

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzene-1,3-diammonium bis(pyridine-2,6-dicarboxylato- $\kappa^3 O^2$,N,O⁶)cobaltate(II) pentahydrate

Hoda Pasdar,^a* Saghi Sadat Kashani,^a Reza Ghiasi,^b Hossein Aghabozorg^a and Behrouz Notash^c

^aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, ^bDepartment of Chemistry, Basic Science Faculty, East Tehran Branch, Islamic Azad University, Qiam Dasht, Tehran, Iran, and ^cDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran Correspondence e-mail: h_pasdar@iau-tnb.ac.ir

Received 16 February 2011; accepted 16 March 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.113; data-to-parameter ratio = 16.5.

In the title compound, $(C_6H_{10}N_2)[Co(C_7H_3NO_4)_2] \cdot 5H_2O$, the Co^{II} ion is six-coordinated in an N₂O₄ environment by two pyridine-2,6-dicarboxylate (pydc) ligands, having a distorted octahedral geometry. The crystal packing is stabilized by intermolecular N-H···O, O-H···O and weak C-H···O hydrogen bonds. There are also π - π interactions between the pyridine rings of the pydc ligands and between the pydc ligands and the benzene-1,3-diammonium cations, with centroid–centroid distances of 3.4575 (15) and 3.7521 (15) Å.

Related literature

For general background to proton-transfer compounds, see: Aghabozorg *et al.* (2008). For related structures, see: Beatty *et al.* (2002); Dobrzycki & Woźniak (2008); Imaz *et al.* (2007); Pasdar *et al.* (2010, 2011*a,b*).

V = 2491.29 (14) Å³

 $0.50 \times 0.15 \times 0.10 \text{ mm}$

5366 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 0.76 \text{ mm}^{-1}$

Z = 4

T = 298 K

 $R_{\rm int} = 0.064$

Experimental

Crystal data

 $(C_6H_{10}N_2)[Co(C_7H_3NO_4)_2] \cdot 5H_2O$ $M_r = 589.38$ Monoclinic, $P2_1/n$ a = 7.5236 (2) Å b = 18.0200 (7) Å c = 18.7122 (6) Å $\beta = 100.883$ (2)°

Data collection

Stoe IPDS-2 diffractometer 19874 measured reflections 6702 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	H atoms treated by a mixture of
$vR(F^2) = 0.113$	independent and constrained
S = 1.21	refinement
5702 reflections	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
407 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
2 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C10-H10···O3 ⁱ	0.93	2.57	3.311 (3)	136
C18−H18···O8 ⁱⁱ	0.93	2.47	3.099 (3)	125
O9−H9A…O3	0.86 (4)	1.97 (4)	2.789 (3)	160 (3)
O9−H9B···O10	0.76 (3)	2.07 (3)	2.833 (4)	176 (4)
$O10-H10A\cdots O6^{i}$	0.81 (6)	2.10 (6)	2.913 (4)	173 (5)
O10−H10B···O11	0.80 (5)	1.97 (5)	2.764 (5)	170 (5)
$O11-H11A\cdots O8$	0.97 (5)	1.84 (5)	2.746 (4)	153 (4)
$O11 - H11B \cdot \cdot \cdot O13^{iii}$	0.86 (5)	2.08 (5)	2.907 (4)	161 (5)
O12−H12A···O10	0.93 (7)	2.03 (7)	2.946 (5)	171 (5)
$O12 - H12B \cdot \cdot \cdot O2^{iv}$	0.73 (5)	2.09 (5)	2.786 (4)	161 (5)
O13−H13A···O12	0.86 (3)	1.95 (3)	2.805 (4)	176 (5)
$O13-H13B\cdots O5^{v}$	0.78 (5)	2.13 (5)	2.873 (3)	161 (5)
N3-H3A···O4 ⁱⁱⁱ	0.87 (4)	1.93 (4)	2.791 (3)	169 (3)
$N3-H3B\cdots O7$	0.96 (4)	1.78 (4)	2.714 (3)	163 (3)
N3-H3C···O13 ⁱⁱⁱ	0.98 (4)	2.04 (4)	2.890 (4)	144 (3)
$N3-H3C \cdot \cdot \cdot O9^{iii}$	0.98 (4)	2.29 (4)	2.899 (3)	120 (3)
$N4-H4A\cdots O9$	0.89 (4)	1.97 (4)	2.844 (3)	168 (4)
$N4-H4B\cdots O2^{iv}$	0.90 (4)	1.87 (4)	2.752 (3)	166 (3)
$N4-H4C\cdots O6^{v}$	0.88 (4)	2.00 (4)	2.873 (3)	175 (3)

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) x + 1, y, z; (iv) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are grateful to Islamic Azad University, North Branch, for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2407).

