

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[bis(pyridine-κN)cadmium]-di-µ2-thiocyanato- $\kappa^2 N: S: \kappa^2 S: N$

Jan Boeckmann,* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2 D-24098 Kiel Germany Correspondence e-mail: jboeckmann@ac.uni-kiel.de

Received 15 March 2011; accepted 16 March 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.010 Å; R factor = 0.052; wR factor = 0.083; data-to-parameter ratio = 17.5.

The asymmetric unit of the title compound, [Cd(NCS)₂- $(C_5H_5N)_2]_n$, consists of two crystallographically independent Cd^{II} cations, four thiocyanato anions and four pyridine ligands. The Cd^{II} atoms are each coordinated by four N atoms from two pyridine ligands and two thiocyanato anions, each in a mutually cis orientation, and by two S atoms from two adjacent thiocyanato anions within a slightly distorted octahedral coordination environment. The Cd^{II} atoms are μ -1,3bridged via the thiocyanato anions into polymeric chains parallel to [001]. The Cd^{II}...Cd^{II} intrachain separations range between 5.9688 (6) and 6.0195 (6) Å, whereas the shortest Cd^{II}...Cd^{II} interchain separations are 7.8272 (7) and 8.6312 (6) Å.

Related literature

For related structures see: Boeckmann & Näther (2010); Chen et al. (2005); Foner et al. (1975); Marsh et al. (2002); Porai-Koshits & Tishchenko (1960); Reller & Oswald (1986); Taniguchi et al. (1987); Zhu et al. (2008).

Experimental

Crystal data

erystat data	
$\begin{bmatrix} Cd(NCS)_2(C_5H_5N)_2 \end{bmatrix} \\ M_r = 386.76 \\ Triclinic, P\overline{1} \\ a = 7.8272 (4) Å \\ b = 8.6242 (4) Å \\ c = 23.705 (1) Å \\ \alpha = 84.890 (3)^{\circ} \\ \beta = 89.520 (4)^{\circ} \end{bmatrix}$	$\gamma = 63.070 (3)^{\circ}$ $V = 1420.06 (11) \text{ Å}^3$ Z = 4 Mo K α radiation $\mu = 1.82 \text{ mm}^{-1}$ T = 293 K $0.15 \times 0.11 \times 0.07 \text{ mm}$
Data collection Stoe IPDS-2 diffractometer Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) $T_{min} = 0.779, T_{max} = 0.874$	21468 measured reflections 5998 independent reflections 4613 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$

Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.052$	343 parameters
$wR(F^2) = 0.083$	H-atom parameters constrained
S = 1.17	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
5998 reflections	$\Delta \rho_{\min} = -0.75 \text{ e} \text{ Å}^{-3}$

Table 1

Selected bond angles (°).

N1-C1-S1	178.5 (4)	N2-C2-S2	179.7 (5)
N3-C3-S3	179.1 (5)	N4-C4-S4	178.8 (5)

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97.

We gratefully acknowledge financial support by the DFG (project number NA 720/3-1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for the opportunity to use of his experimental facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5493).

References

- Boeckmann, J. & Näther, C. (2010). Dalton Trans. pp. 11019-11026.
- Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany Chen, G., Bai, Z.-P. & Qu, S.-J. (2005). Acta Cryst. E61, m2718-m2719.
- Foner, S., Frankel, R. B., McNiff, J. E. J., Reiff, W. M., Little, B. F. & Long, G. J. (1975). AIP Conf. Proc. 24, 363-364.
- Marsh, R. E., Kapon, M., Hu, S. & Herbstein, F. H. (2002). Acta Cryst. B58, 62-77.
- Porai-Koshits, M. A. & Tishchenko, G. N. (1960). Crystallogr. Rep. 4, 239-239. Reller, A. & Oswald, H.-R. (1986). J. Solid State Chem. 62, 306-316.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt Germany
- Taniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321-1326
- Zhu, L., Xu, D., Wang, X. & Yu, G. (2008). J. Chem. Crystallogr. 38, 609-612.

supporting information

Acta Cryst. (2011). E67, m481 [doi:10.1107/S1600536811009871]

catena-Poly[[bis(pyridine- κN)cadmium]-di- μ_2 -thiocyanato- $\kappa^2 N$:S; $\kappa^2 S$:N]

Jan Boeckmann, Inke Jess and Christian Näther

S1. Comment

The structure determination of the title compound was performed as a part of a project on the synthesis of new onedimensional coordination compounds (Boeckmann & Näther, 2010). Within this project we have reacted cadmium(II)chloride with potassium(I)thiocyanate and pyridine in water, which leads to the phase pure formation of *catena*-poly[bis(μ_2 -thiocyanato-N, S)-bis(pyridine-N)cadmium(II)].

