organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2E)-3-(4-Chlorophenyl)-1-(2,4-dimethylquinolin-3-yl)prop-2-en-1-one

R. Prasath,^a P. Bhavana,^a[‡] Seik Weng Ng^b and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, BITS, Pilani - K. K. Birla Goa Campus, Goa 403 726, India, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malavsia

Correspondence e-mail: Edward.Tiekink@gmail.com

Received 1 March 2011; accepted 2 March 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.109; data-to-parameter ratio = 16.4.

Two independent molecules comprise the asymmetric unit of the title compound, C₂₀H₁₆ClNO, which differ in the orientation of the chalcone residue with respect to the quinoline ring [the C-C-C(=O)-C torsion angles are 69.5 (2) and 86.0 (2)°]. The configuration about each of the ethylene bonds [1.342 (2) and 1.338 (2) Å] is E. The threedimensional crystal structure is stabilized by a combination of C-H···O, C-H···N, C-H··· π interactions and π - π contacts between the independent molecules $[Cg(C_6 \text{ of }$ quinoline) $\cdots Cg(C_6 \text{ of quinoline}) = 3.6719 (11) \text{ Å}].$

Related literature

For background details and biological applications of quinolines, see: Markees et al. (1970); Campbell et al. (1998); Kalluraya & Sreenivasa (1998). For the biological activity of chalcones, see: Dimmock et al. (1999); Xiang et al. (2006). For related structures, see: Prasath et al. (2010); Kaiser et al. (2009).

‡ Additional correspondence author, e-mail: juliebhavana@gmail.com.

Crystal data

C ₂₀ H ₁₆ ClNO
$M_r = 321.79$
Triclinic, P1
a = 11.3172 (5) Å
b = 12.0268 (4) Å
c = 12.6634 (5) Å
$\alpha = 111.318 \ (3)^{\circ}$
$\beta = 91.620 \ (3)^{\circ}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) $T_{\min} = 0.931, T_{\max} = 0.976$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.109$ S = 1.086879 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C35-C40 ring.

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C14-H14···N2	0.95	2.60	3.500 (2)	158
$C20-H20\cdots O2^i$	0.95	2.46	3.317 (2)	150
C34-H34N1	0.95	2.51	3.369 (2)	151
$C19-H19\cdots Cg1^{ii}$	0.95	2.59	3.3826 (17)	142

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006), Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

BP acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/ 2007). The University of Malaya is thanked for support of the crystallographic facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5005).

References

- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031-1035.
- Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. pp. 1125-1149.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.
- Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.

 $\gamma = 94.581 \ (3)^{\circ}$ V = 1597.50 (11) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.24 \text{ mm}^{-3}$ T = 100 K $0.30 \times 0.20 \times 0.10 \text{ mm}$

13075 measured reflections

 $R_{\rm int} = 0.023$

419 parameters

 $\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

6879 independent reflections

5750 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

- Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, **53**, 399–404. Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. **13**, 324– 326.
- Prasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, 01110.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
 Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
 Xiang, W., Tiekink, E. R. T., Iouri, K., Nikolai, K. & Mei, L. G. (2006). Eur. J. Pharm. Sci. 27, 175–187.

supporting information

Acta Cryst. (2011). E67, o796-o797 [doi:10.1107/S1600536811007835]

(2E)-3-(4-Chlorophenyl)-1-(2,4-dimethylquinolin-3-yl)prop-2-en-1-one

R. Prasath, P. Bhavana, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

Quinoline derivatives find importance owing to their wide occurrence in natural products and in biologically active compounds (Markees *et al.*, 1970; Campbell *et al.*, 1998; Kalluraya & Sreenivasa, 1998). Quinoline chalcone analogues have also attracted significant attention as a result of their bio-activity, *e.g.* anti-plasmodial, anti-microbial, anti-malarial and anti-cancer (Dimmock *et al.*, 1999; Xiang *et al.*, 2006). In continuation of structural studies of these derivatives (Kaiser *et al.*, 2009; Prasath *et al.*, 2010), the title compound, (I), was investigated.

Two independent molecules comprise the asymmetric unit of (I), Figs 1 and 2. Each features an *E* configuration about the C=C bond [C13=C14 is 1.342 (2) Å and C33=C34 is 1.338 (2) Å]. Differences between the independent molecules are highlighted in the overlay diagram, Fig. 3, and relate to the twist about the C9—C12 [C29—C32] bond as seen in the C8—C9—C12—C13 and C28—C29—C32—C33 torsion angles of 69.5 (2) and 86.0 (2) °, respectively.

