Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Piperazinediium tetrachloridocadmate monohydrate

Meher El Glaoui, ${ }^{\text {a }}$ Imen Ben Gharbia, ${ }^{\text {a }}$ Valeria Ferretti ${ }^{\text {b }}$ and Cherif Ben Nasr ${ }^{\text {a* }}$

${ }^{\text {a }}$ Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and ${ }^{\mathbf{b}}$ Chemistry Department and Centro di Strutturistica Diffrattometrica, University of Ferrara, Via L. Borsari 46, I-44121 FerrarA, Italy Correspondence e-mail: cherif_bennasr@yahoo.fr

Received 1 February 2011; accepted 10 February 2011
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.033 ; w R$ factor $=0.081$; data-to-parameter ratio $=27.5$.

In the title compound, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{CdCl}_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the $\left[\mathrm{CdCl}_{4}\right]^{2-}$ anions adopt a slightly distorted tetrahedral configuration. In the crystal, $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds link the anions and water molecules into corrugated inorganic chains along the b axis which are interconnected via piperazinediiumN $-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions into a three-dimensional framework structure.

Related literature

For common applications of organic-inorganic hybrid materials, see: Kobel \& Hanack (1986); Pierpont \& Jung (1994). For a related structure and discussion of geometrical features, see: Sutherland \& Harrison (2009). For the coordination around the $\mathrm{Cd}^{\mathrm{II}}$ cation, see: El Glaoui et al. (2009).

Experimental

Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{CdCl}_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=360.38 \\
& \text { Monoclinic, } P 2^{1} / c \\
& a=6.6204(2) \AA \\
& b=12.8772(3) \AA \\
& c=14.0961(4) \AA \\
& \beta=92.1710(12)^{\circ}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.374, T_{\text {max }}=0.444$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.081$
$S=1.09$
3461 reflections
126 parameters

8531 measured reflections 3461 independent reflections 2903 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.78$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.75 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.93(3)$	$2.35(3)$	$3.254(2)$	$164(3)$
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{Cl} 3$	$0.89(3)$	$2.41(4)$	$3.155(2)$	$141(3)$
$\mathrm{N} 2-\mathrm{H} 3 \cdots \mathrm{O} 1 W$	$0.89(3)$	$1.93(3)$	$2.808(3)$	$167(3)$
$\mathrm{N} 2-\mathrm{H} 4 \cdots \mathrm{Cl} 4^{\text {ii }}$	$0.81(3)$	$2.46(3)$	$3.190(2)$	$151(3)$
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{Cl} 2^{\mathrm{iii}}$	0.84	2.44	$3.267(3)$	168
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{Cl} 4^{\text {iv }}$	0.85	2.54	$3.304(2)$	150
Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x,-y,-z+1 ;$				
(iv) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.				

Data collection: Kappa-CCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2095).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
El Glaoui, M., Kefi, R., Jeanneau, E., Lefebvre, F. \& Ben Nasr, C. (2009). Can. J. Anal. Sci. Spectrosc. 54, 282-291.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Kobel, W. \& Hanack, M. (1986). Inorg. Chem. 25, 103-107.
Nonius (1997). Kappa-CCD Server Software. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pierpont, C. G. \& Jung, O. (1994). J. Am. Chem. Soc. 116, 2229-2230.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sutherland, P. A. \& Harrison, W. T. A. (2009). Acta Cryst. E65, m565.

supporting information

Acta Cryst. (2011). E67, m340 [doi:10.1107/S1600536811005095]

