organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2-aminopyridinium) 5,5'-disulfanediylbis(1,3,4-thiadiazole-2-thiolate) monohydrate

Pusu Zhao,^a* Zhiyan Guo^a and Hailian Xiao^b

^aNew Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao Shandong 266042, People's Republic of China, and ^bCollege of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: zhaopusu@163.com

Received 27 December 2010; accepted 4 March 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.048; wR factor = 0.086; data-to-parameter ratio = 18.2.

In the crystal of the title compound, $2C_5H_7N_2^+ \cdot C_4N_4S_6^{-2-} \cdot H_2O$, intermolecular N-H···S and N-H···N hydrogen bonds link four cations and two dianions into a centrosymmetric cluster. The crystal packing is further consolidated by π - π interactions between the five- and six-membered rings of neighbouring clusters [centroid-centroid distances = 3.692 (3), 3.718 (3), 3.660 (3) and 3.696 (3) Å] and *via* O-H···N, O-H···S and N-H···O hydrogen bonds involving the uncoordinated water molecules.

Related literature

For general background to supramolecular compounds, see: Rowsell & Yaghi (2005); Neville *et al.* (2008); Huang *et al.* (2007); Burchell *et al.* (2006). For related structures, see: Jebas *et al.* (2006); Jian *et al.* (2006); Banerjee *et al.* (2006); Moers *et al.* (2000).

Experimental

Crystal data

 $2C_{3}H_{7}N_{2}^{+}\cdot C_{4}N_{4}S_{6}^{-2-}\cdot H_{2}O$ $M_{r} = 504.71$ Monoclinic, $P_{1_{1}}/c$ a = 7.3109 (15) Å b = 14.112 (3) Å c = 20.930 (4) Å $\beta = 98.13$ (3)°

Data collection

Enraf–Nonius CAD-4 diffractometer $V = 2137.8 (7) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.67 \text{ mm}^{-1}$ T = 295 K $0.24 \times 0.22 \times 0.20 \text{ mm}$

9377 measured reflections 4911 independent reflections 3931 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

```
Refinement
```

$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$wR(F^2) = 0.086$	independent and constrained
S = 1.17	refinement
4911 reflections	$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
270 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

3 standard reflections every 100

intensity decay: none

reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots$ S6	0.86	2.63	3.488 (3)	177
$N2-H2A\cdots N8$	0.86	1.87	2.726 (3)	171
$N3-H3A\cdots S1$	0.86	2.43	3.273 (3)	166
$N4-H4A\cdots N5$	0.86	1.97	2.826 (3)	179
$O1W - H2W1 \cdots N6$	0.80(4)	2.07 (4)	2.860 (3)	169 (4)
$N1 - H1B \cdots O1W^{i}$	0.86	2.07	2.898 (3)	162
$O1W - H1W1 \cdots S6^{ii}$	0.83 (4)	2.47 (4)	3.294 (3)	175 (3)
$N3-H3B\cdots S6^{iii}$	0.86	2.49	3.338 (2)	171
Symmetry codes: -x + 1, -y + 2, -z + 1.	(i) $-x, y =$	$+\frac{1}{2}, -z + \frac{1}{2};$	(ii) $x, -y + \frac{3}{2}$	$, z + \frac{1}{2};$ (iii)

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Doctoral Foundation of Shandong Province, China (grant No. BS2010CL021) and the Scientific Research Foundation of Qingdao University of Science and Technology of Talents (grant No. 400–0022437).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5028).

References

- Banerjee, R., Saha, B. K. & Desiraju, G. R. (2006). CrystEngComm, 8, 680–688.
- Burchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2006). Cryst. Growth Des. 6, 974–982.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Huang, Y. L., Huang, M. Y., Chan, T. H., Chang, B. C. & Lii, K. L. (2007). *Chem. Mater.* 19, 3232–3237.
- Jebas, R. S., Periyasamy, B. K. & Balasubramanian, T. (2006). J. Chem. Crystallogr. 36, 503–506.
- Jian, F. F., Zhang, K. J., Zhao, P. S. & Zheng, J. (2006). *Bull. Korean Chem. Soc.* **27**, 1048–1052.
- Moers, O., Wijaya, K., Lange, I., Blaschette, A. & Jones, P. G. (2000). Z. Naturforsch. Teil B, 55, 738–742.
- Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., Letard, J. F., Moubaraki, B., Murray, K. S. & Kepert, C. J. (2008). J. Am. Chem. Soc. 130, 2869–2876.
- Rowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670–4679. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2011). E67, o836 [doi:10.1107/S1600536811008336]

