organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(S)-2-[(2,4-Dichlorophenyl)(hydroxy)methyl]-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide

Chubei Wang, Hao Peng, Xiaosong Tan and Hongwu He*

Key Laboratory of Pesticide and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China Correspondence e-mail: he1208@mail.ccnu.edu.cn

Received 3 March 2011; accepted 14 March 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.105; data-to-parameter ratio = 14.7.

In the title molecule, C₁₂H₁₅Cl₂O₄P, the cyclic dioxaphosphinane ring adopts a chair conformation. In the crystal, intermolecular O-H···O hydrogen bonds link the molecules into chains propagating along the b axis.

Related literature

For the synthesis and biological activity of hydroxydioxaphosphinane derivatives, see: Peng et al. (2007); Liu et al. (2006). For the synthesis of chiral cyclic hydroxydioxaphosphinanes, see: Zhou et al. (2008).

Experimental

Crystal data

$C_{12}H_{15}Cl_2O_4P$
$M_r = 325.11$
Monoclinic, P21
a = 7.0263 (9) Å
b = 9.9443 (13) Å
c = 10.6462 (14) Å
$\beta = 93.975 \ (2)^{\circ}$

 $V = 742.08 (17) \text{ Å}^3$ Z = 2Mo Ka radiation $\mu = 0.55 \text{ mm}^{-1}$ T = 298 K0.16 \times 0.12 \times 0.10 mm

Data collection

Br

40

Re R[

wÌ

S 25

1 restraint

Bruker SMART APEX CCD area- detector diffractometer 4069 measured reflections	2597 independent reflections 2478 reflections with $I > 2\sigma(I)$ $R_{int} = 0.067$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.042$ wR(F ²) = 0.105 S = 1.01	H atoms treated by a mixture of independent and constrained refinement
2597 reflections	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
1// parameters	$\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm A}$

Absolute structure: Flack (1983), 1140 Friedel pairs

Flack parameter: -0.15 (8)

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 - H1 \cdots O4^i$	0.80 (5)	1.89 (5)	2.686 (3)	173 (4)

Symmetry code: (i) $-x + 2, y - \frac{1}{2}, -z$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

We gratefully acknowledge financial support of this work by the National Basic Research Program of China (grant No. 2010CB126100) and the National Natural Science Foundation of China (grant Nos. 20772042 and 21002037). This work was supported in part by the PCSIRT (grant No. IRT0953).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5059).

References

- Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Liu, H., Zhou, Y. G., Yu, Z. K., Xiao, W. J., Liu, S. H. & He, H. W. (2006). Tetrahedron Lett. 62, 11207-11217.
- Peng, H., Wang, T., Xie, P., Chen, T., He, H. W. & Wan, J. (2007). J. Agric. Food Chem. 55, 1871-1880.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhou, X., Liu, X. H., Yang, X., Shang, D. J., Xin, J. G. & Feng, X. M. (2008). Angew. Chem. Int. Ed. 47, 392-394.

supporting information

Acta Cryst. (2011). E67, o920 [doi:10.1107/S1600536811009585]

(*S*)-2-[(2,4-Dichlorophenyl)(hydroxy)methyl]-5,5-dimethyl-1,3,2dioxaphosphinane 2-oxide

Chubei Wang, Hao Peng, Xiaosong Tan and Hongwu He

S1. Comment

The cyclic alpha-hydroxydioxaphosphinanes exhibit various biological activities (Peng *et al.*, 2007; Liu *et al.*, 2006). The title compound, (I), is a chiral cyclic hydroxydioxaphosphinane derivative. Herewith we present its crystal structure.

In (I) (Fig. 1), the cyclic dioxaphosphinane ring adopts a chair conformation. In the crystal structure, intermolecular O -H···O hydrogen bonds (Table 1) link the molecules into chains propagated along *b* axis (Fig. 2).

S2. Experimental

The title compound was prepared according to the known procedure (Zhou *et al.*, 2008). Diethylaluminum chloride (1 mmol) was added to a solution of (S,E)-2-(adamantan-1-yl)-4- (*tert*-butyl)-6(((1-hydroxy-3-methylbutan-2-yl)imino)- methyl)phenol (1 mmol) in dichloromethane, The mixture was stirred at room temperature for 1 h. The aldehyde and cyclic phosphite was added and the mixture was stirred for another 2 h. The reaction was quenched by diluted hydro-chloride acid. The pure title compound was afforded by column chromatography on silica gel (acetone/petroleum ether 1:2). Recrystallization from ethyl acetate over a period of one week gave colourless crystals of the title compound.