The title compound crystallizes in the centrosymmetric triclinic space group $P\overline{1}$ with four formula units in the unit cell. In the crystal structure each of the two crystallographically independent cadmium atoms is surrounded by four N-atoms of two pyridine ligands and two thiocyanato anions, each in mutually *cis* orientation, and by two S-atoms of two adjacent thiocyanato anions in a slightly distorted octahedral geometry (Fig. 1 and Tab. 1). The thiocyanato anions bridge the metal cations forming one-dimensional chains (Fig. 2), which elongate along the crystallographic *c* axis. These chains are arranged in a staggered form and further linked by weak S^{...}S interactions into layers which are located in the *ac* plane (Fig. 3). A compound of similar composition [Cd(NCS)₂(pyridine)₂]_n has already been described (Taniguchi *et al.*, 1987) and reported to crystallize in the centrosymmetric triclinic space group $P\overline{1}$ with six formula units in the unit cell. However, Marsh *et al.* (2002) found that the triclinic cell can be transformed to a C-centered monoclinic cell with Z = 12. It must be noted that in both cases only unit-cell parameters but no atomic coordinates are reported. Similiar one-dimensional coordination polymers with different transition metals have also been reported (Chen *et al.* (2005); Foner *et al.* (1975); Porai-Koshits & Tishchenko (1960); Reller & Oswald (1986); Zhu *et al.* (2008).

S2. Experimental

The title compound was prepared by the reaction of 91.60 mg CdCl₂ (0.50 mmol), 97.2 mg KSCN (1.00 mmol) and 20.2 μL pyridine (0.25 mmol) in 1.50 ml water at RT in a closed 3 ml snap cap vial. After one week colourless needles of the title compound were obtained.

S3. Refinement

All H atoms were located in difference map but were positioned with idealized geometry and were refined with $U_{eq}(H) = 1.2 U_{eq}(C)$ using a riding model with C—H = 0.93 Å. The triclinic unit cell of the title compound can be transformed into a monoclinic C-centered cell but the internal *R*-value of 0.271 clearly indicates that the crystal symmetry is triclinic. We also checked our model for higher symmetry using *PLATON* but without success. However, the structure can be solved in space group C2 but refinement leads to very poor reliability factors and severe disorder. Finally ee also have checked if the crystal is pseudo-merohedrically twinned, which is not the case.

Figure 1

Crystal structure of the title compund with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: i = -x + 1, -y + 2, -z + 1; ii = -x + 1, -y + 2, -z.

Figure 2

Packing diagram of the title compound with view along the crystallographic a axis onto the one-dimensional polymeric chains.

Figure 3

Packing diagram of the title compound with view along the crystallographic b axis onto the layers located in the ac plane.

catena-Poly[[bis(pyridine- κN)cadmium]-di- μ_2 - thiocyanato- $\kappa^2 N$:S; κ^2 S:N]

Crystal data	
$\begin{bmatrix} Cd(NCS)_{2}(C_{5}H_{5}N)_{2} \end{bmatrix}$ $M_{r} = 386.76$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.8272 (4) Å b = 8.6242 (4) Å c = 23.705 (1) Å a = 84.890 (3)° $\beta = 89.520$ (4)° $\gamma = 63.070$ (3)° V = 1420.06 (11) Å ³	Z = 4 F(000) = 760 $D_x = 1.809 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 21468 reflections $\theta = 1.7-26.8^{\circ}$ $\mu = 1.82 \text{ mm}^{-1}$ T = 293 K Needle, colourless $0.15 \times 0.11 \times 0.07 \text{ mm}$
Data collection	
Stoe IPDS-2 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans	Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) $T_{\min} = 0.779$, $T_{\max} = 0.874$ 21468 measured reflections 5998 independent reflections 4613 reflections with $L > 2\sigma(L)$