References

- Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.
- Beatty, A. M., Granger, K. E. & Simpson, A. E. (2002). Chem. Eur. J. 8, 3254–3259.
- Dobrzycki, L. & Woźniak, K. (2008). CrystEngComm, 10, 577-589.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Imaz, I., Thillet, A. & Sutter, J. P. (2007). Cryst. Growth Des. 7, 1753-1761.
- Pasdar, H., Ebdam, A., Aghabozorg, H. & Notash, B. (2011a). Acta Cryst. E67, m294.
- Pasdar, H., Heidari, S., Aghabozorg, H. & Notash, B. (2010). Acta Cryst. E66, m1581.
- Pasdar, H., Sadat Kashani, S., Aghabozorg, H. & Notash, B. (2011b). Acta Cryst. E67, m193-m194.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2011). E67, m507-m508 [doi:10.1107/S1600536811009858]

Benzene-1,3-diammonium bis(pyridine-2,6-dicarboxylato- $\kappa^3 O^2$, N, O⁶) cobaltate(II) pentahydrate

Hoda Pasdar, Saghi Sadat Kashani, Reza Ghiasi, Hossein Aghabozorg and Behrouz Notash

S1. Comment

Our group used pyridine-2,6-dicarboxylic acid (pydcH₂) in several proton-transfer systems (Aghabozorg *et al.*, 2008; Pasdar *et al.*, 2010, 2011*a,b*). Benzene-1,3-diamine (bda) has ability to act as a proton acceptor in proton-transfer compounds. The formation of mono- (Beatty *et al.*, 2002) and diprotonated benzene-1,3-diamine (Dobrzycki & Woźniak, 2008; Imaz *et al.*, 2007) has been observed previously.

Herein, we report the synthesis and crystal structure of the title compound (Fig. 1). The Co^{II} ion in the complex anion is six-coordinated by two tridentate pydc ligands in a distorted octahedral geometry. We have recently reported the synthesis and crystal structure of a nickle(II) analogue, $(bdaH_2)[Ni(pydc)_2].5H_2O$ (Pasdar *et al.*, 2011*b*). The nickle(II) and cobalt(II) complexes are isostructural. Crystal packing of the title compound is stabilized by intermolecular N—H···O, O —H···O and weak C—H···O hydrogen bonds (Fig. 2, Table 1). There are also π - π interactions between the pyridine rings of the pydc ligand and the benzene ring of the benzene-1,3-diammonium cation, with centroid–centroid distances of 3.4575 (15) and 3.7521 (15) Å.

S2. Experimental

A solution of $pydcH_2$ (162 mg, 0.9 mmol) in 17 ml water was added to a solution of bda (108 mg, 0.6 mmol) in 11 ml water with stirring for an hour, and then a solution of $CoCl_2.6H_2O$ (118 mg, 0.6 mmol) in 5 ml water was added. The resulting solution was stirred for 2 h and dark pink crystals of the title compound suitable for X-ray analysis were obtained after one week (m.p. 260°C).

S3. Refinement

H atoms of water molecules and N—H groups of $(bdaH_2)^{2+}$ cation were found in a difference Fourier map and refined isotropically. H9B and H13A were refined with distance restraints of O—H = 0.76 (3) and 0.86 (3) Å. H atoms of the aromatic rings were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

The packing diagram of the title compound, viewed down the *a* axis. Intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds are shown as blue dashed lines.

Figure 3

The packing diagram of the title compound, showing intermolecular π - π interactions (dashed lines) between the pyridine rings of the pydc ligands [centroid–centroid distance = 3.4575 (15) Å] and between the benzene rings of the (bdaH₂)²⁺ cations and the pyridine rings of the pydc ligands [centroid–centroid distance = 3.7521 (15) Å]. Water molecules have been omitted for clarity.