Molecules are consolidated in the crystal packing by a combination of C—H···O, C—H···N, and C—H··· π interactions as detailed in Table 1 as well as π ··· π contacts, with shortest contact of this type occurring between the two independent molecules [Cg(C1–C6)···Cg(C21–C26) = 3.6719 (11) Å, angle between rings = 1.27 (9) °], Fig. 4.

S2. Experimental

A mixture of 3-acetyl-2,4-dimethylquinoline (0.01 *M*), 4-chlorobenzaldehyde (0.01 *M*) and a catalytic amount of KOH in distilled ethanol was stirred for 12 h at room temperature. The resulting mixture was neutralized with dilute acetic acid. The resultant solid was filtered, dried and purified by column chromatography using a 1:3 mixture of ethyl acetate and hexane. Re-crystallization was by slow evaporation of acetone solution of (I) which yielded colourless prisms in 86% yield; *M*.pt. 426–428 K.

S3. Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95–0.98 Å) and refined as riding with U_{iso} (H) = 1.2–1.5 U_{eq} (C).

The molecular structure of the first independent molecule in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

The molecular structure of the second independent molecule in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Overlay diagram of the two independent molecules in (I) with the the first independent molecule shown in red.

A view in projection down the *a* axis of the packing in (I). The C—H···N, C—H···O, C—H··· π , and π ··· π interactions are shown as blue, orange, green and purple dashed lines, respectively.

(2E)-3-(4-Chlorophenyl)-1-(2,4-dimethylquinolin-3-yl)prop-2-en-1-one

Crystal data	
C ₂₀ H ₁₆ CINO	Z = 4
$M_r = 321.79$	F(000) = 672
Triclinic, P1	$D_{\rm x} = 1.338 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 11.3172 (5) Å	Cell parameters from 6658 reflections
b = 12.0268 (4) Å	$\theta = 2.4 - 29.2^{\circ}$
c = 12.6634 (5) Å	$\mu = 0.24 \text{ mm}^{-1}$
$\alpha = 111.318 \ (3)^{\circ}$	T = 100 K
$\beta = 91.620 \ (3)^{\circ}$	Prismatic, colourless
$\gamma = 94.581 \ (3)^{\circ}$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
$V = 1597.50 (11) \text{ Å}^3$	

Data collection

Agilent SuperNova Dual	$T_{\min} = 0.931, T_{\max} = 0.976$
diffractometer with an Atlas detector	130/5 measured reflections
Radiation source: SuperNova (Mo) X-ray Source	6879 independent reflections 5750 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.023$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.4^\circ$
ωscan	$h = -11 \longrightarrow 14$
Absorption correction: multi-scan	$k = -14 \rightarrow 15$
(CrysAlis PRO; Agilent, 2010)	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.109$	neighbouring sites
S = 1.08	H-atom parameters constrained
6879 reflections	$w = 1/[\sigma^2(F_0^2) + (0.0488P)^2 + 0.5056P]$
419 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.30$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.30818 (4)	1.10668 (4)	0.01940 (3)	0.02200 (11)	
C12	0.94188 (4)	-0.07691 (3)	0.17947 (4)	0.02391 (11)	
01	0.27425 (11)	0.43144 (11)	0.19111 (10)	0.0237 (3)	
O2	1.01594 (11)	0.65990 (10)	0.11770 (10)	0.0244 (3)	
N1	0.63923 (12)	0.47181 (12)	0.31920 (11)	0.0181 (3)	
N2	0.69353 (12)	0.77627 (12)	0.28121 (11)	0.0183 (3)	
C1	0.65234 (14)	0.55428 (14)	0.42863 (13)	0.0169 (3)	
C2	0.75852 (15)	0.56068 (15)	0.49298 (14)	0.0208 (4)	
H2	0.8172	0.5082	0.4604	0.025*	
C3	0.77728 (16)	0.64175 (16)	0.60164 (14)	0.0240 (4)	
H3	0.8489	0.6454	0.6443	0.029*	
C4	0.69125 (17)	0.71968 (16)	0.65055 (14)	0.0255 (4)	
H4	0.7052	0.7762	0.7260	0.031*	
C5	0.58725 (16)	0.71496 (15)	0.59032 (14)	0.0212 (4)	
Н5	0.5295	0.7679	0.6247	0.025*	
C6	0.56483 (15)	0.63183 (14)	0.47703 (13)	0.0164 (3)	