$R_{\rm int} = 0.071$	$k = -10 \rightarrow 10$
$\theta_{\rm max} = 26.8^{\circ}, \theta_{\rm min} = 1.7^{\circ}$	$l = -29 \rightarrow 29$
$h = -9 \longrightarrow 9$	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.083$	neighbouring sites
S = 1.17	H-atom parameters constrained
5998 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0176P)^2 + 0.9412P]$
343 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{ m min}$ = -0.75 e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cd1	0.55905 (5)	0.97050 (4)	0.375033 (15)	0.03786 (11)
Cd2	0.44978 (6)	0.99144 (5)	0.125075 (15)	0.03970 (11)
S1	0.8352 (2)	0.93622 (19)	0.45431 (6)	0.0470 (3)
S3	0.2004 (2)	0.9601 (2)	0.20176 (6)	0.0542 (4)
S2	0.8141 (2)	0.9986 (2)	0.29930 (6)	0.0479 (3)
S4	0.1714 (2)	1.0203 (2)	0.04890 (7)	0.0542 (4)
N1	0.6266 (7)	1.0543 (6)	0.5514 (2)	0.0483 (11)
N3	0.3481 (7)	0.9946 (6)	0.3040 (2)	0.0501 (12)
N2	0.6584 (7)	0.9716 (6)	0.1968 (2)	0.0512 (12)
N11	0.4113 (6)	1.2780 (5)	0.37531 (19)	0.0424 (10)
N21	0.7184 (7)	0.6634 (5)	0.3729 (2)	0.0452 (11)
N31	0.2874 (7)	1.2985 (6)	0.1265 (2)	0.0494 (12)
N41	0.5944 (7)	0.6842 (6)	0.1253 (2)	0.0511 (12)
C1	0.7117 (7)	1.0078 (6)	0.5111 (2)	0.0371 (11)
C3	0.2885 (7)	0.9809 (6)	0.2618 (2)	0.0380 (11)
C2	0.7225 (7)	0.9828 (6)	0.2393 (2)	0.0382 (11)
C4	0.2834 (8)	1.0002 (6)	-0.0110 (2)	0.0386 (11)
C11	0.3248 (9)	1.3573 (7)	0.4204 (3)	0.0548 (15)
H11	0.3199	1.2890	0.4524	0.066*
C13	0.2505 (10)	1.6376 (7)	0.3758 (3)	0.0653 (18)
H13	0.1991	1.7580	0.3764	0.078*
C14	0.3353 (10)	1.5601 (8)	0.3289 (3)	0.0614 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H14	0.3396	1.6272	0.2964	0.074*
C15	0.4150 (9)	1.3809 (7)	0.3299 (3)	0.0538 (14)
H15	0.4738	1.3290	0.2976	0.065*
C21	0.8169 (9)	0.5864 (7)	0.3292 (3)	0.0543 (15)
H21	0.8185	0.6566	0.2972	0.065*
C22	0.9167 (10)	0.4081 (8)	0.3286 (3)	0.0624 (17)
H22	0.9840	0.3597	0.2969	0.075*
C23	0.9157 (9)	0.3043 (8)	0.3745 (3)	0.0623 (17)
H23	0.9842	0.1835	0.3751	0.075*
C24	0.8136 (11)	0.3782 (8)	0.4199 (3)	0.0664 (18)
H24	0.8091	0.3092	0.4518	0.080*
C25	0.7165 (10)	0.5588 (7)	0.4175 (3)	0.0561 (15)
H25	0.6466	0.6094	0.4486	0.067*
C31	0.2529 (10)	1.3725 (8)	0.1749 (3)	0.0601 (16)
H31	0.3017	1.3017	0.2086	0.072*
C33	0.0767 (10)	1.6554 (8)	0.1281 (4)	0.0691 (19)
H33	0.0063	1.7757	0.1287	0.083*
C34	0.1113 (11)	1.5804 (8)	0.0782 (3)	0.075 (2)
H34	0.0647	1.6488	0.0439	0.090*
C35	0.2159 (10)	1.4025 (8)	0.0794 (3)	0.0636 (17)
H35	0.2377	1.3525	0.0453	0.076*
C41	0.6102 (10)	0.6087 (8)	0.0777 (3)	0.0619 (17)
H41	0.5715	0.6788	0.0435	0.074*
C42	0.6816 (11)	0.4304 (9)	0.0770 (3)	0.074 (2)
H42	0.6885	0.3819	0.0430	0.088*
C43	0.7418 (10)	0.3267 (8)	0.1266 (4)	0.0678 (19)
H43	0.7921	0.2061	0.1270	0.081*
C44	0.7273 (12)	0.4020 (9)	0.1756 (4)	0.075 (2)
H44	0.7653	0.3340	0.2102	0.090*
C45	0.6555 (10)	0.5800 (8)	0.1730 (3)	0.0624 (17)
H45	0.6494	0.6303	0.2066	0.075*
C32	0.1479 (12)	1.5493 (8)	0.1769 (4)	0.074 (2)
H32	0.1254	1.5965	0.2116	0.088*
C12	0.2420 (10)	1.5359 (8)	0.4219 (3)	0.0677 (19)
H12	0.1810	1.5863	0.4541	0.081*
N4	0.3589 (8)	0.9870 (7)	-0.0535 (2)	0.0531 (12)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0446 (2)	0.03687 (19)	0.0315 (2)	-0.01765 (16)	0.00348 (18)	-0.00516 (15)
Cd2	0.0456 (3)	0.0426 (2)	0.0309 (2)	-0.01997 (17)	0.00095 (18)	-0.00324 (16)
S 1	0.0417 (8)	0.0603 (8)	0.0370 (8)	-0.0204 (6)	0.0045 (6)	-0.0103 (6)
S3	0.0585 (10)	0.0841 (10)	0.0350 (8)	-0.0451 (8)	0.0040 (7)	-0.0085 (7)
S2	0.0482 (8)	0.0707 (9)	0.0340 (8)	-0.0345 (7)	0.0035 (6)	-0.0085 (6)
S4	0.0474 (9)	0.0867 (10)	0.0348 (8)	-0.0355 (8)	0.0032 (7)	-0.0087 (7)
N1	0.050 (3)	0.062 (3)	0.039 (3)	-0.030 (2)	0.005 (2)	-0.007 (2)
N3	0.053 (3)	0.068 (3)	0.036 (3)	-0.033 (2)	0.001 (2)	-0.007 (2)

