Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(S)-2-Amino-2-(2-chlorophenyl)cyclohexanone

Manfred Biermann, ${ }^{\text {a }}$ Kenneth I. Hardcastle, ${ }^{\text {b }}$ Nikolai V. Moskalev ${ }^{\text {a }}$ and Peter A. Crooks ${ }^{\text {c* }}$
${ }^{\text {a }}$ Resodyn Corporation, 130 North Main Street, Suite 600, Butte, MT 59701, USA, ${ }^{\mathbf{b}}$ Department of Chemistry, Emory University, Atlanta, GA 30322, USA, and ${ }^{\text {c }}$ Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
Correspondence e-mail: pcrooks@email.uky.edu

Received 11 January 2011; accepted 16 March 2011

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.023 ; w R$ factor $=0.059$; data-to-parameter ratio $=11.3$.

The crystal structure of the title compound, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClNO}$, was determined in order to confirm that the chiral center of the molecule has an S configuration. The cyclohexanone ring adopts a chair conformation. The 2 -chlorophenyl ring is slightly twisted from the axial $\mathrm{C}-\mathrm{N}$ bond, with a $\mathrm{N}-\mathrm{C}-\mathrm{C}-$ C torsion angle of $-5.7(2)^{\circ}$. In the crystal, an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond links adjacent molecules into an infinite chain, which propagates in the b-axis direction.

Related literature

For background literature on the preparation and use of some anesthetics, see: Holtman et al. (2006); Heshmati et al. (2003); Kohrs \& Durieux (1998). For information on the synthetic transformations used, see: Kolb et al. (1994); Parcell \& Sanchez (1981); Senanayake et al. (1996); Yang \& Davisson (1985).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClNO}$
$M_{r}=223.69$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.2437$ (5) \AA

$$
\begin{aligned}
& b=7.4244(5) \AA \\
& c=20.4794(15) \AA \\
& V=1101.38(13) \AA^{3} \\
& Z=4
\end{aligned}
$$

$\mathrm{Cu} K \alpha$ radiation
$\mu=2.84 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.43 \times 0.15 \times 0.03 \mathrm{~mm}$

Data collection

Bruker SMART APEX II diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.375, T_{\max }=0.920$
3449 measured reflections
1538 independent reflections
1521 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.059$
$S=1.01$
1538 reflections
136 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 545 Friedel pairs
Flack parameter: 0.060 (13)

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.91	2.20	$3.066(2)$	160

Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.
Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

The research was funded by the US Army Medical Research Material Command, Combat Casualty Care Research, Fort Detrick, MD contract W81XWH-06-1-0275 (NVM, MB, and KIH), and by Yaupon Therapeutics, Inc. (PAC).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2080).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Heshmati, F., Zeinali, M., Noroozinia, H., Abbacivash, R. \& Mahoori, A. (2003). Iran. J. Allergy Asthma Immunol. 2, 175-180.

Holtman, J., Johnson, J., Crooks, P. \& Wala, E. (2006). J. Pain, 7, S43.
Kohrs, R. \& Durieux, M. E. (1998). Anesth. Analg. 87, 1186-1193.
Kolb, H. C., VanNieuwenhze, M. S. \& Sharpless, B. K. (1994). Chem. Rev. 94, 2483-2547.
Parcell, R. F. \& Sanchez, P. J. (1981). J. Org. Chem. 46, 5055-5060.
Senanayake, C. H., Larsen, R. D., DiMichele, L. M., Liu, J., Toma, P. H., Ball, R. G., Verhoeven, T. R. \& Reider, P. J. (1996). Tetrahedron Asymmetry, 7, 1501-1506.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yang, J. \& Davisson, J. N. (1985). J. Med. Chem. 28, 1361-1365.

supporting information

Acta Cryst. (2011). E67, o936 [doi:10.1107/S1600536811009950]

(S)-2-Amino-2-(2-chlorophenyl)cyclohexanone

Manfred Biermann, Kenneth I. Hardcastle, Nikolai V. Moskalev and Peter A. Crooks

S1. Comment

Ketalar ${ }^{\mathrm{TM}}$, the racemic mixture of R - and S-Ketamines is becoming the sedative and anesthetic of choice for emergency sedation in children and victims with unknown medical history, e.g. from traffic accidents to battlefield conditions, because it causes minimal respiratory depression in comparison to other anesthetics (Heshmati et al., 2003). S-Ketamine was found 3-4 times more potent as an anesthetic than its R-enantiomer, and twice as potent as Ketalar ${ }^{\mathrm{TM}}$ with fewer side effects such as psychedelic, disorientation and anxiety (Kohrs \& Durieux, 1998). S-Norketamine, the major metabolite of S-Ketamine in humans and animals, is emerging as a novel drug for treatment of neuropathic pain and for analgesia (Holtman et al., 2006). To confirm the absolute configuration of (+)-norketamine, herein we report on the X-ray crystallographic characterization of crystalline S-norketamine.