C7	0 36198 (16)	0 70116 (16)	0 46065 (15)	0 0230 (4)
H7A	0.2937	0.6807	0.4054	0.0256 (1)
H7R	0.3912	0.7856	0.4806	0.034*
H7C	0.3378	0.6877	0.5291	0.034*
C8	0.45920 (15)	0.62335(14)	0.3291 0.40959(13)	0.054
C9	0.43920(13) 0.44800(14)	0.02333(14) 0.54124(14)	0.40939(13) 0.20011(13)	0.0103(3)
C10	0.44899(14) 0.54205(15)	0.34124(14) 0.46604(14)	0.29911(13) 0.25775(13)	0.0107(3)
C10	0.54205(15) 0.53205(16)	0.40004(14) 0.37510(16)	0.23773(13) 0.13707(14)	0.0178(3)
	0.55295 (10)	0.37519 (10)	0.13797 (14)	0.0208 (4)
	0.5154	0.3393	0.1209	0.040*
	0.3134	0.4148	0.1303	0.040*
C12	0.4091 0.24040 (15)	0.5122 0.52485 (15)	0.1303 0.22152(12)	0.040°
C12	0.34040(13) 0.21522(15)	0.52465(15)	0.22135(13) 0.17051(12)	0.0183(3)
U13	0.31333 (13)	0.61905 (15)	0.17931 (13)	0.0195(3)
П15	0.2394	0.0139	0.1420	0.023
C14	0.39258 (14)	0.71409 (14)	0.18947 (13)	0.0169 (3)
HI4	0.4673	0.7207	0.2284	0.020*
CIS	0.3/082 (14)	0.80/85 (14)	0.14499 (13)	0.0163 (3)
C16	0.45856 (15)	0.90306 (15)	0.163/1 (13)	0.0185 (3)
H16	0.5317	0.9044	0.2030	0.022*
C17	0.44053 (15)	0.99568 (15)	0.12578 (14)	0.0202 (3)
H17	0.5002	1.0603	0.1395	0.024*
C18	0.33394 (15)	0.99194 (14)	0.06763 (13)	0.0172 (3)
C19	0.24596 (15)	0.89808 (14)	0.04630 (13)	0.0175 (3)
H19	0.1737	0.8965	0.0055	0.021*
C20	0.26433 (15)	0.80688 (14)	0.08494 (13)	0.0176 (3)
H20	0.2041	0.7426	0.0707	0.021*
C21	0.73255 (15)	0.84513 (14)	0.39108 (13)	0.0169 (3)
C22	0.65761 (15)	0.92923 (15)	0.45675 (14)	0.0214 (4)
H22	0.5828	0.9355	0.4246	0.026*
C23	0.69216 (16)	1.00162 (15)	0.56633 (14)	0.0234 (4)
H23	0.6414	1.0582	0.6096	0.028*
C24	0.80236 (17)	0.99265 (16)	0.61511 (14)	0.0248 (4)
H24	0.8256	1.0430	0.6913	0.030*
C25	0.87611 (16)	0.91200 (15)	0.55367 (14)	0.0223 (4)
H25	0.9503	0.9067	0.5877	0.027*
C26	0.84371 (14)	0.83584 (14)	0.43949 (13)	0.0165 (3)
C27	1.03653 (16)	0.73737 (16)	0.41847 (15)	0.0240 (4)
H27A	1.0757	0.6761	0.3601	0.036*
H27B	1.0249	0.7130	0.4837	0.036*
H27C	1.0862	0.8140	0.4430	0.036*
C28	0.91775 (14)	0.75128 (14)	0.37029 (13)	0.0166 (3)
C29	0.87938 (14)	0.68731 (13)	0.25941 (13)	0.0156 (3)
C30	0.76478 (15)	0.70176 (14)	0.21780 (13)	0.0172 (3)
C31	0.72207 (17)	0.63121 (17)	0.09640 (14)	0.0266 (4)
H31A	0.6385	0.6425	0.0851	0.040*
H31B	0.7301	0.5459	0.0790	0.040*
H31C	0.7698	0.6592	0.0459	0.040*
C32	0.96148 (14)	0.61323 (14)	0.17584 (13)	0.0177 (3)
	· /	· /	· /	