S3. Refinement

C-bound H atoms were geometrically positioned (C—H 0.93–0.98 Å) and refined as riding, with $U_{iso}(H) = 1.2-1.5 U_{eq}(C)$. O-bound H atom was located on a difference map and refined as riding ($U_{iso}(H) = 1.5U_{eq}(O)$) with O—H bond length restrained to 0.80 (4) Å.

Figure 1

Molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2

Part of the crystal packing, showing the intermolecular O—H…O hydrogen bonds as dashed lines.

(S)-2-[(2,4-Dichlorophenyl)(hydroxy)methyl]-5,5-dimethyl-1,3,2- dioxaphosphinane 2-oxide

Crystal data	
$C_{12}H_{15}Cl_2O_4P$	F(000) = 336
$M_r = 325.11$	$D_{\rm x} = 1.455 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.0263 (9) Å	Cell parameters from 2185 reflections
b = 9.9443 (13) Å	$\theta = 2.8 - 28.1^{\circ}$
c = 10.6462 (14) Å	$\mu=0.55~\mathrm{mm^{-1}}$
$\beta = 93.975 \ (2)^{\circ}$	T = 298 K
$V = 742.08 (17) \text{ Å}^3$	Block, colourless
Z = 2	$0.16 \times 0.12 \times 0.10 \text{ mm}$

Data collection

 Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 4069 measured reflections 2597 independent reflections 	2478 reflections with $I > 2\sigma(I)$ $R_{int} = 0.067$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -8 \rightarrow 8$ $k = -11 \rightarrow 12$ $l = -12 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.105$ S = 1.01 2597 reflections 177 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0604P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.39$ e Å ⁻³ $\Delta\rho_{min} = -0.25$ e Å ⁻³ Absolute structure: Flack (1983), 1140 Friedel pairs Absolute structure parameter: -0.15 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.0374 (4)	0.6151 (3)	0.2326 (3)	0.0326 (6)	
C2	1.2166 (4)	0.6199 (3)	0.2946 (3)	0.0353 (6)	
C3	1.2552 (5)	0.6911 (4)	0.4050 (3)	0.0426 (7)	
Н3	1.3771	0.6916	0.4451	0.051*	
C4	1.1093 (5)	0.7608 (3)	0.4537 (3)	0.0432 (8)	
C5	0.9289 (5)	0.7620 (4)	0.3937 (3)	0.0454 (8)	
H5	0.8316	0.8117	0.4264	0.054*	
C6	0.8951 (4)	0.6891 (3)	0.2856 (3)	0.0395 (7)	
H6	0.7728	0.6890	0.2461	0.047*	
C8	0.9910 (4)	0.5319 (3)	0.1163 (3)	0.0330 (6)	
H8	1.0894	0.4627	0.1112	0.040*	
C9	0.7747 (5)	0.4722 (4)	-0.1830 (3)	0.0461 (8)	
H9A	0.7300	0.4104	-0.1209	0.055*	
H9B	0.7880	0.4222	-0.2601	0.055*	
C10	0.6092 (4)	0.6611 (4)	-0.0866 (3)	0.0439 (8)	