The chirality of the molecule is confirmed (Figure 1). In the structure, the cyclohexanone ring adopts a chair conformation. The 2-chlorophenyl ring is slightly twisted from the axial $\mathrm{C}-\mathrm{N}$ bond, with a torsion angle of -5.7 (2) ${ }^{\circ}$. In the crystal, an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond links adjacent molecules into an infinite chain which propagates in the b-axis direction (Figure 2).

S2. Experimental

With 2-chlorophenyl-1-cyclohexene as pro-chiral starting material, the enantioselective synthesis of S-norketamine was first time accomplished via a 3-step synthesis route. In the first step the chiral quarternary C-1 atom of the ketamine parent structure was generated in utilizing an adapted Sharpless-Asymmetric Dihydroxylation method (Kolb et al., 1994). Asymmetric dihydroxylation was conducted with osmiumtetroxide modified with hydroquinine 1,4-phthalazinediyl diether ((DHQ)2PHAL) as chiral ligand in tert-butanol yielding (-)-(1S, 2S)-1-(2-chlorophenyl)cyclohexane-1,2-diol in 92% yield and with $82-85 \%$ ee after crystallization from n-heptane. In the second step (-)-($1 S, 2 S$)-1-(2-chlorophenyl) cyclohexane-1,2-diol was subjected to the condition of the Ritter Reaction (Senanayake et al., 1996) which produced $(-)-(1 S, 2 S)$-1-amino-1(2-chlorophenyl) cyclohexane-2-ol, which was obtained with 95% ee after crystallization from n hexane. In the third step modified Jones Oxidation (Yang et al., 1985) of (-)-(1S, 2S)-1-amino-1(2-chlorophenyl) cyclo-hexane-2-ol produced (S)-2-amino-2-(2-chlorophenyl)cyclohexanone ($(+)$ - S - norketamine) which was initially obtained as a solid white crystalline material after crystallization from n-heptane ($\mathrm{Mp} .68-69^{\circ} \mathrm{C}$) which was previously described as an oil (Parcell \& Sanchez, 1981). The chiral purity was ee 99% determined by chiral HPLC (Chiralpak AD—H column). The specific rotation of the free S-norketamine base was established to be $[a]_{\mathrm{D}}+3.2^{\circ}(\mathrm{c}=2, \mathrm{EtOH})$. Intermediates and end product were characterized by infrared, NMR and MS-spectroscopy.

S3. Refinement

All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were positioned geometrically and refined as riding atoms. The Flack parameter was determined from 545 Friedel pairs (Flack, 1983).

Figure 1
The asymmetric unit, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions (blue dotted lines) in the crystal packing form an infinite chain.

(S)-2-Amino-2-(2-chlorophenyl)cyclohexanone

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClNO}$
$M_{r}=223.69$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=7.2437$ (5) Å
$b=7.4244$ (5) \AA
$c=20.4794(15) \AA$
$V=1101.38(13) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX II diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator ω scans
$F(000)=472$
$D_{\mathrm{x}}=1.349 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 3161 reflections
$\theta=4.3-64.6^{\circ}$
$\mu=2.84 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, colourless
$0.43 \times 0.15 \times 0.03 \mathrm{~mm}$

Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.375, T_{\text {max }}=0.920$
3449 measured reflections
1538 independent reflections

1521 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=64.7^{\circ}, \theta_{\text {min }}=4.3^{\circ}$

$$
\begin{aligned}
& h=-7 \rightarrow 7 \\
& k=-8 \rightarrow 8 \\
& l=-24 \rightarrow 19
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.059$
$S=1.01$
1538 reflections
136 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0302 P)^{2}+0.1 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.15 \mathrm{e} \AA^{-3}$
> Absolute structure: Flack (1983), 545 Friedel \quad pairs