C33	0.97704 (15)	0.48990 (14)	0.16405 (14)	0.0187 (3)	
H33	1.0385	0.4512	0.1195	0.022*	
C34	0.90871 (14)	0.42888 (14)	0.21311 (13)	0.0164 (3)	
H34	0.8480	0.4693	0.2576	0.020*	
C35	0.91928 (14)	0.30507 (14)	0.20433 (13)	0.0153 (3)	
C36	0.83251 (15)	0.24830 (15)	0.24922 (14)	0.0191 (3)	
H36	0.7681	0.2907	0.2845	0.023*	
C37	0.83849 (15)	0.13140 (15)	0.24336 (14)	0.0209 (4)	
H37	0.7794	0.0940	0.2746	0.025*	
C38	0.93268 (15)	0.07030 (14)	0.19082 (13)	0.0186 (3)	
C39	1.02011 (15)	0.12443 (14)	0.14643 (14)	0.0193 (3)	
H39	1.0844	0.0816	0.1115	0.023*	
C40	1.01375 (14)	0.24142 (14)	0.15301 (13)	0.0175 (3)	
H40	1.0738	0.2786	0.1225	0.021*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0232 (2)	0.0193 (2)	0.0263 (2)	0.00249 (16)	0.00071 (17)	0.01157 (17)
Cl2	0.0277 (2)	0.0146 (2)	0.0308 (2)	0.00188 (17)	-0.00441 (18)	0.01043 (17)
01	0.0212 (6)	0.0235 (6)	0.0280 (6)	-0.0027 (5)	-0.0042 (5)	0.0127 (5)
O2	0.0264 (7)	0.0203 (6)	0.0300 (6)	0.0040 (5)	0.0104 (5)	0.0123 (5)
N1	0.0164 (7)	0.0177 (7)	0.0191 (7)	0.0026 (6)	0.0009 (6)	0.0051 (6)
N2	0.0168 (7)	0.0192 (7)	0.0183 (7)	0.0023 (6)	-0.0008 (6)	0.0063 (6)
C1	0.0179 (8)	0.0165 (8)	0.0176 (8)	-0.0006 (6)	0.0019 (6)	0.0081 (6)
C2	0.0177 (8)	0.0245 (9)	0.0228 (8)	0.0016 (7)	0.0020 (7)	0.0118 (7)
C3	0.0221 (9)	0.0320 (10)	0.0193 (8)	-0.0018 (8)	-0.0047 (7)	0.0126 (7)
C4	0.0339 (10)	0.0244 (9)	0.0163 (8)	-0.0014 (8)	-0.0017 (7)	0.0062 (7)
C5	0.0273 (9)	0.0193 (8)	0.0179 (8)	0.0040 (7)	0.0030 (7)	0.0072 (7)
C6	0.0194 (8)	0.0143 (7)	0.0172 (7)	0.0000 (6)	0.0026 (6)	0.0080 (6)
C7	0.0242 (9)	0.0235 (9)	0.0226 (8)	0.0084 (7)	0.0033 (7)	0.0087 (7)
C8	0.0194 (8)	0.0154 (8)	0.0187 (8)	0.0029 (6)	0.0026 (7)	0.0096 (6)
C9	0.0159 (8)	0.0167 (8)	0.0196 (8)	0.0001 (6)	0.0007 (6)	0.0095 (7)
C10	0.0178 (8)	0.0159 (8)	0.0188 (8)	0.0003 (6)	0.0010 (7)	0.0055 (6)
C11	0.0228 (9)	0.0270 (9)	0.0222 (9)	0.0059 (8)	-0.0029 (7)	-0.0012 (7)
C12	0.0165 (8)	0.0209 (8)	0.0185 (8)	0.0035 (7)	0.0032 (7)	0.0073 (7)
C13	0.0162 (8)	0.0222 (8)	0.0194 (8)	0.0050 (7)	-0.0001 (7)	0.0071 (7)
C14	0.0157 (8)	0.0202 (8)	0.0135 (7)	0.0050 (7)	0.0011 (6)	0.0041 (6)
C15	0.0167 (8)	0.0180 (8)	0.0133 (7)	0.0040 (6)	0.0030 (6)	0.0041 (6)
C16	0.0152 (8)	0.0234 (8)	0.0165 (8)	0.0026 (7)	-0.0006 (6)	0.0067 (7)
C17	0.0183 (8)	0.0213 (8)	0.0199 (8)	-0.0014 (7)	0.0004 (7)	0.0071 (7)
C18	0.0205 (8)	0.0150 (8)	0.0164 (7)	0.0044 (6)	0.0038 (6)	0.0053 (6)
C19	0.0168 (8)	0.0166 (8)	0.0171 (8)	0.0042 (7)	0.0005 (6)	0.0032 (6)
C20	0.0181 (8)	0.0160 (8)	0.0173 (8)	0.0016 (6)	0.0013 (7)	0.0043 (6)
C21	0.0186 (8)	0.0149 (8)	0.0183 (8)	0.0017 (6)	0.0023 (7)	0.0072 (6)
C22	0.0204 (9)	0.0222 (9)	0.0231 (8)	0.0065 (7)	0.0035 (7)	0.0090 (7)
C23	0.0281 (10)	0.0211 (9)	0.0225 (8)	0.0088 (7)	0.0070 (7)	0.0079 (7)
C24	0.0327 (10)	0.0223 (9)	0.0157 (8)	0.0037 (8)	0.0004 (7)	0.0026 (7)