Bis(2-aminopyridinium) 5,5'-disulfanediylbis(1,3,4-thiadiazole-2-thiolate) monohydrate

Pusu Zhao, Zhiyan Guo and Hailian Xiao

S1. Comment

Research on supramolecular compounds has become popular because of their potential applications in areas such as gas storage (Rowsell *et al.*, 2005), magnetics (Neville *et al.*, 2008) and optics (Huang *et al.*, 2007). Among many strategies for achieving supramolecular compounds with predefined structures, the choice and design of organic molecules as hydrogen-bond acceptors or donors are undoubtedly a key part of the construction of intriguing frameworks driven by hydrogen-bonding interactions (Burchell *et al.*, 2006).

However, in these hydrogen-bond supramolecular compounds, 2-amino-pyridine often only forms co-crystals with another organic acid, such as 3-aminobenzoic acid, naphthalene-1,5-disulfonic acid and nicotinic acid (Jebas *et al.*, 2006). It is less studied that the co-crystals are aggregated by 2-amino-pyridine with a non-acid compound. For example,non-acids compounds of saccharinate (Banerjee *et al.*, 2006) and bis(methanesulfonyl)amide (Moers *et al.*, 2000) have been used to form co-crystals with 2-aminopyridinium and their crystal structures have been reported.

Herein, we will give another report about the synthesis and chacterization of a 2:1 proton-transfer salt formed by 2aminopyridinium with a non-acid compound of di(2-mercapto-1,3,4- thiadiazyl) disulfide and a water molecule. Scheme I

The asymmetric unit contains one deprotonated di(2-mercapto-1,3,4-thiadiazyl) disulfide molecule, two protonated 2amino-pyridine molecules and one water molecule. In the deprotonated di(2-mercapto-1,3,4- thiadiazyl) disulfide, two 2mercapto-1,3,4-thiadiazyl groups are located at *cis*-position of the S3—S4 bond. In addition, these two 2-mercapto-1,3,4thiadiazyl groups are in an opposite position with the dihedral angle between them being 6.84 (2)°. This geometry looks like that there is a *C*2 symmetric axis passing through the mid-point of the S3—S4 bond. The S3—S4 bond length is 2.06438 (11) Å, which is longer than that in dibenzothiazyl-disulfide [(2.027 (2) Å](Jian *et al.*, 2006). All of the other bond lengths and bond angles in the two pyridyl rings and two thiazolyl rings are in the normal range.

In the crystal lattice, there are eight kinds of hydrogen bonds (Table 2), five of which link two 2-mercapto-1,3,4- thiadiazyl disulfide and four 2-amino-pyridinium ions together to form a macrocycle unit and three of which related to the water molecule help to conjunct all of the macrocycles to build a three dimensional net works of the molecules.

As shown in Fig. 2, after accepting a proton from 2-mercapto-1,3,4-thiadiazyl disulfide, 2-amino-pyridinium ion has become a complete hydrogen bond donor. For example, each of the 2-amino-pyridinium ion containing N4 atom provides its three hydrogen bond donor sites such as N4—H4A, N3—H3A and N3—H3B to participate in building hydrogen bonds with two deprotonated 2-mercapto-1,3,4- thiadiazyl disulfide molecules, and finally to form three hydrogen bonds of N4—H4A...N5, N3—H3A...S1 and N3—H3B...S6. Each of the 2-amino-pyridinium ion containing N2 atom provides two hydrogen bond donor sites of N1—H1A and N2—H2A to construct hydrogen bonds with one deprotonated 2-mercapto-1,3,4- thiadiazyl disulfide molecule, and ultimately to form two hydrogen bonds of N1—H1A...S6 and N2—

H2A···N8. Through above hydrogen bond connections, four 2-amino-pyridinium ions and two deprotonated 2mercapto-1,3,4-thiadiazyl disulfide molecules are join together to give a macrocycle unit. Then, each three macrocycle units are linked together by a water molecule through three hydrogen bonds of N1—H1B···O1W, O1W-H1W1···S6 and O1W-H2W1···N6. Namely, the water molecule acts as two hydrogen bond donor as well as one hydrogen bond acceptor to join three macrocycle units together. Additionally, since the existence of two S3—S4 bonds, each macrocycle is bended to two layers and in each macrocycle unit, there are six hydrogen bond sites to link with six water molecules. Thus, all macrocycles are connected by water molecules to construct a three-dimensional architecture. On the other hand, among the pyridyl and thiadiazyl rings, there are π ··· π stacking interactions (Table 2) which further stabilize the crystal packing.