Piperazinediium tetrachloridocadmate monohydrate

Meher El Glaoui, Imen Ben Gharbia, Valeria Ferretti and Cherif Ben Nasr

S1. Comment

Organic-inorganic hybrid materials continue to attract much attention due to their potential applications in various field (Kobel \& Hanack, 1986; Pierpont \& Jung, 1994). In this work, we report the crystal structure of one such compound, $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\left[\mathrm{CdCl}_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ (I), formed from the reaction of piperazine with cadmium chloride. In (I) the asymmetric unit comprises a piperazine-1,4-diium dication, a $\left[\mathrm{CdCl}_{4}\right]^{2-}$ anion and a water molecule of solvation (Fig. 1). The atomic arrangement of (I) can be described as built up of corrugated inorganic chains of [$\left.\mathrm{CdCl}_{4}\right]^{2-}$ tetrahedra and water molecules held together by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds and extending along the b direction of the unit cell. These chains are interconnected by a set of piperazinium $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to form layers extending along the (11 O) planes (Fig. 2, Table 1). Fig 3 shows that two such layers cross the unit cell at $z=1 / 4$ and $z=3 / 4$ and the bodies of the organic groups are located between these layers and connect them by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds $[\mathrm{C} \cdots \mathrm{Cl}, 3.535$ (3) \AA], giving a three-dimensional framework structure. In the organic entity, the piperazium ring adopts a typical chair conformation and all the geometrical features agree with those found in piperazindiium tetrachlorozincate(II) (Sutherland \& Harrison, 2009). It is worth noting that in the anion of (I), the $\mathrm{Cd}-\mathrm{Cl}$ bond lengths and $\mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl}$ bond angles are not equal, but vary with the environment around the Cl atom. The $\mathrm{Cd}-\mathrm{Cl}$ bond lengths vary between 2.4418 (6) and 2.4892 (7) \AA and the $\mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl}$ angles range from 103.07 (2) to 115.19 (2) ${ }^{\circ}$. These values are in good agreement with those reported previously, clearly indicating that the $\left[\mathrm{CdCl}_{4}\right]^{2-}$ anion has a slightly distorted tetrahedral stereochemistry (El Glaoui et al. (2009).

S2. Experimental

An aqueous solution of piperazine ($4 \mathrm{mmol}, 0.344 \mathrm{~g}$), cadmium chloride ($4 \mathrm{mmol}, 0.732 \mathrm{~g}$) and $\mathrm{HCl}(10 \mathrm{ml}, 0.8 \mathrm{M})$ in a Petri dish was slowly evaporated at room temperature. Single crystals of the title compound, suitable for X-ray diffraction analysis, were obtained after several days (yield 68\%).

S3. Refinement

All N-H hydrogen atoms were found in the difference Fourier map and refined isotropically. The water hydrogen atoms were also found in the difference Fourier but their positions were kept fixed during the refinement and their $U_{\text {iso }}$ values were given a value equal to 1.2 times $U_{\text {eq }}$ of the parent oxygen. All C-H atoms were allowed to ride with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
A view of the title compound, showing 50\% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Figure 2
A projection along the c axis of the inorganic layer structure at $z=1 / 4$.

Figure 3
The packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dotted lines.

Piperazinediium tetrachloridocadmate monohydrate

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{CdCl}_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=360.38$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2 ybc
$a=6.6204$ (2) \AA
$b=12.8772(3) \AA$
$c=14.0961$ (4) \AA
$\beta=92.1710(12)^{\circ}$
$V=1200.86(6) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ scans and ω scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.374, T_{\text {max }}=0.444$
$F(000)=704$
$D_{\mathrm{x}}=1.993 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8531 reflections
$\theta=2.0-30.0^{\circ}$
$\mu=2.67 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prismatic, colourless
$0.52 \times 0.48 \times 0.30 \mathrm{~mm}$