C25	0.0252 (9)	0.0216 (9)	0.0198 (8)	0.0030 (7)	-0.0031 (7)	0.0072 (7)	
C26	0.0181 (8)	0.0140 (8)	0.0179 (8)	0.0013 (6)	0.0010 (6)	0.0064 (6)	
C27	0.0208 (9)	0.0242 (9)	0.0250 (9)	0.0069 (7)	-0.0032 (7)	0.0058 (7)	
C28	0.0166 (8)	0.0130 (7)	0.0217 (8)	0.0022 (6)	0.0017 (7)	0.0082 (6)	
C29	0.0171 (8)	0.0117 (7)	0.0190 (8)	0.0005 (6)	0.0024 (6)	0.0068 (6)	
C30	0.0183 (8)	0.0161 (8)	0.0178 (8)	0.0010 (7)	0.0010(7)	0.0070 (6)	
C31	0.0247 (9)	0.0284 (10)	0.0199 (8)	0.0049 (8)	-0.0021 (7)	0.0007 (7)	
C32	0.0166 (8)	0.0161 (8)	0.0191 (8)	0.0007 (6)	0.0012 (7)	0.0054 (6)	
C33	0.0202 (8)	0.0151 (8)	0.0207 (8)	0.0057 (7)	0.0053 (7)	0.0053 (6)	
C34	0.0163 (8)	0.0147 (8)	0.0162 (7)	0.0036 (6)	0.0015 (6)	0.0028 (6)	
C35	0.0166 (8)	0.0148 (8)	0.0135 (7)	0.0014 (6)	-0.0017 (6)	0.0041 (6)	
C36	0.0197 (8)	0.0185 (8)	0.0195 (8)	0.0040 (7)	0.0043 (7)	0.0068 (7)	
C37	0.0223 (9)	0.0200 (8)	0.0219 (8)	0.0002 (7)	0.0026 (7)	0.0099 (7)	
C38	0.0232 (9)	0.0134 (8)	0.0190 (8)	0.0020 (7)	-0.0054 (7)	0.0060 (6)	
C39	0.0164 (8)	0.0156 (8)	0.0239 (8)	0.0036 (6)	-0.0005 (7)	0.0048 (7)	
C40	0.0162 (8)	0.0156 (8)	0.0199 (8)	0.0009 (6)	0.0005 (7)	0.0059 (6)	

Geometric parameters (Å, °)

Cl1—C18	1.7404 (16)	C18—C19	1.386 (2)
Cl2—C38	1.7354 (16)	C19—C20	1.381 (2)
O1—C12	1.227 (2)	C19—H19	0.9500
O2—C32	1.2279 (19)	C20—H20	0.9500
N1-C10	1.312 (2)	C21—C22	1.414 (2)
N1C1	1.375 (2)	C21—C26	1.414 (2)
N2-C30	1.314 (2)	C22—C23	1.369 (2)
N2-C21	1.373 (2)	C22—H22	0.9500
C1—C6	1.412 (2)	C23—C24	1.405 (3)
C1—C2	1.414 (2)	С23—Н23	0.9500
C2—C3	1.365 (2)	C24—C25	1.364 (2)
С2—Н2	0.9500	C24—H24	0.9500
C3—C4	1.403 (3)	C25—C26	1.420 (2)
С3—Н3	0.9500	С25—Н25	0.9500
C4—C5	1.370 (3)	C26—C28	1.426 (2)
C4—H4	0.9500	C27—C28	1.507 (2)
C5—C6	1.421 (2)	C27—H27A	0.9800
С5—Н5	0.9500	C27—H27B	0.9800
C6—C8	1.424 (2)	C27—H27C	0.9800
С7—С8	1.506 (2)	C28—C29	1.371 (2)
С7—Н7А	0.9800	C29—C30	1.433 (2)
С7—Н7В	0.9800	C29—C32	1.510 (2)
С7—Н7С	0.9800	C30—C31	1.504 (2)
C8—C9	1.383 (2)	C31—H31A	0.9800
C9—C10	1.428 (2)	C31—H31B	0.9800
C9—C12	1.506 (2)	C31—H31C	0.9800
C10—C11	1.508 (2)	C32—C33	1.461 (2)
C11—H11A	0.9800	C33—C34	1.338 (2)
C11—H11B	0.9800	С33—Н33	0.9500