S2. Experimental

Compound (I) was synthesized by heating together, for 20 min under reflux, 2-amino-pyridine (0.94 g, 10 mmol) and di(2-mercapto-1,3,4-thiadiazyl) disulfide (1.49 g, 5 mmol) in distilled water (30 ml). The colourless crystals were obtained after slow evaporation of the water solvent at room temperature.

S3. Refinement

The water H atoms were found in a difference Fourier map, and refined isotropically. All other H atoms were fixed geometrically (C—H 0.93 Å, N—H 0.86 Å), and treated as riding, with U_{iso} = 1.2 U_{eq} of the parent atom.

Figure 1

The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

A hydrogen-bonded (dashed lines) centrosymmetric cluster in (I).

Bis(2-aminopyridinium) 5,5'-disulfanediylbis(1,3,4-thiadiazole-2-thiolate) monohydrate

Crystal data

 $2C_{5}H_{7}N_{2}^{+}\cdot C_{4}N_{4}S_{6}^{2-}\cdot H_{2}O$ $M_{r} = 504.71$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 7.3109 (15) Å b = 14.112 (3) Å c = 20.930 (4) Å $\beta = 98.13 (3)^{\circ}$ $V = 2137.8 (7) \text{ Å}^{3}$ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 9377 measured reflections 4911 independent reflections 3931 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.086$ S = 1.174911 reflections F(000) = 1040 $D_x = 1.568 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 25 reflections $\theta = 4-14^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.24 \times 0.22 \times 0.20 \text{ mm}$

 $R_{int} = 0.023$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -9 \rightarrow 9$ $k = -18 \rightarrow 17$ $l = -27 \rightarrow 27$ 3 standard reflections every 100 reflections intensity decay: none