Benzene-1,3-diammonium bis(pyridine-2,6-dicarboxylato- $\kappa^3 O^2$, N,O⁶) cobaltate(II) pentahydrate

Crystal data	
$(C_6H_{10}N_2)[Co(C_7H_3NO_4)_2]$ ·5H ₂ O	c = 18.7122 (6) Å
$M_r = 589.38$	$\beta = 100.883 \ (2)^{\circ}$
Monoclinic, $P2_1/n$	$V = 2491.29 (14) \text{ Å}^3$
Hall symbol: -P 2yn	Z = 4
a = 7.5236 (2) Å	F(000) = 1220
b = 18.0200 (7) Å	$D_{\rm x} = 1.571 {\rm ~Mg} {\rm ~m}^{-3}$

Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 6702 reflections
$\theta = 2.2 - 29.2^{\circ}$
$\mu = 0.76 \text{ mm}^{-1}$

Data collection	
Stoe IPDS-2	5366 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.064$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 29.2^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Graphite monochromator	$h = -10 \rightarrow 9$
ω scans	$k = -23 \rightarrow 24$
19874 measured reflections	$l = -25 \rightarrow 25$
6702 independent reflections	

T = 298 K

Needle, dark pink $0.50 \times 0.15 \times 0.10 \text{ mm}$

Refinement

Rejinemeni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.113$	neighbouring sites
S = 1.21	H atoms treated by a mixture of independent
6702 reflections	and constrained refinement
407 parameters	$w = 1/[\sigma^2(F_o^2) + (0.031P)^2 + 1.7282P]$
2 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.007$
direct methods	$\Delta ho_{ m max} = 0.34 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.64449 (5)	0.982592 (19)	0.312577 (16)	0.02479 (9)	
01	0.8779 (3)	1.03503 (13)	0.28454 (10)	0.0426 (5)	
O2	1.0026 (3)	1.06589 (13)	0.19026 (12)	0.0481 (6)	
03	0.4033 (3)	0.91494 (11)	0.28828 (9)	0.0341 (4)	
O4	0.2123 (3)	0.86302 (14)	0.19579 (11)	0.0471 (5)	
05	0.4980 (3)	1.08443 (11)	0.31941 (10)	0.0355 (4)	
O6	0.4177 (3)	1.16437 (10)	0.39852 (11)	0.0348 (4)	
O7	0.8000 (3)	0.88934 (11)	0.35988 (9)	0.0367 (4)	
08	0.9307 (3)	0.83948 (12)	0.46576 (11)	0.0448 (5)	
09	0.3372 (3)	0.77720 (13)	0.34605 (11)	0.0393 (5)	
O10	0.5258 (5)	0.72787 (18)	0.48332 (16)	0.0614 (7)	
011	0.8434 (5)	0.69320 (18)	0.43693 (16)	0.0659 (7)	
012	0.3223 (4)	0.5943 (2)	0.42544 (17)	0.0670 (8)	
013	0.0351 (4)	0.65086 (15)	0.32207 (15)	0.0519 (6)	
N1	0.6128 (3)	0.96490 (11)	0.20453 (10)	0.0251 (4)	
N2	0.6870 (3)	1.00350 (10)	0.42057 (10)	0.0220 (4)	
N3	0.9659 (3)	0.80230 (14)	0.27389 (12)	0.0292 (4)	
N4	0.3688 (3)	0.68621 (13)	0.22490 (13)	0.0282 (4)	
C1	0.7387 (4)	0.99011 (14)	0.16927 (13)	0.0288 (5)	
C2	0.7267 (4)	0.97588 (17)	0.09568 (14)	0.0392 (6)	
H2	0.8153	0.9927	0.0711	0.047*	