С11—Н11С	0 9800	C34—C35	1 467 (2)
C12-C13	1 466 (2)	C34—H34	0.9500
C12 - C13	1.400(2) 1.342(2)	C_{35} C_{40}	1,400(2)
C13_H13	0.9500	C_{35} C_{10} C_{35} C_{36}	1.100(2) 1.400(2)
C14 C15	1,466 (2)	C36 C37	1.400(2) 1.388(2)
C_{14} H_{14}	0.0500	$C_{30} = C_{37}$	1.566 (2)
C_{14} C_{15} C_{16}	1,400(2)	$C_{30} = 1130$	1.380(2)
$C_{15} = C_{10}$	1.400(2)	$C_{37} = C_{38}$	1.389 (2)
C15 - C20	1.404(2) 1.200(2)	C_{2}^{2} C_{2}^{2}	0.9300
	1.390 (2)	$C_{30} = C_{40}$	1.385(2)
C10—H10	0.9300	C_{39} C_{40} C_{39} C_{40}	1.387 (2)
C17 - C18	1.384 (2)	С39—Н39	0.9500
C1/—H1/	0.9500	C40—H40	0.9500
C10—N1—C1	118 49 (14)	C15—C20—H20	119.6
C_{30} N2 C_{21}	118 16 (14)	N_{2} C_{21} C_{22}	117.67 (15)
N1 C1 C6	$122 \ 40 \ (14)$	N2 C21 C26	117.07(13) 122.79(14)
N1 = C1 = C0	122.40(14) 117.72(14)	$N_2 = C_2 I = C_2 0$	122.79(14)
NI = CI = C2	117.73(14) 110.97(14)	$C_{22} = C_{21} = C_{20}$	119.34(14)
$C_0 = C_1 = C_2$	119.07(14) 120.42(16)	$C_{23} = C_{22} = C_{21}$	120.40 (10)
$C_3 = C_2 = C_1$	120.43 (10)	С25—С22—Н22	119.8
$C_3 = C_2 = H_2$	119.8	C21—C22—H22	119.8
C1 = C2 = H2	119.8	$C_{22} = C_{23} = C_{24}$	120.31 (15)
$C_2 = C_3 = C_4$	120.26 (16)	C22—C23—H23	119.8
C2—C3—H3	119.9	C24—C23—H23	119.8
C4—C3—H3	119.9	C25—C24—C23	120.36 (16)
C5—C4—C3	120.53 (16)	С25—С24—Н24	119.8
C5—C4—H4	119.7	C23—C24—H24	119.8
C3—C4—H4	119.7	C24—C25—C26	120.98 (16)
C4—C5—C6	120.72 (16)	C24—C25—H25	119.5
C4—C5—H5	119.6	C26—C25—H25	119.5
С6—С5—Н5	119.6	C21—C26—C25	118.34 (14)
C1—C6—C5	118.19 (15)	C21—C26—C28	118.04 (14)
C1—C6—C8	118.38 (14)	C25—C26—C28	123.62 (15)
C5—C6—C8	123.43 (15)	С28—С27—Н27А	109.5
С8—С7—Н7А	109.5	С28—С27—Н27В	109.5
С8—С7—Н7В	109.5	H27A—C27—H27B	109.5
H7A—C7—H7B	109.5	С28—С27—Н27С	109.5
С8—С7—Н7С	109.5	Н27А—С27—Н27С	109.5
H7A—C7—H7C	109.5	H27B—C27—H27C	109.5
H7B—C7—H7C	109.5	C29—C28—C26	118.19 (14)
C9—C8—C6	118.16 (14)	C29—C28—C27	121.81 (14)
C9—C8—C7	122.28 (15)	C26—C28—C27	119.96 (14)
C6—C8—C7	119.55 (14)	C28—C29—C30	119.89 (14)
C8—C9—C10	119.42 (15)	C28—C29—C32	121.05 (14)
C8—C9—C12	122.13 (14)	C30—C29—C32	118.62 (14)
C10—C9—C12	118.41 (14)	N2-C30-C29	122.82 (14)
N1—C10—C9	123.13 (14)	N2-C30-C31	117.12 (14)
N1-C10-C11	116.29 (14)	C29—C30—C31	120.05 (14)
C9—C10—C11	120.58 (14)	C30—C31—H31A	109.5