H10A	0.5200	0.7344	-0.1037	0.053*
H10B	0.5575	0.6030	-0.0242	0.053*
C11	0.6301 (5)	0.5816 (4)	-0.2073 (3)	0.0456 (8)
C12	0.4368 (6)	0.5156 (6)	-0.2449 (5)	0.0766 (14)
H12A	0.4470	0.4632	-0.3199	0.115*
H12B	0.3418	0.5841	-0.2605	0.115*
H12C	0.4008	0.4583	-0.1780	0.115*
C13	0.6874 (6)	0.6734 (5)	-0.3136 (3)	0.0617 (11)
H13A	0.8071	0.7157	-0.2893	0.093*
H13B	0.5913	0.7411	-0.3297	0.093*
H13C	0.6996	0.6211	-0.3884	0.093*
C11	1.40915 (11)	0.53739 (10)	0.23277 (9)	0.0563 (3)
C12	1.15586 (17)	0.85446 (12)	0.59048 (10)	0.0703 (3)
01	0.8112 (3)	0.4671 (2)	0.1240 (2)	0.0404 (5)
H1	0.818 (6)	0.390 (5)	0.102 (4)	0.061*
O2	0.9609 (3)	0.5257 (2)	-0.1376 (2)	0.0425 (5)
O3	0.7922 (3)	0.7156 (2)	-0.0361 (2)	0.0390 (5)
O4	1.1503 (3)	0.7162 (2)	-0.0359 (2)	0.0450 (6)
P1	0.98124 (10)	0.63058 (8)	-0.02830 (7)	0.0317 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0314 (14)	0.0335 (17)	0.0328 (14)	-0.0005 (13)	0.0022 (11)	0.0054 (13)
C2	0.0315 (14)	0.0363 (16)	0.0380 (15)	0.0030 (14)	0.0008 (11)	0.0036 (14)
C3	0.0403 (18)	0.0474 (18)	0.0386 (17)	-0.0026 (15)	-0.0067 (13)	0.0031 (15)
C4	0.055 (2)	0.0433 (19)	0.0312 (16)	-0.0031 (16)	0.0021 (14)	-0.0047 (14)
C5	0.0400 (19)	0.051 (2)	0.0456 (19)	0.0057 (16)	0.0073 (15)	-0.0045 (16)
C6	0.0305 (16)	0.0443 (18)	0.0433 (18)	0.0024 (14)	-0.0014 (13)	-0.0034 (15)
C8	0.0277 (13)	0.0318 (15)	0.0397 (16)	0.0010 (13)	0.0031 (12)	0.0010 (13)
C9	0.0453 (18)	0.0470 (19)	0.0452 (19)	-0.0084 (16)	-0.0034 (14)	-0.0094 (16)
C10	0.0304 (15)	0.055 (2)	0.0464 (18)	0.0036 (14)	0.0009 (13)	-0.0034 (16)
C11	0.0402 (18)	0.056 (2)	0.0404 (17)	-0.0018 (16)	-0.0029 (13)	-0.0051 (16)
C12	0.048 (2)	0.099 (4)	0.080 (3)	-0.014 (3)	-0.0139 (19)	-0.019 (3)
C13	0.071 (3)	0.073 (3)	0.040 (2)	-0.001 (2)	-0.0067 (17)	0.0043 (18)
Cl1	0.0313 (4)	0.0680 (6)	0.0690 (6)	0.0119 (4)	-0.0002 (4)	-0.0118 (5)
Cl2	0.0797 (7)	0.0820 (7)	0.0480 (5)	-0.0019 (6)	-0.0050(5)	-0.0268 (5)
O1	0.0354 (12)	0.0373 (12)	0.0489 (13)	-0.0063 (10)	0.0063 (9)	-0.0050 (11)
O2	0.0359 (11)	0.0502 (14)	0.0411 (12)	0.0067 (11)	0.0015 (9)	-0.0107 (11)
O3	0.0330 (12)	0.0408 (13)	0.0425 (12)	0.0059 (9)	-0.0020 (9)	-0.0058 (10)
O4	0.0364 (12)	0.0445 (13)	0.0544 (14)	-0.0067 (10)	0.0055 (10)	0.0060 (11)
P1	0.0292 (4)	0.0331 (4)	0.0327 (4)	0.0000 (3)	0.0020 (3)	-0.0015 (3)

Geometric parameters (Å, °)

C1—C2	1.381 (4)	С9—Н9В	0.9700
C1—C6	1.393 (4)	C10—O3	1.463 (4)
C1—C8	1.506 (4)	C10—C11	1.524 (5)