270 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0278P)^2 + 0.2825P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.55 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.40901 (12)	0.94077 (5)	0.59925 (3)	0.0364 (2)
S2	0.26262 (10)	0.84201 (4)	0.47444 (3)	0.02842 (17)
S3	0.18855 (10)	0.64715 (4)	0.40985 (3)	0.02446 (15)
S4	0.37606 (10)	0.66357 (4)	0.34565 (3)	0.02432 (15)
S5	0.29173 (9)	0.86996 (4)	0.30034 (3)	0.02237 (15)
S6	0.12212 (10)	0.98806 (4)	0.18451 (3)	0.02636 (16)
N1	-0.1312 (3)	0.89557 (15)	0.04470 (11)	0.0380 (6)
H1A	-0.0716	0.9175	0.0800	0.046*
H1B	-0.1810	0.9339	0.0153	0.046*
N2	-0.0676 (3)	0.74324 (14)	0.08195 (10)	0.0251 (5)
H2A	-0.0060	0.7670	0.1163	0.030*
N3	0.6664 (4)	0.84178 (15)	0.72187 (11)	0.0387 (6)
H3A	0.6044	0.8593	0.6858	0.046*
H3B	0.7133	0.8835	0.7493	0.046*
N4	0.6138 (3)	0.68622 (14)	0.69089 (10)	0.0237 (5)
H4A	0.5520	0.7064	0.6555	0.028*
N5	0.4136 (3)	0.75310 (14)	0.57420 (9)	0.0231 (5)
N6	0.3619 (3)	0.68528 (14)	0.52826 (9)	0.0231 (5)
N7	0.1864 (3)	0.72209 (14)	0.23431 (10)	0.0254 (5)
N8	0.1316 (3)	0.79840 (14)	0.19588 (9)	0.0247 (5)
C1	-0.0815 (4)	0.64796 (18)	0.07686 (13)	0.0314 (6)
H1C	-0.0260	0.6098	0.1104	0.038*
C2	-0.1754 (4)	0.60765 (19)	0.02344 (14)	0.0349 (7)
H2B	-0.1856	0.5421	0.0198	0.042*
C3	-0.2571 (4)	0.66701 (19)	-0.02635 (13)	0.0322 (6)
H3C	-0.3223	0.6405	-0.0634	0.039*
C4	-0.2419 (4)	0.76228 (18)	-0.02103 (12)	0.0260 (6)
H4B	-0.2945	0.8010	-0.0546	0.031*
C5	-0.1462 (4)	0.80276 (17)	0.03563 (12)	0.0247 (6)
C6	0.6319 (4)	0.59150 (17)	0.70022 (12)	0.0249 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H6B	0.5793	0.5503	0.6681	0.030*
C7	0.7250 (4)	0.55568 (18)	0.75551 (12)	0.0274 (6)
H7B	0.7364	0.4906	0.7620	0.033*
C8	0.8036 (4)	0.62005 (19)	0.80266 (12)	0.0282 (6)
H8B	0.8678	0.5972	0.8411	0.034*
C9	0.7875 (4)	0.71541 (18)	0.79316 (12)	0.0266 (6)
H9A	0.8410	0.7571	0.8248	0.032*
C10	0.6895 (4)	0.75046 (18)	0.73512 (12)	0.0250 (6)
C11	0.3711 (4)	0.84127 (17)	0.55446 (12)	0.0247 (5)
C12	0.2803 (4)	0.72031 (16)	0.47427 (11)	0.0216 (5)
C13	0.2721 (3)	0.74813 (16)	0.29047 (11)	0.0205 (5)
C14	0.1749 (3)	0.88218 (17)	0.22216 (11)	0.0197 (5)
O1W	0.3564 (3)	0.48901 (14)	0.56202 (10)	0.0342 (5)
H2W1	0.371 (5)	0.542 (3)	0.5504 (17)	0.058 (12)*
H1W1	0.293 (5)	0.498 (2)	0.5915 (18)	0.055 (12)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0584 (6)	0.0233 (3)	0.0242 (4)	0.0096 (3)	-0.0051 (3)	-0.0068 (3)
S2	0.0413 (4)	0.0220 (3)	0.0193 (3)	0.0082 (3)	-0.0047 (3)	-0.0003 (2)
S3	0.0300 (4)	0.0230 (3)	0.0191 (3)	-0.0054 (3)	-0.0009 (3)	-0.0009(2)
S4	0.0292 (4)	0.0247 (3)	0.0178 (3)	0.0056 (3)	-0.0008 (3)	0.0005 (2)
S5	0.0259 (4)	0.0225 (3)	0.0169 (3)	-0.0031 (3)	-0.0033 (3)	-0.0015 (2)
S6	0.0318 (4)	0.0221 (3)	0.0233 (3)	-0.0021 (3)	-0.0025 (3)	0.0033 (2)
N1	0.0514 (17)	0.0233 (11)	0.0325 (13)	-0.0013 (11)	-0.0176 (12)	0.0000 (9)
N2	0.0286 (13)	0.0262 (11)	0.0180 (11)	-0.0024 (9)	-0.0053 (9)	-0.0025 (8)
N3	0.0507 (17)	0.0279 (12)	0.0316 (13)	-0.0065 (11)	-0.0146 (12)	-0.0018 (9)
N4	0.0251 (13)	0.0281 (11)	0.0159 (10)	-0.0007 (9)	-0.0035 (9)	-0.0007 (8)
N5	0.0300 (13)	0.0223 (10)	0.0157 (10)	0.0003 (9)	-0.0011 (9)	-0.0004 (8)
N6	0.0275 (13)	0.0221 (10)	0.0187 (11)	-0.0015 (9)	-0.0004 (9)	0.0005 (8)
N7	0.0345 (14)	0.0214 (11)	0.0184 (10)	0.0005 (9)	-0.0030 (10)	-0.0006 (8)
N8	0.0325 (14)	0.0220 (10)	0.0170 (11)	-0.0012 (9)	-0.0052 (9)	-0.0003 (8)
C1	0.0382 (18)	0.0242 (14)	0.0312 (15)	0.0003 (12)	0.0024 (13)	0.0047 (11)
C2	0.0412 (19)	0.0233 (13)	0.0400 (17)	-0.0050 (12)	0.0053 (14)	-0.0069 (11)
C3	0.0278 (16)	0.0399 (16)	0.0282 (14)	-0.0052 (12)	0.0010 (12)	-0.0121 (11)
C4	0.0232 (15)	0.0342 (14)	0.0191 (13)	0.0012 (11)	-0.0023 (11)	-0.0019 (10)
C5	0.0228 (15)	0.0274 (13)	0.0227 (13)	-0.0019 (11)	-0.0012 (11)	-0.0026 (10)
C6	0.0241 (15)	0.0272 (13)	0.0235 (13)	-0.0001 (11)	0.0032 (11)	-0.0044 (10)
C7	0.0249 (15)	0.0290 (13)	0.0286 (14)	0.0047 (11)	0.0050 (12)	0.0023 (11)
C8	0.0204 (14)	0.0443 (16)	0.0200 (13)	0.0036 (12)	0.0031 (11)	0.0049 (11)
C9	0.0226 (15)	0.0355 (15)	0.0203 (13)	-0.0033 (11)	-0.0021 (11)	-0.0044 (10)
C10	0.0232 (15)	0.0266 (13)	0.0248 (13)	-0.0041 (11)	0.0017 (11)	-0.0042 (10)
C11	0.0288 (15)	0.0274 (13)	0.0174 (12)	0.0038 (11)	0.0016 (11)	-0.0008 (10)
C12	0.0247 (14)	0.0212 (12)	0.0180 (12)	-0.0013 (10)	0.0002 (10)	-0.0030 (9)
C13	0.0222 (14)	0.0215 (12)	0.0174 (12)	0.0018 (10)	0.0009 (10)	0.0008 (9)
C14	0.0189 (13)	0.0248 (12)	0.0152 (12)	-0.0007 (10)	0.0013 (10)	0.0005 (9)
O1W	0.0491 (15)	0.0229 (11)	0.0295 (12)	-0.0011 (9)	0.0022 (10)	0.0002 (8)

