Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 2-(4-Chlorobenzamido)acetic acid

Islam Ullah Khan, ${ }^{\text {a* }}$ Muneeb Hayat Khan, ${ }^{\text {a }}$ Muhammad Nadeem Arshad ${ }^{\mathbf{a}}$ and Mehmet Akkurt ${ }^{\text {b* }}$<br>${ }^{\text {a }}$ Materials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and ${ }^{\text {b }}$ Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey<br>Correspondence e-mail: iukhan@gcu.edu.pk, akkurt@erciyes.edu.tr

Received 11 March 2011; accepted 13 March 2011
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; $R$ factor $=0.035 ; w R$ factor $=0.098 ;$ data-to-parameter ratio $=17.8$.

In the crystal structure of the title molecule, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClNO}_{3}$, adjacent molecules are arranged into centrosymmetric dimers through pairs of intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the dimers into a layer parallel to the $b c$ plane. In the layer, molecules are packed in a face-to-face $\pi$-stacked arrangment, showing $\pi-\pi$ stacking interactions between the benzene rings with a centroid-centroid distance of 3.6884 (8) $\AA$.

## Related literature

For crystallographic studies of benzamide derivatives, see: Donnelly et al. (2008); Mugnoli et al. (1991); Stensland et al. (1995). For standard bond lengths, see: Allen et al. (1987).


## Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClNO}_{3}$
$M_{r}=213.61$
Monoclinic, $P 2_{1} / c$

$$
\begin{aligned}
& a=10.5035(2) \AA \\
& b=13.2105(4) \AA \\
& c=7.1226(2) \AA
\end{aligned}
$$

$\beta=102.203$ (1) ${ }^{\circ}$
$V=965.98(4) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Bruker APEXII CCD
diffractometer
9027 measured reflections

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.098$
$S=1.02$

$$
\begin{aligned}
& \mu=0.37 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& 0.36 \times 0.21 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

2365 reflections
133 parameters
2 restraints

2365 independent reflections
1627 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ( $\AA{ }^{\circ}{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 2^{\mathrm{i}}$ | $0.83(2)$ | $2.06(2)$ | $2.8491(19)$ | $160(2)$ |
| $\mathrm{O} 3-\mathrm{H} 1 O \cdots \mathrm{O} 1^{\text {ii }}$ | $0.83(1)$ | $1.85(2)$ | $2.6613(16)$ | $165(2)$ |
| Symmetry codes: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2} ;$; (ii) | $-x+1,-y+1,-z+1$. |  |  |  |

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University, Lahore.

Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: IS2688).

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Donnelly, K., Gallagher, J. F. \& Lough, A. J. (2008). Acta Cryst. C64, o335o340.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Mugnoli, A., Carnasciali, M. M., Sancassan, F., Novi, M. \& Petrillo, G. (1991). Acta Cryst. C47, 1916-1919.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stensland, B., Csöregh, I. \& Högberg, T. (1995). Acta Cryst. B51, 847-856.

## supporting information

Acta Cryst. (2011). E67, o916 [doi:10.1107/S1600536811009536]

## 2-(4-Chlorobenzamido)acetic acid

Islam Ullah Khan, Muneeb Hayat Khan, Muhammad Nadeem Arshad and Mehmet Akkurt

## S1. Comment

Benzamide is originally a derivative of benzoic acid. Some benzamide derivatives are in use as Analgesics (Ethenzamide, Salicylamide), Antiemetics/Prokinetics (Alizapride, Bromopride, Cinitapride, Cisapride, Clebopride) and Antipsychotics (Amisulpride, Nemonapride, Remoxipride, Sulpiride, Sultopride). Other benzamides are being prepared and there crystallographic studies are done (Donnelly et al., 2008; Stensland et al., 1995; Mugnoli et al., 1991). The given benzamide derivative was prepared using the simple route using water as solvent.
In the title compound (I), (Fig. 1), the bond lengths and bond angles are in agreement with those reported in the literature (Allen et al., 1987). The C1-C6-C7-O1, C1-C6-C7-N1, O1-C7-N1-C8, N1-C8-C9-O2 and $\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 3$ torsion angles are 20.2 (2), -159.08 (14), -3.2 (2), 17.7 (2) and $-163.65(14)^{\circ}$, respectively.