N2	0.051 (3)	0.069 (3)	0.037 (3)	-0.031 (2)	-0.003 (2)	-0.004 (2)
N11	0.042 (3)	0.043 (2)	0.039 (3)	-0.0169 (19)	-0.001 (2)	-0.0019 (18)
N21	0.052 (3)	0.040 (2)	0.043 (3)	-0.020 (2)	0.000 (2)	-0.0059 (19)
N31	0.052 (3)	0.044 (2)	0.050 (3)	-0.020 (2)	0.001 (2)	-0.003 (2)
N41	0.050 (3)	0.043 (2)	0.056 (3)	-0.018 (2)	0.003 (3)	-0.002 (2)
C1	0.038 (3)	0.033 (2)	0.040 (3)	-0.018 (2)	-0.003 (2)	0.003 (2)
C3	0.037 (3)	0.037 (2)	0.037 (3)	-0.014 (2)	0.006 (2)	-0.002 (2)
C2	0.035 (3)	0.037 (2)	0.042 (3)	-0.016 (2)	0.009 (2)	-0.001 (2)
C4	0.040 (3)	0.039 (2)	0.039 (3)	-0.019 (2)	-0.008 (2)	-0.001 (2)
C11	0.060 (4)	0.049 (3)	0.047 (3)	-0.017 (3)	0.007 (3)	-0.004 (2)
C13	0.064 (4)	0.034 (3)	0.086 (5)	-0.014 (3)	-0.007 (4)	0.001 (3)
C14	0.069 (4)	0.048 (3)	0.066 (4)	-0.028 (3)	-0.006 (3)	0.014 (3)
C15	0.057 (4)	0.052 (3)	0.048 (4)	-0.021 (3)	0.004 (3)	0.002 (2)
C21	0.063 (4)	0.049 (3)	0.050 (4)	-0.024 (3)	0.007 (3)	-0.009 (3)
C22	0.067 (4)	0.051 (3)	0.069 (5)	-0.023 (3)	0.011 (3)	-0.023 (3)
C23	0.055 (4)	0.044 (3)	0.082 (5)	-0.016 (3)	-0.006 (3)	-0.013 (3)
C24	0.089 (5)	0.045 (3)	0.059 (4)	-0.027 (3)	-0.006 (4)	0.005 (3)
C25	0.072 (4)	0.050 (3)	0.043 (3)	-0.024 (3)	0.002 (3)	-0.005 (2)
C31	0.071 (4)	0.051 (3)	0.054 (4)	-0.024 (3)	-0.005 (3)	-0.006 (3)
C33	0.066 (4)	0.046 (3)	0.093 (6)	-0.023 (3)	0.001 (4)	-0.008 (4)
C34	0.081 (5)	0.052 (4)	0.073 (5)	-0.018 (3)	-0.009 (4)	0.015 (3)
C35	0.074 (4)	0.055 (4)	0.052 (4)	-0.021 (3)	-0.001 (3)	-0.001 (3)
C41	0.075 (4)	0.048 (3)	0.052 (4)	-0.018 (3)	0.004 (3)	-0.007 (3)
C42	0.080 (5)	0.063 (4)	0.072 (5)	-0.025 (4)	0.010 (4)	-0.025 (4)
C43	0.062 (4)	0.048 (3)	0.090 (6)	-0.024 (3)	0.005 (4)	0.002 (3)
C44	0.091 (6)	0.058 (4)	0.068 (5)	-0.029 (4)	-0.006 (4)	0.012 (3)
C45	0.074 (5)	0.052 (3)	0.057 (4)	-0.026 (3)	-0.008 (3)	0.001 (3)
C32	0.093 (6)	0.050 (4)	0.074 (5)	-0.027 (4)	0.006 (4)	-0.019 (3)
C12	0.076 (5)	0.046 (3)	0.064 (5)	-0.011 (3)	0.004 (4)	-0.011 (3)
N4	0.054 (3)	0.076 (3)	0.035 (3)	-0.035 (2)	0.007 (2)	-0.008 (2)