Absolute structure parameter: 0.060 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.
There were problems during data colleciton that were only realised after refinement of the results. The data were quite weak at high angle and although data were collected out to 0.85 Angstrons, the processed data were only 89% complete; however the overall statistics and quality of the results appeared quite good.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.2928(2)$	$0.4934(2)$	$0.84577(8)$	$0.0241(3)$
C2	$0.4469(2)$	$0.3899(2)$	$0.88115(7)$	$0.0248(4)$
C3	$0.5543(3)$	$0.4618(2)$	$0.93085(7)$	$0.0288(4)$
C4	$0.6938(3)$	$0.3647(2)$	$0.96124(9)$	$0.0389(4)$
H4	0.7637	0.4178	0.9954	0.047^{*}
C5	$0.7303(3)$	$0.1905(3)$	$0.94148(10)$	$0.0463(5)$
H5	0.8264	0.1236	0.9617	0.056^{*}
C6	$0.6268(3)$	$0.1144(2)$	$0.89243(10)$	$0.0434(5)$
H6	0.6508	-0.0055	0.8787	0.052^{*}
C7	$0.4874(3)$	$0.2131(2)$	$0.86316(8)$	$0.0336(4)$
H7	0.4166	0.1583	0.8295	0.040^{*}
C8	$0.1313(2)$	$0.5361(2)$	$0.89240(8)$	$0.0301(4)$
H8A	0.0653	0.4228	0.9026	0.036^{*}
H8B	0.1822	0.5838	0.9338	0.036^{*}
C9	$-0.0066(2)$	$0.6718(2)$	$0.86506(9)$	$0.0379(4)$
H9A	-0.0712	0.6184	0.8271	0.045^{*}
H9B	-0.1001	0.7003	0.8988	0.045^{*}

C10	$0.0903(3)$	$0.8435(2)$	$0.84417(9)$	$0.0380(4)$
H10A	0.1524	0.8986	0.8823	0.046^{*}
H10B	-0.0018	0.9306	0.8274	0.046^{*}
C11	$0.2330(3)$	$0.8039(2)$	$0.79098(8)$	$0.0340(4)$
H11A	0.1691	0.7598	0.7514	0.041^{*}
H11B	0.2986	0.9165	0.7795	0.041^{*}
C12	$0.3715(2)$	$0.6647(2)$	$0.81317(7)$	$0.0258(4)$
C11	$0.52113(6)$	$0.68279(5)$	$0.958904(19)$	$0.03641(13)$
N1	$0.2147(2)$	$0.39391(19)$	$0.79034(7)$	$0.0358(3)$
H1A	0.3079	0.3550	0.7641	0.054^{*}
H1B	0.1502	0.2974	0.8055	0.054^{*}
O1	$0.53524(16)$	$0.67977(16)$	$0.8022(6)$	$0.0351(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0209(9)$	$0.0303(7)$	$0.0211(8)$	$-0.0004(7)$	$-0.0008(7)$	$-0.0029(6)$
C2	$0.0218(9)$	$0.0330(8)$	$0.0197(8)$	$-0.0022(6)$	$0.0041(7)$	$0.0037(6)$
C3	$0.0267(10)$	$0.0373(8)$	$0.0223(8)$	$-0.0045(7)$	$0.0038(7)$	$0.0031(6)$
C4	$0.0300(10)$	$0.0599(11)$	$0.0267(9)$	$-0.0057(8)$	$-0.0052(8)$	$0.0135(8)$
C5	$0.0389(11)$	$0.0555(11)$	$0.0444(11)$	$0.0114(10)$	$0.0014(9)$	$0.0248(9)$
C6	$0.0478(13)$	$0.0346(9)$	$0.0477(12)$	$0.0070(8)$	$0.0074(10)$	$0.0117(8)$
C7	$0.0382(11)$	$0.0326(7)$	$0.0300(9)$	$-0.0014(8)$	$0.0040(8)$	$0.0029(6)$
C8	$0.0232(9)$	$0.0409(9)$	$0.0262(9)$	$-0.0019(7)$	$0.0036(7)$	$-0.0012(7)$
C9	$0.0234(9)$	$0.0546(10)$	$0.0357(9)$	$0.0059(10)$	$0.0011(7)$	$-0.0063(7)$
C10	$0.0345(10)$	$0.0427(9)$	$0.0367(10)$	$0.0112(8)$	$-0.0040(8)$	$-0.0027(8)$
C11	$0.0351(10)$	$0.0375(8)$	$0.0293(8)$	$0.0039(8)$	$-0.0035(8)$	$0.0031(7)$
C12	$0.0279(10)$	$0.0344(8)$	$0.0150(7)$	$0.0001(7)$	$-0.0020(6)$	$-0.0016(6)$
C11	$0.0387(2)$	$0.0428(2)$	$0.0278(2)$	$-0.00777(19)$	$-0.00231(17)$	$-0.00948(14)$
N1	$0.0314(9)$	$0.0453(7)$	$0.0307(8)$	$-0.0022(7)$	$-0.0032(7)$	$-0.0123(6)$
O1	$0.0266(7)$	$0.0477(6)$	$0.0310(6)$	$-0.0013(6)$	$0.0023(5)$	$0.0107(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