C3	0.5791 (4)	0.93595 (17)	0.05974 (14)	0.0404 (7)
Н3	0.5683	0.9257	0.0104	0.048*
C4	0.4476 (4)	0.91124 (16)	0.09695 (13)	0.0356 (6)
H4	0.3470	0.8851	0.0731	0.043*
C5	0.4702 (3)	0.92658 (14)	0.17044 (12)	0.0261 (5)
C6	0.8870 (4)	1.03362 (15)	0.21823 (14)	0.0327 (5)
C7	0.3483 (3)	0.89943 (14)	0.22113 (13)	0.0290 (5)
C8	0.6188 (3)	1.06555 (13)	0.44373 (12)	0.0242 (4)
C9	0.6530 (4)	1.08338 (15)	0.51711 (13)	0.0301 (5)
Н9	0.6071	1.1268	0.5334	0.036*
C10	0.7571 (4)	1.03510(15)	0.56585 (13)	0.0309 (5)
H10	0.7816	1.0462	0.6153	0.037*
C11	0.8246 (3)	0.97036 (14)	0.54083 (12)	0.0266 (5)
H11	0.8943	0.9375	0.5728	0.032*
C12	0.7848 (3)	0.95620 (13)	0.46633 (12)	0.0228 (4)
C13	0.5029 (3)	1.10953 (13)	0.38304 (13)	0.0261 (5)
C14	0.8452 (3)	0.88883 (14)	0.42920 (13)	0.0277 (5)
C15	0.8107 (3)	0.77539 (13)	0.22120 (12)	0.0242 (4)
C16	0.8140 (4)	0.77813 (15)	0.14768 (13)	0.0304 (5)
H16	0.9120	0.7987	0.1310	0.036*
C17	0.6676 (4)	0.74947 (17)	0.09941 (13)	0.0359 (6)
H17	0.6678	0.7504	0.0497	0.043*
C18	0.5211 (4)	0.71944 (15)	0.12409 (13)	0.0312 (5)
H18	0.4236	0.7002	0.0913	0.037*
C19	0.5212 (3)	0.71837 (13)	0.19752 (13)	0.0250 (5)
C20	0.6661 (3)	0.74587 (14)	0.24743 (12)	0.0266 (5)
H20	0.6659	0.7445	0.2971	0.032*
H3A	1.041 (5)	0.8267 (19)	0.2526 (18)	0.042 (9)*
H4A	0.342 (5)	0.714 (2)	0.261 (2)	0.057 (11)*
H9A	0.381 (5)	0.819 (2)	0.3366 (18)	0.043 (9)*
H10A	0.543 (7)	0.755 (3)	0.519 (3)	0.093 (18)*
H11A	0.903 (7)	0.741 (3)	0.439 (3)	0.087 (16)*
H12A	0.387 (9)	0.634 (4)	0.448 (3)	0.12 (2)*
H13A	0.125 (6)	0.633 (3)	0.352 (3)	0.11 (2)*
H3B	0.929 (5)	0.8373 (19)	0.3069 (18)	0.044 (9)*
H4B	0.403 (5)	0.642 (2)	0.2465 (19)	0.052 (10)*
H9B	0.385 (5)	0.763 (2)	0.3831 (17)	0.055 (12)*
H10B	0.624 (7)	0.719 (3)	0.475 (2)	0.068 (15)*
H11B	0.886 (7)	0.671 (3)	0.403 (3)	0.081 (15)*
H12B	0.380 (7)	0.580 (3)	0.401 (3)	0.074 (16)*
H13B	0.033 (7)	0.624 (3)	0.289 (3)	0.089 (17)*
H3C	1.035 (5)	0.762 (2)	0.301 (2)	0.057 (11)*
H4C	0.277 (5)	0.6805 (19)	0.1891 (19)	0.045 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Col	0.02959 (17)	0.02648 (16)	0.01790 (13)	-0.00151 (14)	0.00348 (11)	-0.00162 (12)