8531 measured reflections
3461 independent reflections
2903 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-9 \rightarrow 9$
$k=-17 \rightarrow 17$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.081$
$S=1.09$
3461 reflections
126 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0389 P)^{2}+0.4362 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.78$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.75 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0778 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
Cd1	$0.02921(3)$	$-0.001890(11)$	$0.235463(13)$	$0.03178(9)$
C11	$0.07520(10)$	$-0.19208(5)$	$0.22725(4)$	$0.03972(16)$
C12	$-0.34472(9)$	$0.01950(5)$	$0.22883(5)$	$0.03628(15)$
C13	$0.17473(9)$	$0.05843(5)$	$0.38740(5)$	$0.03822(15)$
C14	$0.13421(9)$	$0.09489(5)$	$0.09660(5)$	$0.03906(16)$
N1	$0.5582(3)$	$0.20385(16)$	$0.38723(15)$	$0.0312(4)$
N2	$0.7142(3)$	$0.28658(16)$	$0.56419(15)$	$0.0321(4)$
C1	$0.4546(4)$	$0.29108(19)$	$0.43473(18)$	$0.0358(5)$
H5	0.3509	0.2636	0.4746	0.043^{*}
H6	0.3897	0.3355	0.3871	0.043^{*}
C2	$0.6036(4)$	$0.35402(17)$	$0.49466(17)$	$0.0343(5)$
H7	0.6991	0.3875	0.4540	0.041^{*}
H8	0.5322	0.4077	0.5281	0.041^{*}
C3	$0.8195(4)$	$0.20021(19)$	$0.51588(18)$	$0.0345(5)$
H9	0.8879	0.1564	0.5629	0.041^{*}
H10	0.9203	0.2285	0.4749	0.041^{*}
C4	$0.6703(4)$	$0.13687(17)$	$0.45821(17)$	$0.0318(5)$
H11	0.5752	0.1046	0.4998	0.038^{*}
H12	0.7406	0.0822	0.4255	0.038^{*}
O1W	$0.4133(3)$	$0.2110(2)$	$0.68116(18)$	$0.0644(7)$
H1	$0.646(5)$	$0.232(2)$	$0.344(2)$	$0.038(8)^{*}$
H2	$0.461(5)$	$0.168(3)$	$0.357(2)$	$0.040(8)^{*}$
H3	$0.632(5)$	$0.255(2)$	$0.604(2)$	

H4	$0.803(5)$	$0.319(2)$	$0.592(2)$	$0.041(8)^{*}$
H1W	0.3888	0.1492	0.6962	0.080^{*}
H2W	0.3114	0.2506	0.6752	0.080^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.03183(12)$	$0.03025(13)$	$0.03330(13)$	$0.00147(6)$	$0.00181(8)$	$0.00206(6)$
C11	$0.0483(4)$	$0.0303(3)$	$0.0411(3)$	$0.0064(2)$	$0.0091(3)$	$-0.0011(2)$
C12	$0.0298(3)$	$0.0379(3)$	$0.0412(3)$	$0.0020(2)$	$0.0026(2)$	$-0.0031(2)$
C13	$0.0358(3)$	$0.0386(3)$	$0.0400(3)$	$-0.0045(2)$	$-0.0036(2)$	$-0.0027(2)$
C14	$0.0327(3)$	$0.0419(3)$	$0.0433(3)$	$0.0050(2)$	$0.0105(2)$	$0.0109(3)$
N1	$0.0336(11)$	$0.0330(10)$	$0.0270(10)$	$-0.0009(8)$	$0.0001(8)$	$-0.0034(8)$
N2	$0.0328(11)$	$0.0316(10)$	$0.0320(10)$	$-0.0065(8)$	$0.0030(8)$	$-0.0065(8)$
C1	$0.0362(13)$	$0.0354(12)$	$0.0361(13)$	$0.0073(10)$	$0.0022(10)$	$0.0015(10)$
C2	$0.0417(14)$	$0.0238(10)$	$0.0381(13)$	$-0.0017(9)$	$0.0097(10)$	$-0.0025(9)$
C3	$0.0304(12)$	$0.0330(11)$	$0.0397(13)$	$0.0019(9)$	$-0.0031(10)$	$-0.0061(10)$
C4	$0.0366(12)$	$0.0252(10)$	$0.0333(12)$	$0.0016(9)$	$-0.0009(9)$	$-0.0026(9)$
O1W	$0.0435(13)$	$0.0692(14)$	$0.0818(18)$	$0.0050(11)$	$0.0183(12)$	$0.0334(13)$