C10-C11-H11A	109.5	C30—C31—H31B	109.5
C10-C11-H11B	109.5	H31A—C31—H31B	109.5
H11A—C11—H11B	109.5	C30—C31—H31C	109.5
C10—C11—H11C	109.5	H31A—C31—H31C	109.5
H11A—C11—H11C	109.5	H31B—C31—H31C	109.5
H11B—C11—H11C	109.5	O2—C32—C33	120.45 (14)
O1—C12—C13	119.77 (15)	O2—C32—C29	117.96 (14)
O1—C12—C9	120.40 (15)	C33—C32—C29	121.60 (14)
C13—C12—C9	119.81 (14)	C34—C33—C32	123.07 (15)
C14—C13—C12	124.27 (15)	С34—С33—Н33	118.5
C14—C13—H13	117.9	С32—С33—Н33	118.5
C12—C13—H13	117.9	C33—C34—C35	125.80 (15)
C13—C14—C15	125.19 (15)	C33—C34—H34	117.1
C13—C14—H14	117.4	C35—C34—H34	117.1
C15—C14—H14	117.4	C40-C35-C36	118.54 (14)
C16-C15-C20	118.31 (15)	C40-C35-C34	122.29 (14)
C16-C15-C14	119 19 (14)	$C_{36} = C_{35} = C_{34}$	119 16 (14)
C_{20} C_{15} C_{14}	122.50 (15)	C_{37} C_{36} C_{35}	121 45 (15)
C17 - C16 - C15	121 19 (15)	C37—C36—H36	119 3
C17—C16—H16	119.4	C35—C36—H36	119.3
C15—C16—H16	119.4	C_{36} C_{37} C_{38}	118.57 (15)
C18 - C17 - C16	118.76 (16)	С36—С37—Н37	120.7
C18 - C17 - H17	120.6	C38—C37—H37	120.7
C16—C17—H17	120.6	$C_{39} - C_{38} - C_{37}$	121.22 (15)
C17 - C18 - C19	121 47 (15)	$C_{39} = C_{38} = C_{12}$	$118\ 80\ (12)$
C17 - C18 - C11	119 97 (13)	$C_{37} = C_{38} = C_{12}$	119.98 (13)
C19 - C18 - C11	118 56 (13)	$C_{38} - C_{39} - C_{40}$	119.85 (15)
C_{20} C_{19} C_{18}	119 38 (15)	C38—C39—H39	120.1
C_{20} C_{19} H_{19}	120.3	C40—C39—H39	120.1
C18 - C19 - H19	120.3	C_{39} C_{40} C_{35}	120.11 120.35(15)
C19 - C20 - C15	120.89 (15)	C_{39} C_{40} H_{40}	119.8
C19 - C20 - H20	119.6	$C_{35} - C_{40} - H_{40}$	119.8
019 020 1120	117.0		119.0
C10-N1-C1-C6	0.5(2)	C30-N2-C21-C22	176 92 (14)
C10 - N1 - C1 - C2	-178.93(15)	$C_{30} = N_2 = C_{21} = C_{26}$	-24(2)
N1-C1-C2-C3	179 21 (15)	N_{2} C_{21} C_{22} C_{23}	-179 12 (15)
C6-C1-C2-C3	-0.2(2)	$C_{26} = C_{21} = C_{22} = C_{23}$	0.2(2)
C1 - C2 - C3 - C4	0.2(2)	$C_{21} = C_{22} = C_{23} = C_{24}$	-0.4(3)
$C_2 - C_3 - C_4 - C_5$	0.0(3)	C^{22} C^{23} C^{24} C^{25}	0.2(3)
C_{3} C_{4} C_{5} C_{6}	-0.5(3)	C_{23} C_{24} C_{25} C_{26}	0.2(3)
N1-C1-C6-C5	-17925(14)	N_{2} C_{21} C_{26} C_{25}	17946(15)
C_{2} C_{1} C_{6} C_{5}	0.2(2)	C^{22} C^{21} C^{26} C^{25}	0.2(2)
$N_1 - C_1 - C_6 - C_8$	0.2(2) 0.3(2)	N_{2} C_{21} C_{26} C_{28}	0.2(2)
C_{2} C_{1} C_{6} C_{8}	179 69 (15)	$C_{22} = C_{21} = C_{26} = C_{28}$	-179 11 (14)
C4 - C5 - C6 - C1	0 2 (2)	C_{24} C_{25} C_{26} C_{21}	-04(2)
C4-C5-C6-C8	-179 31 (16)	C_{24} C_{25} C_{26} C_{28}	178 87 (16)
C1 - C6 - C8 - C9	-14(2)	C_{21} C_{25} C_{20} C_{20} C_{20}	2.7 (2)
C_{5}	178 07 (15)	C_{25} C_{26} C_{28} C_{29}	-17656(15)
	1,0.07 (13)	023 020 020 020	1,0.00 (10)