Geometric parameters (Å, °)

S1—C11	1.689 (3)	N6—C12	1.299 (3)
S2—C12	1.722 (2)	N7—C13	1.304 (3)
S2—C11	1.749 (3)	N7—N8	1.370 (3)
S3—C12	1.754 (2)	N8—C14	1.324 (3)
S3—S4	2.0638 (11)	C1—C2	1.352 (4)
S4—C13	1.757 (2)	C1—H1C	0.9300
S5—C13	1.735 (2)	С2—С3	1.403 (4)
S5—C14	1.744 (2)	C2—H2B	0.9300
S6—C14	1.708 (2)	C3—C4	1.352 (4)
N1—C5	1.326 (3)	С3—Н3С	0.9300
N1—H1A	0.8600	C4—C5	1.410 (3)
N1—H1B	0.8600	C4—H4B	0.9300
N2—C5	1.348 (3)	C6—C7	1.355 (4)
N2	1.351 (3)	С6—Н6В	0.9300
N2—H2A	0.8600	С7—С8	1.403 (4)
N3-C10	1.324 (3)	С7—Н7В	0.9300
N3—H3A	0.8600	C8—C9	1.363 (4)
N3—H3B	0.8600	C8—H8B	0.9300
N4—C6	1.355 (3)	C9—C10	1.410 (4)
N4—C10	1.356 (3)	С9—Н9А	0.9300
N4—H4A	0.8600	O1W—H2W1	0.80 (4)
N5-C11	1.334 (3)	O1W—H1W1	0.83 (4)
N5—N6	1.371 (3)		
Cg1···Cg3 ⁱ	3.692 (3)	Cg2···Cg4 ⁱⁱⁱ	3.660 (3)
Cg1…Cg3 ⁱⁱ	3.718 (3)	Cg2···Cg4 ^{iv}	3.696 (3)
C12—S2—C11	88.39 (12)	N1—C5—N2	119.6 (2)
C12—S3—S4	102.56 (9)	N1—C5—C4	122.8 (2)
C13—S4—S3	103.82 (9)	N2—C5—C4	117.6 (2)
C13—S5—C14	88.00 (11)	N4—C6—C7	121.2 (2)
C5—N1—H1A	120.0	N4—C6—H6B	119.4
C5—N1—H1B	120.0	С7—С6—Н6В	119.4
H1A—N1—H1B	120.0	C6—C7—C8	117.7 (2)
C5—N2—C1	122.9 (2)	C6—C7—H7B	121.1
C5—N2—H2A	118.5	C8—C7—H7B	121.1
C1—N2—H2A	118.5	C9—C8—C7	121.2 (2)
C10—N3—H3A	120.0	C9—C8—H8B	119.4
C10—N3—H3B	120.0	C7—C8—H8B	119.4
H3A—N3—H3B	120.0	C8—C9—C10	119.7 (2)
C6—N4—C10	122.6 (2)	С8—С9—Н9А	120.2
C6—N4—H4A	118.7	С10—С9—Н9А	120.2
C10—N4—H4A	118.7	N3—C10—N4	118.7 (2)
C11—N5—N6	113.89 (19)	N3—C10—C9	123.8 (2)
C12—N6—N5	113.05 (19)	N4—C10—C9	117.5 (2)
C13—N7—N8	111.79 (19)	N5-C11-S1	126.22 (19)