01	0.0403 (11)	0.0565 (14)	0.0311 (9)	-0.0213 (10)	0.0069 (8)	-0.0076 (9)
O2	0.0504 (13)	0.0507 (13)	0.0487 (12)	-0.0263 (11)	0.0232 (10)	-0.0087 (10)
O3	0.0383 (10)	0.0402 (10)	0.0258 (8)	-0.0118 (8)	0.0109 (7)	-0.0033 (7)
O4	0.0383 (11)	0.0640 (15)	0.0388 (10)	-0.0237 (10)	0.0065 (9)	-0.0065 (10)
05	0.0451 (11)	0.0319 (10)	0.0269 (8)	0.0085 (8)	0.0001 (8)	0.0007 (7)
O6	0.0304 (10)	0.0303 (10)	0.0425 (10)	0.0070 (8)	0.0039 (8)	-0.0020 (8)
O7	0.0486 (12)	0.0358 (10)	0.0244 (8)	0.0155 (9)	0.0036 (8)	-0.0048 (7)
08	0.0575 (14)	0.0389 (11)	0.0366 (10)	0.0198 (10)	0.0052 (9)	0.0045 (9)
09	0.0457 (12)	0.0370 (12)	0.0338 (10)	-0.0053 (9)	0.0035 (9)	-0.0008 (9)
O10	0.0624 (19)	0.0697 (19)	0.0494 (14)	0.0069 (15)	0.0035 (13)	-0.0104 (13)
011	0.082 (2)	0.0566 (17)	0.0617 (17)	0.0052 (15)	0.0205 (15)	-0.0063 (14)
O12	0.0659 (19)	0.084 (2)	0.0579 (16)	0.0049 (17)	0.0296 (15)	-0.0025 (15)
013	0.0587 (16)	0.0464 (14)	0.0483 (13)	0.0015 (11)	0.0047 (12)	-0.0124 (11)
N1	0.0312 (11)	0.0235 (10)	0.0206 (8)	-0.0037 (8)	0.0054 (7)	-0.0010 (7)
N2	0.0222 (9)	0.0237 (10)	0.0203 (8)	-0.0007 (7)	0.0045 (7)	-0.0012 (7)
N3	0.0210 (10)	0.0362 (12)	0.0301 (10)	-0.0029 (9)	0.0036 (8)	-0.0084 (9)
N4	0.0239 (10)	0.0273 (11)	0.0331 (11)	-0.0015 (8)	0.0048 (9)	-0.0008 (9)
C1	0.0346 (13)	0.0261 (12)	0.0271 (11)	-0.0048 (10)	0.0093 (9)	0.0001 (9)
C2	0.0521 (17)	0.0404 (15)	0.0294 (12)	-0.0096 (13)	0.0184 (11)	-0.0011 (11)
C3	0.0572 (19)	0.0425 (16)	0.0224 (11)	-0.0083 (13)	0.0099 (11)	-0.0042 (11)
C4	0.0434 (15)	0.0367 (14)	0.0247 (11)	-0.0083 (12)	0.0009 (10)	-0.0068 (10)
C5	0.0276 (12)	0.0261 (12)	0.0242 (10)	-0.0022 (9)	0.0036 (9)	0.0001 (9)
C6	0.0352 (13)	0.0302 (13)	0.0346 (12)	-0.0081 (10)	0.0118 (10)	-0.0034 (10)
C7	0.0279 (12)	0.0311 (13)	0.0282 (11)	-0.0048 (10)	0.0058 (9)	-0.0014 (10)
C8	0.0227 (11)	0.0241 (11)	0.0263 (10)	-0.0014 (8)	0.0056 (8)	-0.0023 (9)
C9	0.0322 (13)	0.0304 (12)	0.0285 (11)	-0.0010 (10)	0.0077 (10)	-0.0102 (10)
C10	0.0337 (13)	0.0384 (14)	0.0204 (10)	-0.0044 (10)	0.0044 (9)	-0.0079 (9)
C11	0.0249 (11)	0.0335 (13)	0.0212 (10)	-0.0012 (9)	0.0036 (8)	0.0022 (9)
C12	0.0205 (10)	0.0271 (11)	0.0213 (10)	0.0000 (8)	0.0053 (8)	0.0002 (8)
C13	0.0223 (11)	0.0249 (11)	0.0307 (11)	-0.0024 (9)	0.0036 (9)	-0.0003 (9)
C14	0.0277 (12)	0.0284 (12)	0.0266 (11)	0.0023 (9)	0.0043 (9)	0.0008 (9)
C15	0.0194 (10)	0.0261 (11)	0.0263 (10)	0.0018 (9)	0.0022 (8)	-0.0058 (9)
C16	0.0287 (12)	0.0345 (13)	0.0295 (12)	-0.0015 (10)	0.0094 (10)	-0.0021 (10)
C17	0.0377 (15)	0.0482 (16)	0.0219 (11)	-0.0040 (12)	0.0060 (10)	-0.0036 (11)
C18	0.0298 (13)	0.0331 (13)	0.0284 (11)	-0.0040 (10)	-0.0004 (9)	-0.0074 (10)
C19	0.0200 (11)	0.0238 (11)	0.0312 (11)	0.0007 (9)	0.0044 (9)	-0.0027 (9)
C20	0.0252 (12)	0.0310 (12)	0.0235 (10)	-0.0004 (9)	0.0042 (9)	-0.0035 (9)

Geometric parameters (Å, °)

Co1—N1	2.0160 (19)	N4—C19	1.461 (3)	
Col—N2	2.0209 (18)	N4—H4A	0.89 (4)	
Co1—O7	2.1414 (19)	N4—H4B	0.90 (4)	
Co1—O1	2.145 (2)	N4—H4C	0.88 (4)	
Co1—O5	2.1570 (19)	C1—C2	1.387 (3)	
Co1—O3	2.1621 (19)	C1—C6	1.521 (4)	
O1—C6	1.256 (3)	C2—C3	1.386 (4)	
O2—C6	1.241 (3)	С2—Н2	0.9300	