Geometric parameters ($\AA,{ }^{\circ}$)

Cd1- Cl 3	2.4418 (6)	$\mathrm{C} 1-\mathrm{C} 2$	1.510 (4)
Cd1-Cl4	2.4435 (6)	C1-H5	0.9700
Cd1-Cl1	2.4712 (6)	C1-H6	0.9700
Cd1-C12	2.4891 (7)	C2-H7	0.9700
N1-C1	1.488 (3)	C2-H8	0.9700
N1-C4	1.497 (3)	C3-C4	1.497 (3)
N1-H1	0.93 (3)	C3-H9	0.9700
N1-H2	0.89 (3)	C3-H10	0.9700
N2-C2	1.482 (3)	$\mathrm{C} 4-\mathrm{H} 11$	0.9700
N2-C3	1.491 (3)	C4-H12	0.9700
N2-H3	0.89 (3)	O1W-H1W	0.84
N2-H4	0.81 (3)	O1W-H2W	0.85
Cl3-Cd1-Cl4	115.19 (2)	C2-C1-H6	109.5
Cl3-Cd1-Cl1	108.13 (2)	H5- $\mathrm{C} 1-\mathrm{H} 6$	108.1
Cl4-Cd1-Cl1	115.38 (2)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	110.57 (19)
$\mathrm{Cl} 3-\mathrm{Cd} 1-\mathrm{Cl} 2$	110.89 (2)	N2-C2-H7	109.5
Cl4-Cd1-Cl2	103.07 (2)	C1-C2-H7	109.5
$\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{Cl} 2$	103.42 (2)	N2-C2-H8	109.5
C1-N1-C4	111.06 (18)	C1-C2-H8	109.5
C1-N1-H2	106 (2)	H7-C2-H8	108.1
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 2$	111 (2)	N2-C3-C4	110.14 (19)
C1-N1-H1	107.8 (18)	N2-C3-H9	109.6
C4-N1-H1	111.2 (19)	C4-C3-H9	109.6
$\mathrm{H} 1-\mathrm{N} 1-\mathrm{H} 2$	110 (3)	N2-C3-H10	109.6
C2-N2-C3	111.28 (19)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 10$	109.6

$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 3$	$113(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 3$	$104.5(18)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 4$	$110(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 4$	$106(2)$
$\mathrm{H} 3-\mathrm{N} 2-\mathrm{H} 4$	$112(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$110.8(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 5$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 5$	109.5
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 6$	109.5

$\mathrm{H} 9-\mathrm{C} 3-\mathrm{H} 10$	108.1
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$110.45(19)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 11$	109.6
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{H} 11$	109.6
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 12$	109.6
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{H} 12$	109.6
$\mathrm{H} 11-\mathrm{C} 4-\mathrm{H} 12$	108.1
H1W-O1W-H2W	116

Hydrogen-bond geometry ($\AA,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	$0.93(3)$	$2.35(3)$	$3.254(2)$	$164(3)$
$\mathrm{N} 1 — \mathrm{H} 2 \cdots \mathrm{Cl3}$	$0.89(3)$	$2.41(4)$	$3.155(2)$	$141(3)$
$\mathrm{N} 2 — \mathrm{H} 3 \cdots \mathrm{O} 1 W$	$0.89(3)$	$1.93(3)$	$2.808(3)$	$167(3)$
$\mathrm{N} 2-\mathrm{H} 4 \cdots \mathrm{Cl} 4^{\mathrm{ii}}$	$0.81(3)$	$2.46(3)$	$3.190(2)$	$151(3)$
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{Cl} 2^{\mathrm{iii}}$	0.84	2.44	$3.267(3)$	168
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{Cl4} 4^{\text {iv }}$	0.85	2.54	$3.304(2)$	150

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $x+1,-y+1 / 2, z+1 / 2$; (iii) $-x,-y,-z+1$; (iv) $x,-y+1 / 2, z+1 / 2$.