C14—N8—N7	115.17 (19)	N5—C11—S2	110.88 (18)
N2—C1—C2	120.5 (3)	S1—C11—S2	122.88 (15)
N2—C1—H1C	119.8	N6—C12—S2	113.78 (18)
C2—C1—H1C	119.8	N6-C12-S3	121.56 (18)
C1—C2—C3	118.4 (2)	S2—C12—S3	124.59 (14)
C1—C2—H2B	120.8	N7—C13—S5	114.06 (17)
C3—C2—H2B	120.8	N7—C13—S4	120.60 (18)
C4—C3—C2	120.7 (3)	S5—C13—S4	125.02 (14)
C4—C3—H3C	119.6	N8—C14—S6	124.38 (18)
С2—С3—Н3С	119.6	N8—C14—S5	110.99 (17)
C3—C4—C5	119.8 (2)	S6—C14—S5	124.63 (14)
C3—C4—H4B	120.1	H2W1—O1W—H1W1	102 (3)
C5—C4—H4B	120.1		
C12—S3—S4—C13	-98.27 (12)	N6—N5—C11—S2	-0.5 (3)
C11—N5—N6—C12	-0.4 (3)	C12—S2—C11—N5	0.9 (2)
C13—N7—N8—C14	0.1 (3)	C12—S2—C11—S1	-177.71 (19)
C5—N2—C1—C2	0.7 (4)	N5—N6—C12—S2	1.1 (3)
N2—C1—C2—C3	0.2 (4)	N5—N6—C12—S3	-175.97 (18)
C1—C2—C3—C4	0.1 (5)	C11—S2—C12—N6	-1.1 (2)
C2—C3—C4—C5	-1.2 (4)	C11—S2—C12—S3	175.82 (19)
C1—N2—C5—N1	178.1 (3)	S4—S3—C12—N6	-106.0 (2)
C1—N2—C5—C4	-1.9 (4)	S4—S3—C12—S2	77.26 (17)
C3—C4—C5—N1	-177.9 (3)	N8—N7—C13—S5	0.1 (3)
C3—C4—C5—N2	2.1 (4)	N8—N7—C13—S4	-173.73 (18)
C10—N4—C6—C7	1.2 (4)	C14—S5—C13—N7	-0.1 (2)
N4—C6—C7—C8	-0.5 (4)	C14—S5—C13—S4	173.34 (18)
C6—C7—C8—C9	-0.2 (4)	S3—S4—C13—N7	-100.7 (2)
C7—C8—C9—C10	0.3 (4)	S3—S4—C13—S5	86.25 (17)
C6—N4—C10—N3	179.5 (2)	N7—N8—C14—S6	-179.89 (19)
C6—N4—C10—C9	-1.1 (4)	N7—N8—C14—S5	-0.2 (3)
C8—C9—C10—N3	179.7 (3)	C13—S5—C14—N8	0.2 (2)
C8—C9—C10—N4	0.3 (4)	C13—S5—C14—S6	179.88 (18)
N6—N5—C11—S1	178.1 (2)		

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) x-1, -y+3/2, z-1/2; (iii) x+1, -y+3/2, z+1/2; (iv) x, -y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H··· A	
N1—H1A···S6	0.86	2.63	3.488 (3)	177	
N2—H2A…N8	0.86	1.87	2.726 (3)	171	
N3—H3 <i>A</i> ···S1	0.86	2.43	3.273 (3)	166	
N4—H4 <i>A</i> …N5	0.86	1.97	2.826 (3)	179	
O1 <i>W</i> —H2 <i>W</i> 1···N6	0.80 (4)	2.07 (4)	2.860 (3)	169 (4)	
$N1$ — $H1B$ ···O1 W^{v}	0.86	2.07	2.898 (3)	162	

			supporting informatio		
O1 <i>W</i> —H1 <i>W</i> 1···S6 ^{iv}	0.83 (4)	2.47 (4)	3.294 (3)	175 (3)	
N3—H3 <i>B</i> ···S6 ^{vi}	0.86	2.49	3.338 (2)	171	

Symmetry codes: (iv) x, -y+3/2, z+1/2; (v) -x, y+1/2, -z+1/2; (vi) -x+1, -y+2, -z+1.