O3—C7	1.277 (3)	C3—C4	1.387 (4)
O4—C7	1.233 (3)	С3—Н3	0.9300
O5—C13	1.268 (3)	C4—C5	1.381 (3)
O6—C13	1.242 (3)	C4—H4	0.9300
O7—C14	1.277 (3)	C5—C7	1.519 (3)
O8—C14	1.228 (3)	C8—C9	1.386 (3)
O9—H9A	0.86 (4)	C8—C13	1.518 (3)
09—H9B	0.76 (3)	C9—C10	1.390 (4)
010—H10A	0.81 (6)	С9—Н9	0.9300
010—H10B	0.80(5)	C10—C11	1.389(4)
011—H11A	0.97(5)	C10—H10	0.9300
011H11B	0.97(5)	C11-C12	1 393 (3)
012H12A	0.00(3)	C11H11	0.9300
012—H12R	0.73(7)	C12-C14	1 511 (3)
012 H13A	0.75(3)	C12 $C14$	1.311(3)
013 H13R	0.30(3)	C15 - C20	1.301(3) 1.382(3)
N1 C5	0.78(3)	C15 - C20	1.382(3)
NI-CI	1.332(3)	C16 U16	1.360 (4)
NI-CI	1.333(3)	C10—H10	0.9300
N2	1.328 (3)		1.383 (4)
N2	1.336 (3)	C1/—H1/	0.9300
N3-C15	1.462 (3)	C18-C19	1.3/4 (3)
N3—H3A	0.87(4)	C18—H18	0.9300
N3—H3B	0.96 (4)	C19—C20	1.386 (3)
N3—H3C	0.98 (4)	C20—H20	0.9300
N1—Co1—N2	177.16 (8)	C5—C4—C3	118.0 (2)
N1—Co1—O7	104.03 (7)	C5-C4-H4	121.0
N_{2} Col -07	76 23 (7)	C3-C4-H4	121.0
N1 - Co1 - O1	76.81 (8)	N1 - C5 - C4	121.0 121.1(2)
$N_2 - C_0 - 01$	$100 \ 37 \ (7)$	N1-C5-C7	1132(2)
07-01-01	92 18 (9)	C4 - C5 - C7	115.2(2) 125.6(2)
N1 - Co1 - O5	103 23 (8)	$0^{2}-0^{2}$	125.0(2) 125.5(3)
$N^2 - C_0 = 0.5$	76 60 (7)	02 - 00 - 01	123.3(3) 118.7(2)
$07-C_01-05$	$152\ 70\ (7)$	$02 \ 00 \ 01$	110.7(2) 115.8(2)
01 Co1 05	152.70(7)	01 - 00 - 01	115.0(2) 125.0(2)
N1 = Co1 = O3	95.22 (9) 76.36 (7)	04 - 07 - 05	123.9(2) 1101(2)
$N_2 C_{01} O_3$	106.30(7)	03 C7 C5	115.1(2)
$N_2 = C_0 I = 03$	100.48(7)	$N_{2} = C_{2} = C_{3}$	113.0(2) 120.2(2)
$0^{-1} - 0^{-1} - 0^{-3}$	90.92(6)	$N_2 = C_0 = C_7$	120.3(2) 112.31(10)
01 - 01 - 03	132.95(7)	$N_2 = C_0 = C_{13}$	115.51(19) 126.4(2)
03 - 01 - 03	94.23(0)	$C_{9} = C_{0} = C_{13}$	120.4(2)
$C_0 = 01 = C_0 1$	115.04(17)	$C_{8} = C_{9} = C_{10}$	116.7 (2)
$C_1 = 05 = 01$	115.0/(10)	C_{0} C_{0} H_{0}	120.0
$C_{13} = -U_{3} = -U_{01}$	115./0(16)	C_{10} C_{20} C_{20} C_{20} C_{20}	120.6
$U_14 - U_1 - U_01$	110.43 (10)	$C_{11} = C_{10} = C_{9}$	120.1 (2)
НУА—ОУ—НУВ	111 (4)	C11 - C10 - H10	120.0
HIUA-UIU-HIUB	106 (5)	C9—C10—H10	120.0
HIIA—UII—HIIB	102 (4)	C10—C11—C12	117.9 (2)
H12A—O12—H12B	104 (5)	C10—C11—H11	121.0