Geometric parameters (Å, °)

Cd1—N3	2.298 (5)	С13—Н13	0.9300
Cd1—N1 ⁱ	2.317 (5)	C14—C15	1.378 (8)
Cd1—N11	2.365 (4)	C14—H14	0.9300
Cd1—N21	2.367 (4)	C15—H15	0.9300
Cd1—S2	2.7508 (15)	C21—C22	1.375 (8)
Cd1—S1	2.7715 (16)	C21—H21	0.9300
Cd2—N4 ⁱⁱ	2.303 (5)	C22—C23	1.349 (10)
Cd2—N2	2.309 (5)	C22—H22	0.9300
Cd2—N41	2.363 (4)	C23—C24	1.361 (9)
Cd2—N31	2.366 (4)	С23—Н23	0.9300
Cd2—S3	2.7416 (16)	C24—C25	1.385 (8)
Cd2—S4	2.7503 (17)	C24—H24	0.9300
S1—C1	1.647 (5)	С25—Н25	0.9300
S3—C3	1.646 (6)	C31—C32	1.371 (9)
S2—C2	1.642 (6)	C31—H31	0.9300

S4—C4	1.643 (6)	C33—C32	1.360 (11)
N1—C1	1.156 (6)	C33—C34	1.365 (11)
N1—Cd1 ⁱ	2.317 (5)	С33—Н33	0.9300
N3—C3	1.144 (7)	C34—C35	1.371 (9)
N2—C2	1.159 (7)	С34—Н34	0.9300
N11—C11	1.329 (7)	С35—Н35	0.9300
N11—C15	1.342 (7)	C41—C42	1.379 (8)
N21—C21	1 326(7)	C41—H41	0.9300
N21—C25	1.322(7)	C42-C43	1 358 (11)
N31—C35	1 318 (8)	$C_{42} = -H_{42}$	0.9300
N31_C31	1 329 (8)	C43 - C44	1.360(11)
N41 C45	1.327(0) 1.324(8)	C_{43} H_{43}	0.0300
N41 C41	1.324(0) 1.221(0)	C44 C45	0.9300
N41 - C41	1.551 (6)	C44 - C43	1.570 (9)
C4—N4	1.155 (7)	С44—Н44	0.9300
	1.378 (8)	C45—H45	0.9300
CII—HII	0.9300	С32—Н32	0.9300
C13—C14	1.357 (10)	C12—H12	0.9300
C13—C12	1.360 (10)	$N4-Cd2^n$	2.303 (5)
	05.27 (17)		100 (
N3 - Cd1 - N11	95.37 (17)	C12 C12 H12	120.6
	90.26 (17)	C12—C13—H13	120.6
NI-CdI-NII	91.19 (16)	C13—C14—C15	119.2 (6)
N3—Cd1—N21	90.51 (17)	C13—C14—H14	120.4
N1 ¹ —Cd1—N21	91.07 (16)	C15—C14—H14	120.4
N11—Cd1—N21	177.54 (15)	N11—C15—C14	122.9 (6)
N3—Cd1—S2	92.60 (12)	N11—C15—H15	118.6
N1 ⁱ —Cd1—S2	172.02 (13)	C14—C15—H15	118.6
N11—Cd1—S2	88.36 (11)	N21—C21—C22	123.3 (6)
N21—Cd1—S2	89.27 (12)	N21—C21—H21	118.3
N3—Cd1—S1	175.47 (12)	C22—C21—H21	118.3
N1 ⁱ —Cd1—S1	89.01 (13)	C23—C22—C21	119.1 (6)
N11—Cd1—S1	90.83 (12)	C23—C22—H22	120.4
N21—Cd1—S1	88.23 (12)	C21—C22—H22	120.4
S2—Cd1—S1	83.03 (4)	C22—C23—C24	119.3 (6)
$N4^{ii}$ —Cd2—N2	94.30 (17)	C22—C23—H23	120.3
