)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$4.3(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$2.9(4)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-177.8(2)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$0.0(3)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$177.7(2)$

$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 2$	$1.1(3)$
$\mathrm{N} 11^{\mathrm{ii}}-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 2$	$-157.43(19)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$-178.6(3)$
$\mathrm{Na} 1 \mathrm{ii}-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$22.8(5)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5-\mathrm{N} 1$	$-0.7(3)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6$	$179.0(2)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-5.9(4)$
$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$174.4(2)$

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 W — \mathrm{H} 6 W \cdots \mathrm{O} 2 W^{\text {iii }}$	0.85	2.09	$2.872(3)$	154
$\mathrm{O} 3 W — \mathrm{H} 5 W \cdots \mathrm{O} 2^{\text {iv }}$	0.85	2.07	$2.904(3)$	165
$\mathrm{O} 2 W-\mathrm{H} 4 W \cdots 3^{\text {iv }}$	0.85	2.04	$2.888(3)$	174
$\mathrm{O} 2 W — \mathrm{H} 3 W \cdots 1^{\text {v }}$	0.85	1.96	$2.812(3)$	174
$\mathrm{O} 1 W — \mathrm{H} 2 W \cdots \mathrm{O} 3 W^{\text {vi }}$	$0.84(1)$	$1.86(1)$	$2.701(3)$	$178(3)$
$\mathrm{O} 1 W — \mathrm{H} 1 W \cdots \mathrm{O} 1^{\text {vii }}$	$0.84(1)$	$2.33(2)$	$3.096(3)$	$152(3)$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{O} 2$	0.82	1.64	$2.453(2)$	168
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{O} 1 W^{\text {i }}$	0.86	2.01	$2.857(3)$	171

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (iii) $x-1, y, z$; (iv) $x, y-1, z$; (v) $x+1, y-1, z$; (vi) $-x+3 / 2, y+1 / 2,-z+3 / 2$; (vii) $x+1, y, z$.