H13A—O13—H13B	100 (5)	C12—C11—H11	121.0
C5—N1—C1	121.5 (2)	N2—C12—C11	121.1 (2)
C5—N1—Co1	119.62 (16)	N2-C12-C14	113.42 (19)
C1—N1—Co1	118.82 (16)	C11—C12—C14	125.5 (2)
C12—N2—C8	121.87 (19)	O6—C13—O5	125.3 (2)
C12—N2—Co1	119.28 (15)	O6—C13—C8	119.3 (2)
C8—N2—Co1	118.84 (15)	O5—C13—C8	115.3 (2)
C15—N3—H3A	111 (2)	O8—C14—O7	125.6 (2)
C15—N3—H3B	111 (2)	O8—C14—C12	119.8 (2)
H3A—N3—H3B	105 (3)	O7—C14—C12	114.6 (2)
C15—N3—H3C	112 (2)	C16—C15—C20	122.1 (2)
H3A—N3—H3C	107 (3)	C16—C15—N3	119.8 (2)
H3B—N3—H3C	110 (3)	C20—C15—N3	118.1 (2)
C19—N4—H4A	110 (3)	C15—C16—C17	118.3 (2)
C19—N4—H4B	109 (2)	C15—C16—H16	120.8
H4A—N4—H4B	104 (3)	C17—C16—H16	120.8
C19—N4—H4C	110 (2)	C18—C17—C16	120.9 (2)
H4A—N4—H4C	112 (3)	C18—C17—H17	119.5
H4B—N4—H4C	111 (3)	С16—С17—Н17	119.5
N1—C1—C2	120.6 (2)	C19—C18—C17	119.3 (2)
N1—C1—C6	112.8 (2)	C19—C18—H18	120.4
C2—C1—C6	126.6 (2)	C17—C18—H18	120.4
C3—C2—C1	118.3 (2)	C18—C19—C20	121.4 (2)
С3—С2—Н2	120.9	C18—C19—N4	120.3 (2)
C1—C2—H2	120.9	C20-C19-N4	118.3 (2)
C2—C3—C4	120.4 (2)	C15—C20—C19	118.0 (2)
С2—С3—Н3	119.8	C15—C20—H20	121.0
С4—С3—Н3	119.8	С19—С20—Н20	121.0
N1—Co1—O1—C6	2.1 (2)	C3—C4—C5—C7	-175.3 (3)
N2—Co1—O1—C6	-177.6 (2)	Co1-01-C6-02	173.7 (2)
O7—Co1—O1—C6	106.0 (2)	Co1-01-C6-C1	-4.3 (3)
O5—Co1—O1—C6	-100.3 (2)	N1-C1-C6-O2	-173.2 (3)
O3—Co1—O1—C6	9.7 (3)	C2-C1-C6-O2	6.8 (4)
N1—Co1—O3—C7	-3.76 (19)	N1-C1-C6-01	5.0 (4)
N2—Co1—O3—C7	176.12 (18)	C2-C1-C6-O1	-174.9 (3)
O7—Co1—O3—C7	-107.98 (19)	Co1—O3—C7—O4	-178.5 (2)
O1—Co1—O3—C7	-11.4 (3)	Co1—O3—C7—C5	4.3 (3)
O5—Co1—O3—C7	98.85 (19)	N1C5C7O4	-179.7 (3)
N1—Co1—O5—C13	-177.44 (18)	C4—C5—C7—O4	-3.2 (4)
N2—Co1—O5—C13	-0.35 (18)	N1—C5—C7—O3	-2.3 (3)
O7—Co1—O5—C13	5.3 (3)	C4—C5—C7—O3	174.2 (3)
O1—Co1—O5—C13	-99.79 (19)	C12—N2—C8—C9	1.8 (3)
O3—Co1—O5—C13	105.59 (19)	Co1—N2—C8—C9	-176.81 (18)
N1-Co1-07-C14	177.36 (19)	C12—N2—C8—C13	-176.8 (2)
N2-Co1-O7-C14	0.26 (19)	Co1—N2—C8—C13	4.6 (3)
O1-Co1-O7-C14	100.4 (2)	N2-C8-C9-C10	-0.9 (4)
O5—Co1—O7—C14	-5.4 (3)	C13—C8—C9—C10	177.6 (2)