C1—C6—C8—C7	177.33 (14)	C21—C26—C28—C27	-179.45 (15)
C5—C6—C8—C7	-3.2 (2)	C25—C26—C28—C27	1.3 (2)
C6—C8—C9—C10	1.8 (2)	C26—C28—C29—C30	-3.3 (2)
C7—C8—C9—C10	-176.91 (15)	C27—C28—C29—C30	178.82 (15)
C6-C8-C9-C12	179.45 (14)	C26—C28—C29—C32	168.91 (14)
C7—C8—C9—C12	0.7 (2)	C27—C28—C29—C32	-8.9 (2)
C1—N1—C10—C9	-0.1 (2)	C21—N2—C30—C29	1.7 (2)
C1-N1-C10-C11	179.24 (14)	C21—N2—C30—C31	-177.48 (14)
C8—C9—C10—N1	-1.1 (2)	C28—C29—C30—N2	1.2 (2)
C12—C9—C10—N1	-178.82 (15)	C32—C29—C30—N2	-171.27 (14)
C8—C9—C10—C11	179.60 (15)	C28—C29—C30—C31	-179.64 (15)
C12—C9—C10—C11	1.9 (2)	C32—C29—C30—C31	7.9 (2)
C8—C9—C12—O1	-112.18 (18)	C28—C29—C32—O2	-93.64 (19)
C10—C9—C12—O1	65.5 (2)	C30—C29—C32—O2	78.7 (2)
C8—C9—C12—C13	69.5 (2)	C28—C29—C32—C33	86.0 (2)
C10—C9—C12—C13	-112.79 (17)	C30—C29—C32—C33	-101.63 (18)
O1—C12—C13—C14	-166.68 (16)	O2—C32—C33—C34	-170.54 (16)
C9—C12—C13—C14	11.6 (2)	C29—C32—C33—C34	9.8 (3)
C12-C13-C14-C15	177.97 (14)	C32—C33—C34—C35	179.74 (15)
C13—C14—C15—C16	178.60 (15)	C33—C34—C35—C40	7.9 (3)
C13—C14—C15—C20	-0.7 (2)	C33—C34—C35—C36	-172.45 (16)
C20-C15-C16-C17	1.1 (2)	C40—C35—C36—C37	-0.2 (2)
C14—C15—C16—C17	-178.23 (14)	C34—C35—C36—C37	-179.86 (15)
C15—C16—C17—C18	-0.6 (2)	C35—C36—C37—C38	-0.5 (2)
C16—C17—C18—C19	-0.3 (2)	C36—C37—C38—C39	0.9 (2)
C16—C17—C18—Cl1	179.76 (12)	C36—C37—C38—Cl2	-178.83 (13)
C17—C18—C19—C20	0.7 (2)	C37—C38—C39—C40	-0.7 (2)
Cl1—C18—C19—C20	-179.33 (12)	C12—C38—C39—C40	179.07 (12)
C18—C19—C20—C15	-0.2 (2)	C38—C39—C40—C35	0.0 (2)
C16—C15—C20—C19	-0.7 (2)	C36—C35—C40—C39	0.5 (2)
C14—C15—C20—C19	178.65 (14)	C34—C35—C40—C39	-179.90 (15)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C35–C40 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C14—H14…N2	0.95	2.60	3.500 (2)	158
C20—H20···O2 ^{i}	0.95	2.46	3.317 (2)	150
C34—H34…N1	0.95	2.51	3.369 (2)	151
C19—H19··· <i>Cg</i> 1 ⁱⁱ	0.95	2.59	3.3826 (17)	142

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*.