In the crystal structure, the molecules adopt a face-to-face $\pi$-stacked packing arrangement showing $\pi-\pi$ stacking interactions involving the benzene rings $\left[C g 1 \cdots C g 1^{i}=3.6884\right.$ ( 8 ) $\AA$; symmetry code: (i) $x, 3 / 2-y,-1 / 2+z ; C g 1$ is a centroid of the benzene ring ( $\mathrm{C} 1-\mathrm{C} 6$ )].

## S2. Experimental

The calculated amount of glycine ( $0.5 \mathrm{~g}, 6.494 \mathrm{mmol}$ ) was carefully weighed and transferred to R.B.F ( 50 ml ) containing 10 ml of distilled water. The pH of the water was maintained at 8 with $10 \%$ Sod. Carbonate solution which results in the complete dissolution of glycine. Then 4-chlorobenzoyl chloride ( $0.83 \mathrm{ml}, 6.494 \mathrm{mmol}$ ) was added and pH was maintained at 8 . After 3.5 h the TLC showed the completion of reaction giving a single spot of the product. The reaction mixture was then acidified with 3 NHCl up to pH 3 which resulted in the insoluble precipitate formation. Precipitates were filtered, washed, dried and then crystallized in methanol.

## S3. Refinement

In the last cycles of the refinement, 2 reflections $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$ and $\left(\begin{array}{lll}0 & 2 & 0\end{array}\right)$ were eliminated due to being poorly measured in the vicinity of the beam stop. H atoms bounded to C atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93$ and $0.97 \AA$, and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The hydroxyl and amine H atoms were located in a difference Fourier map, and refined with the distance restraints $\mathrm{N}-\mathrm{H}=0.86$ (2) $\AA$ and $\mathrm{O}-\mathrm{H}=0.82$ (2) $\AA$. Their isotropic displacement parameters were set to be $1.2 U_{\mathrm{eq}}(\mathrm{N})$ for amine and $1.5 U_{\mathrm{eq}}(\mathrm{O})$ for hydroxyl.


Figure 1
The title molecule with atom numbering scheme. Displacement ellipsoids for non- H atoms are drawn at the $50 \%$ probability level.


Figure 2
View of the centrosymmetric dimers forming through a pair of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions which are connected to each other through intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

## 2-(4-Chlorobenzamido)acetic acid

## Crystal data

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClNO}_{3}$
$M_{r}=213.61$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2 ybc
$a=10.5035$ (2) $\AA$
$b=13.2105(4) \AA$
$c=7.1226(2) \AA$
$\beta=102.203(1)^{\circ}$
$V=965.98(4) \AA^{3}$
$Z=4$

## Data collection

Bruker APEXII CCD
diffractometer
Radiation source: sealed tube
Graphite monochromator $\varphi$ and $\omega$ scans
9027 measured reflections
2365 independent reflections
$F(000)=440$
$D_{\mathrm{x}}=1.469 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3071 reflections
$\theta=2.5-26.5^{\circ}$
$\mu=0.37 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle, colourless
$0.36 \times 0.21 \times 0.13 \mathrm{~mm}$

1627 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-13 \rightarrow 13$
$k=-17 \rightarrow 17$
$l=-9 \rightarrow 9$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.098$
$S=1.02$
2365 reflections
133 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from $\quad$ neighbouring sites
> H atoms treated by a mixture of independent $\quad$ and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0427 P)^{2}+0.1658 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.21$ e $\AA^{-3}$
> $\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$

## Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on $F^{2}$ for ALL reflections except those flagged by the user for potential systematic errors. Weighted $R$-factors $w R$ and all goodnesses of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The observed criterion of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating - $R$-factor-obs etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| C11 | $1.15861(4)$ | $0.81838(4)$ | $0.19567(7)$ | $0.0678(2)$ |
| O1 | $0.65691(11)$ | $0.52525(8)$ | $0.26411(16)$ | $0.0518(4)$ |
| O2 | $0.46720(11)$ | $0.64368(9)$ | $0.49155(17)$ | $0.0576(4)$ |
| O3 | $0.31367(11)$ | $0.53263(9)$ | $0.37136(17)$ | $0.0519(4)$ |
| N1 | $0.53959(13)$ | $0.65903(11)$ | $0.1375(2)$ | $0.0515(5)$ |
| C1 | $0.88594(15)$ | $0.60968(12)$ | $0.1921(2)$ | $0.0457(5)$ |
| C2 | $1.00353(16)$ | $0.65563(13)$ | $0.1908(2)$ | $0.0499(6)$ |
| C3 | $1.00957(15)$ | $0.75964(13)$ | $0.1880(2)$ | $0.0453(5)$ |
| C4 | $0.90087(16)$ | $0.81827(12)$ | $0.1838(2)$ | $0.0465(5)$ |
| C5 | $0.78344(15)$ | $0.77170(11)$ | $0.1832(2)$ | $0.0423(5)$ |
| C6 | $0.77497(14)$ | $0.66710(11)$ | $0.1887(2)$ | $0.0379(4)$ |
| C7 | $0.65311(14)$ | $0.61215(11)$ | $0.2002(2)$ | $0.0407(5)$ |
| C8 | $0.41924(16)$ | $0.61044(15)$ | $0.1527(2)$ | $0.0539(6)$ |
| C9 | $0.40478(14)$ | $0.59869(11)$ | $0.3568(2)$ | $0.0411(5)$ |
| H1 | 0.88100 | 0.53940 | 0.19530 | $0.0550^{*}$ |
| H1N | $0.538(2)$ | $0.7167(13)$ | $0.092(3)$ | $0.0810^{*}$ |
| H1O | $0.315(2)$ | $0.5241(19)$ | $0.487(2)$ | $0.1020^{*}$ |
| H2 | 1.07760 | 0.61690 | 0.19170 | $0.0600^{*}$ |
| H4 | 0.90650 | 0.88850 | 0.18130 | $0.0560^{*}$ |
| H5 | 0.70930 | 0.81080 | 0.17910 | $0.0510^{*}$ |
| H8A | 0.41540 | 0.54410 | 0.09330 | $0.0650^{*}$ |
| H8B | 0.34680 | 0.65000 | 0.08250 |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C11 | $0.0478(3)$ | $0.0785(4)$ | $0.0752(3)$ | $-0.0209(2)$ | $0.0086(2)$ | $-0.0017(2)$ |
| O1 | $0.0541(7)$ | $0.0422(7)$ | $0.0616(7)$ | $0.0003(5)$ | $0.0180(5)$ | $0.0100(5)$ |
| O2 | $0.0571(8)$ | $0.0578(7)$ | $0.0566(7)$ | $-0.0178(6)$ | $0.0089(6)$ | $-0.0106(6)$ |
| O3 | $0.0439(6)$ | $0.0499(7)$ | $0.0600(7)$ | $-0.0122(5)$ | $0.0067(5)$ | $0.0017(6)$ |
| N1 | $0.0389(8)$ | $0.0556(9)$ | $0.0604(9)$ | $0.0027(6)$ | $0.0113(6)$ | $0.0169(7)$ |
| C1 | $0.0449(9)$ | $0.0391(8)$ | $0.0547(9)$ | $0.0039(7)$ | $0.0141(7)$ | $0.0045(7)$ |
| C2 | $0.0392(9)$ | $0.0546(10)$ | $0.0566(10)$ | $0.0065(7)$ | $0.0119(7)$ | $0.0016(7)$ |
| C3 | $0.0414(9)$ | $0.0532(10)$ | $0.0401(8)$ | $-0.0082(7)$ | $0.0060(6)$ | $-0.0003(7)$ |
| C4 | $0.0524(10)$ | $0.0391(8)$ | $0.0461(9)$ | $-0.0040(7)$ | $0.0061(7)$ | $0.0011(7)$ |
| C5 | $0.0431(9)$ | $0.0409(8)$ | $0.0425(8)$ | $0.0065(6)$ | $0.0081(6)$ | $0.0036(6)$ |
| C6 | $0.0395(8)$ | $0.0407(8)$ | $0.0338(7)$ | $0.0019(6)$ | $0.0084(6)$ | $0.0048(6)$ |
| C7 | $0.0435(9)$ | $0.0406(9)$ | $0.0394(8)$ | $0.0018(6)$ | $0.0117(6)$ | $0.0035(6)$ |
| C8 | $0.0374(9)$ | $0.0698(12)$ | $0.0530(10)$ | $-0.0044(8)$ | $0.0065(7)$ | $-0.0001(8)$ |
| C9 | $0.0300(8)$ | $0.0351(8)$ | $0.0568(9)$ | $0.0026(6)$ | $0.0062(7)$ | $-0.0004(7)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| C11-C3 | 1.7377 (17) | C3-C4 | 1.375 (2) |
| :---: | :---: | :---: | :---: |
| O1-C7 | 1.2325 (18) | C4-C5 | 1.378 (2) |
| O2-C9 | 1.1993 (19) | C5-C6 | 1.386 (2) |
| O3-C9 | 1.3153 (19) | C6-C7 | 1.489 (2) |
| O3-H1O | 0.829 (14) | C8-C9 | 1.501 (2) |
| N1-C8 | 1.442 (2) | $\mathrm{C} 1-\mathrm{H} 1$ | 0.9300 |
| N1-C7 | 1.334 (2) | C2-H2 | 0.9300 |
| N1-H1N | 0.827 (18) | $\mathrm{C} 4-\mathrm{H} 4$ | 0.9300 |
| C1-C2 | 1.378 (2) | C5-H5 | 0.9300 |
| C1-C6 | 1.387 (2) | C8-H8A | 0.9700 |
| C2-C3 | 1.376 (2) | C8-H8B | 0.9700 |
| C9-O3-H1O | 108.0 (16) | N1-C8-C9 | 112.86 (13) |
| C7-N1-C8 | 120.26 (14) | $\mathrm{O} 2-\mathrm{C} 9-\mathrm{O} 3$ | 123.33 (14) |
| C7-N1-H1N | 120.1 (15) | O2-C9-C8 | 125.00 (14) |
| C8-N1-H1N | 119.6 (15) | O3-C9-C8 | 111.66 (13) |
| C2-C1-C6 | 120.68 (15) | $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$ | 120.00 |
| C1-C2-C3 | 118.96 (15) | C6-C1-H1 | 120.00 |
| C2-C3-C4 | 121.49 (15) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$ | 120.00 |
| $\mathrm{C} 11-\mathrm{C} 3-\mathrm{C} 2$ | 119.31 (13) | $\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$ | 121.00 |
| C11-C3-C4 | 119.18 (13) | C3-C4-H4 | 120.00 |
| C3-C4-C5 | 119.17 (15) | C5-C4-H4 | 120.00 |
| C4-C5-C6 | 120.53 (14) | C4-C5-H5 | 120.00 |
| C1-C6-C5 | 119.16 (14) | C6-C5-H5 | 120.00 |
| C1-C6-C7 | 117.49 (13) | N1-C8-H8A | 109.00 |
| C5-C6-C7 | 123.29 (14) | N1-C8-H8B | 109.00 |
| N1-C7-C6 | 118.25 (13) | C9-C8-H8A | 109.00 |
| O1-C7-N1 | 120.86 (14) | C9-C8-H8B | 109.00 |