$N4^{ii}$ —Cd2—N41	91.31 (18)	C24—C23—H23	120.3
N_2 —Cd2—N41	91.26 (18)	C^{23} C^{24} C^{25}	1184(6)
$N4^{ii}$ Cd2 N31	91.68 (17)	C_{23} C_{24} H_{24}	120.8
$N_2 Cd_2 N_31$	90.34(17)	$C_{25} C_{24} H_{24}$	120.8
N/1 C/2 N31	17650(16)	N21 C25 C24	120.0
M4ii Cd2 S2	170.50(10) 174.04(13)	N21 C25 H25	123.2 (0)
N2 Cd2 S3	1/4.04(13)	$N_2 I = C_2 J = I_1 Z_3$	110.4
$N_2 - C_{d2} - S_3$	91.32 (13)	С24—С23—П23	110.4
1N41 - UU2 - 33	07.27 (13)	1N31 - C31 - C32	122.4 (/)
$1N_{2} I = - U a 2 - S 3$	09.57 (12)	H31 - U31 - H31	118.8
N4"	92.06 (14)	C32—C31—H31	118.8
N2-Cd2-S4	1/3.51 (13)	C_{32} — C_{33} — C_{34}	118.1 (6)
N41—Cd2—S4	89.88 (14)	С32—С33—Н33	120.9
N31—Cd2—S4	88.19 (13)	C34—C33—H33	120.9

S3—Cd2—S4	82.16 (5)	C33—C34—C35	118.8 (7)
C1—S1—Cd1	103.53 (19)	С33—С34—Н34	120.6
C3—S3—Cd2	101.98 (18)	С35—С34—Н34	120.6
C2—S2—Cd1	101.04 (17)	N31—C35—C34	123.6 (6)
C4—S4—Cd2	101.36 (19)	N31—C35—H35	118.2
C1—N1—Cd1 ⁱ	152.4 (4)	С34—С35—Н35	118.2
C3—N3—Cd1	161.5 (4)	N41—C41—C42	122.6 (6)
C2—N2—Cd2	163.6 (4)	N41—C41—H41	118.7
C11—N11—C15	116.7 (5)	C42—C41—H41	118.7
C11—N11—Cd1	122.2 (4)	C43—C42—C41	119.1 (7)
C15—N11—Cd1	121.1 (4)	C43—C42—H42	120.5
C21—N21—C25	116.7 (5)	C41—C42—H42	120.5
C21—N21—Cd1	123.0 (4)	C42—C43—C44	119.0 (6)
C25—N21—Cd1	120.3 (4)	C42—C43—H43	120.5
C35—N31—C31	117.2 (5)	C44—C43—H43	120.5
C35—N31—Cd2	121.2 (4)	C43—C44—C45	118.7 (7)
C31—N31—Cd2	121.4 (4)	C43—C44—H44	120.7
C45—N41—C41	117.1 (5)	C45—C44—H44	120.7
C45—N41—Cd2	121.6 (4)	N41—C45—C44	123.6 (7)
C41—N41—Cd2	121.3 (4)	N41—C45—H45	118.2
N1—C1—S1	178.5 (4)	C44—C45—H45	118.2
N3—C3—S3	179.1 (5)	C33—C32—C31	119.8 (7)
N2—C2—S2	179.7 (5)	С33—С32—Н32	120.1
N4—C4—S4	178.8 (5)	С31—С32—Н32	120.1
N11—C11—C12	123.2 (6)	C13—C12—C11	119.2 (6)
N11—C11—H11	118.4	C13—C12—H12	120.4
C12-C11-H11	118.4	C11—C12—H12	120.4
C14—C13—C12	118.8 (5)	C4—N4—Cd2 ⁱⁱ	162.1 (4)

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+2, -*z*.