O3—Co1—O7—C14	-106.5 (2)	C8—C9—C10—C11	-0.1 (4)
O7—Co1—N1—C5	89.93 (19)	C9—C10—C11—C12	0.1 (4)
O1—Co1—N1—C5	178.9 (2)	C8—N2—C12—C11	-1.7 (3)
O5—Co1—N1—C5	-88.78 (19)	Co1—N2—C12—C11	176.86 (17)
O3—Co1—N1—C5	2.43 (18)	C8—N2—C12—C14	178.6 (2)
O7—Co1—N1—C1	-88.0 (2)	Co1—N2—C12—C14	-2.8 (3)
O1—Co1—N1—C1	0.90 (19)	C10-C11-C12-N2	0.7 (4)
O5—Co1—N1—C1	93.24 (19)	C10-C11-C12-C14	-179.7 (2)
O3—Co1—N1—C1	-175.5 (2)	Co1—O5—C13—O6	-174.9 (2)
O7—Co1—N2—C12	1.51 (17)	Co1—O5—C13—C8	2.7 (3)
O1—Co1—N2—C12	-88.20 (18)	N2-C8-C13-O6	173.0 (2)
O5—Co1—N2—C12	178.85 (19)	C9—C8—C13—O6	-5.5 (4)
O3—Co1—N2—C12	88.34 (18)	N2-C8-C13-O5	-4.8 (3)
O7—Co1—N2—C8	-179.87 (19)	C9—C8—C13—O5	176.7 (2)
O1—Co1—N2—C8	90.42 (18)	Co1-07-C14-08	178.4 (2)
O5—Co1—N2—C8	-2.53 (17)	Co1-07-C14-C12	-1.7 (3)
O3—Co1—N2—C8	-93.04 (18)	N2-C12-C14-O8	-177.2 (2)
C5—N1—C1—C2	-1.2 (4)	C11—C12—C14—O8	3.1 (4)
Co1—N1—C1—C2	176.7 (2)	N2-C12-C14-O7	2.9 (3)
C5—N1—C1—C6	178.8 (2)	C11—C12—C14—O7	-176.7 (2)
Co1—N1—C1—C6	-3.2 (3)	C20-C15-C16-C17	-0.7 (4)
N1—C1—C2—C3	1.0 (4)	N3—C15—C16—C17	177.5 (2)
C6—C1—C2—C3	-179.0 (3)	C15—C16—C17—C18	0.5 (4)
C1—C2—C3—C4	0.1 (5)	C16—C17—C18—C19	0.2 (4)
C2—C3—C4—C5	-1.1 (5)	C17—C18—C19—C20	-0.9 (4)
C1—N1—C5—C4	0.2 (4)	C17—C18—C19—N4	-179.3 (2)
Co1—N1—C5—C4	-177.8 (2)	C16—C15—C20—C19	0.1 (4)
C1—N1—C5—C7	176.9 (2)	N3—C15—C20—C19	-178.1 (2)
Co1—N1—C5—C7	-1.0 (3)	C18—C19—C20—C15	0.7 (4)
C3—C4—C5—N1	1.0 (4)	N4—C19—C20—C15	179.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C10—H10····O3 ⁱ	0.93	2.57	3.311 (3)	136
C18—H18…O8 ⁱⁱ	0.93	2.47	3.099 (3)	125
O9—H9A…O3	0.86 (4)	1.97 (4)	2.789 (3)	160 (3)
O9—H9 <i>B</i> ···O10	0.76 (3)	2.07 (3)	2.833 (4)	176 (4)
O10—H10A···O6 ⁱ	0.81 (6)	2.10 (6)	2.913 (4)	173 (5)
O10—H10 <i>B</i> …O11	0.80 (5)	1.97 (5)	2.764 (5)	170 (5)
O11—H11A···O8	0.97 (5)	1.84 (5)	2.746 (4)	153 (4)
O11—H11 <i>B</i> ···O13 ⁱⁱⁱ	0.86 (5)	2.08 (5)	2.907 (4)	161 (5)
O12—H12A…O10	0.93 (7)	2.03 (7)	2.946 (5)	171 (5)
O12—H12 <i>B</i> ···O2 ^{iv}	0.73 (5)	2.09 (5)	2.786 (4)	161 (5)
O13—H13A····O12	0.86 (3)	1.95 (3)	2.805 (4)	176 (5)
O13—H13 <i>B</i> ···O5 ^v	0.78 (5)	2.13 (5)	2.873 (3)	161 (5)
N3—H3A····O4 ⁱⁱⁱ	0.87 (4)	1.93 (4)	2.791 (3)	169 (3)
N3—H3 <i>B</i> ···O7	0.96 (4)	1.78 (4)	2.714 (3)	163 (3)

supporting information

N3—H3 <i>C</i> ···O13 ⁱⁱⁱ	0.98 (4)	2.04 (4)	2.890 (4)	144 (3)
N3—H3 <i>C</i> ···O9 ⁱⁱⁱ	0.98 (4)	2.29 (4)	2.899 (3)	120 (3)
N4—H4 <i>A</i> ···O9	0.89 (4)	1.97 (4)	2.844 (3)	168 (4)
N4—H4 B ····O2 ^{iv}	0.90 (4)	1.87 (4)	2.752 (3)	166 (3)
N4—H4 C ···O6 ^v	0.88 (4)	2.00 (4)	2.873 (3)	175 (3)

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1/2, -y+3/2, z-1/2; (iii) x+1, y, z; (iv) -x+3/2, y-1/2, -z+1/2; (v) -x+1/2, y-1/2, -z+1/2.