C2 C2	1 292 (5)	C10 11104	0.0700
C2—C3	1.382 (5)	C10—H10A	0.9700
C2—C11	1.750 (3)	С10—Н10В	0.9700
C3—C4	1.369 (5)	C11—C13	1.530 (5)
С3—Н3	0.9300	C11—C12	1.536 (5)
C4—C5	1.379 (5)	C12—H12A	0.9600
C4—Cl2	1.741 (3)	C12—H12B	0.9600
C5—C6	1 366 (5)	C12—H12C	0.9600
C5 H5	0.0300	C13 H13A	0.9600
	0.9300		0.9000
	0.9300		0.9600
01	1.425 (3)	С13—Н13С	0.9600
C8—P1	1.822 (3)	O1—H1	0.80 (5)
C8—H8	0.9800	O2—P1	1.561 (2)
C9—O2	1.463 (4)	O3—P1	1.572 (2)
C9—C11	1.499 (5)	O4—P1	1.468 (2)
С9—Н9А	0.9700		
C2—C1—C6	116.4 (3)	C11—C10—H10A	109.3
C2-C1-C8	123.4 (3)	O3—C10—H10B	109.3
C6-C1-C8	120.2(2)	C_{11} $-C_{10}$ $-H_{10B}$	109.3
$C_1 - C_2 - C_3$	120.2(2) 122.9(3)	H10A - C10 - H10B	108.0
C1 C2 C3	122.9(3) 120.4(2)	$C_{0} C_{11} C_{10}$	100.0
$C_1 = C_2 = C_{11}$	120.4(2)	$C_{2} = C_{11} = C_{10}$	109.0(3)
	110.7 (2)		110.0 (3)
C4—C3—C2	118.2 (3)	C10—C11—C13	111.1 (3)
C4—C3—H3	120.9	C9—C11—C12	108.1 (3)
С2—С3—Н3	120.9	C10-C11-C12	107.8 (3)
C3—C4—C5	121.2 (3)	C13—C11—C12	109.6 (3)
C3—C4—C12	119.0 (3)	C11—C12—H12A	109.5
C5—C4—Cl2	119.8 (3)	C11—C12—H12B	109.5
C6—C5—C4	119.1 (3)	H12A—C12—H12B	109.5
С6—С5—Н5	120.5	C11—C12—H12C	109.5
C4—C5—H5	120.5	H12A—C12—H12C	109.5
C_{5}	120.3 122.3(3)	H12B-C12-H12C	109.5
C5 C6 H6	112.5 (5)	$\begin{array}{cccc} \begin{array}{c} 11120 \\ \hline \\ 11120 \\ \hline \\ 1120 \\ \hline 1120 \\ \hline \\ 1120 \\ \hline 1120 \\ \hline 1120 \\ \hline \\ 1120 \\ \hline 1120 $	109.5
C_{1}	110.9	C_{11} C_{12} U_{12} U_{12}	109.5
$C_1 = C_0 = H_0$	110.9		109.5
01 - 03 - 01	110.1(2)	HI3A—CI3—HI3B	109.5
01 - 03 - P1	108.08 (19)	СП—СІЗ—НІЗС	109.5
C1	113.1 (2)	H13A—C13—H13C	109.5
O1—C8—H8	108.5	H13B—C13—H13C	109.5
C1—C8—H8	108.5	C8—O1—H1	110 (3)
P1—C8—H8	108.5	C9—O2—P1	121.52 (19)
O2—C9—C11	111.9 (3)	C10—O3—P1	122.6 (2)
О2—С9—Н9А	109.2	O4—P1—O2	112.27 (14)
С11—С9—Н9А	109.2	O4—P1—O3	111.68 (14)
O2—C9—H9B	109.2	O2—P1—O3	106.63 (12)
С11—С9—Н9В	109.2	O4—P1—C8	112.04 (13)
Н9А—С9—Н9В	107.9	O2—P1—C8	105.43 (14)
O3—C10—C11	111.6 (2)	O3—P1—C8	108.43 (13)
O3—C10—H10A	109.3		×)
· · · · ·			

C6—C1—C2—C3	1.5 (5)	O2—C9—C11—C12	-175.9 (3)
C8—C1—C2—C3	-176.6 (3)	O3—C10—C11—C9	56.3 (4)
C6-C1-C2-Cl1	-177.0 (2)	O3—C10—C11—C13	-66.1 (4)
C8—C1—C2—Cl1	5.0 (4)	O3—C10—C11—C12	173.8 (3)
C1—C2—C3—C4	-0.7 (5)	C11—C9—O2—P1	48.4 (4)
Cl1—C2—C3—C4	177.8 (3)	C11—C10—O3—P1	-44.1 (4)
C2—C3—C4—C5	-1.0 (5)	C9—O2—P1—O4	-153.1 (3)
C2—C3—C4—Cl2	-178.4 (2)	C9—O2—P1—O3	-30.4 (3)
C3—C4—C5—C6	1.8 (5)	C9—O2—P1—C8	84.7 (3)
Cl2—C4—C5—C6	179.3 (3)	C10-O3-P1-O4	151.7 (2)
C4—C5—C6—C1	-1.0(5)	C10-O3-P1-O2	28.8 (3)
C2-C1-C6-C5	-0.6 (5)	C10-O3-P1-C8	-84.3 (3)
C8—C1—C6—C5	177.5 (3)	O1—C8—P1—O4	171.92 (19)
C2-C1-C8-O1	137.8 (3)	C1—C8—P1—O4	49.8 (2)
C6-C1-C8-O1	-40.1 (4)	O1—C8—P1—O2	-65.7 (2)
C2-C1-C8-P1	-101.1 (3)	C1—C8—P1—O2	172.18 (19)
C6-C1-C8-P1	80.9 (3)	O1—C8—P1—O3	48.2 (2)
O2—C9—C11—C10	-58.6 (4)	C1—C8—P1—O3	-73.9 (2)
O2—C9—C11—C13	64.1 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O4 ⁱ	0.80 (5)	1.89 (5)	2.686 (3)	173 (4)

Symmetry code: (i) -x+2, y-1/2, -z.