| $\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$ | $120.89(13)$ | $\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$ | 108.00 |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$ | $-177.54(13)$ | $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $0.6(2)$ |
| $\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$ | $67.7(2)$ | $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | $176.22(13)$ |
| $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$ | $3.2(2)$ | $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$ | $-0.9(2)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$ | $-177.03(13)$ | $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 1$ | $20.2(2)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$ | $0.3(2)$ | $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$ | $-159.08(14)$ |
| $\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $0.6(2)$ | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 1$ | $-156.98(14)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 1$ | $177.54(11)$ | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$ | $23.8(2)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $\mathrm{~N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 2$ | $16.7(2)$ |  |
| $\mathrm{C} 11-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $\mathrm{~N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 3$ | $-163.65(14)$ |  |

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1 — \mathrm{H} 1 N \cdots{ }^{2} 2^{\mathrm{i}}$ | $0.83(2)$ | $2.06(2)$ | $2.8491(19)$ | $160(2)$ |
| $\mathrm{O} 3 — \mathrm{H} 1 O \cdots \mathrm{O}^{\mathrm{ii}}$ | $0.83(1)$ | $1.85(2)$ | $2.6613(16)$ | $165(2)$ |

Symmetry codes: (i) $x,-y+3 / 2, z-1 / 2$; (ii) $-x+1,-y+1,-z+1$.