C1-N1	1.468 (2)	C8-C9	1.525 (2)
C1-C2	1.537 (2)	C8-H8A	0.9900
C1-C8	1.543 (2)	C8-H8B	0.9900
C1-C12	1.545 (2)	C9-C10	1.517 (3)
C2-C3	1.388 (2)	C9-H9A	0.9900
C2-C7	1.394 (2)	C9-H9B	0.9900
C3-C4	1.389 (3)	C10-C11	1.530 (3)
C3-Cl1	1.7548 (16)	C10-H10A	0.9900
C4-C5	1.380 (3)	C10-H10B	0.9900
C4-H4	0.9500	C11-C12	1.511 (2)
C5-C6	1.375 (3)	C11-H11A	0.9900
C5-H5	0.9500	C11-H11B	0.9900
C6-C7	1.384 (3)	C12-O1	1.212 (2)
C6-H6	0.9500	N1-H1A	0.9100

C7-H7	0.9500
N1-C1-C2	113.13 (13)
N1-C1-C8	106.87 (14)
C2-C1-C8	111.20 (13)
N1-C1-C12	102.84 (13)
C2-C1-C12	110.31 (13)
C8-C1-C12	112.21 (13)
C3-C2-C7	115.98 (16)
C3-C2-C1	124.08 (15)
C7-C2-C1	119.93 (15)
C2-C3-C4	122.46 (16)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 1$	121.54 (13)
C4-C3-Cl1	116.01 (14)
C5-C4-C3	119.62 (18)
C5-C4-H4	120.2
C3-C4-H4	120.2
C6-C5-C4	119.67 (18)
C6-C5-H5	120.2
C4-C5-H5	120.2
C5-C6-C7	119.77 (18)
C5-C6-H6	120.1
C7-C6-H6	120.1
C6-C7-C2	122.49 (18)
C6-C7-H7	118.8
C2-C7-H7	118.8
C9-C8-C1	113.91 (15)
C9-C8-H8A	108.8
C1-C8-H8A	108.8
N1-C1-C2-C3	173.46 (15)
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-66.3 (2)
$\mathrm{C} 12-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	58.89 (19)
N1-C1-C2-C7	-5.7 (2)
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	114.58 (16)
$\mathrm{C} 12-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	-120.26 (15)
C7-C2-C3-C4	-0.1 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-179.30 (15)
C7-C2-C3-Cl1	179.79 (12)
C1-C2-C3-Cl1	0.6 (2)
C2-C3-C4-C5	0.7 (3)
C11-C3-C4-C5	-179.21 (14)
C3-C4-C5-C6	-0.7 (3)
C4-C5-C6-C7	0.2 (3)
C5-C6-C7-C2	0.4 (3)
C3-C2-C7-C6	-0.4 (2)

N1-H1B	0.9100
C9-C8-H8B	108.8
C1-C8-H8B	108.8
H8A-C8-H8B	107.7
C10-C9-C8	110.82 (15)
C10-C9-H9A	109.5
C8-C9-H9A	109.5
C10-C9-H9B	109.5
C8-C9-H9B	109.5
H9A-C9-H9B	108.1
C9-C10-C11	110.58 (15)
C9-C10-H10A	109.5
C11-C10-H10A	109.5
C9-C10-H10B	109.5
C11-C10-H10B	109.5
H10A-C10-H10B	108.1
C12-C11-C10	111.48 (14)
C12-C11-H11A	109.3
C10-C11-H11A	109.3
C12-C11-H11B	109.3
C10-C11-H11B	109.3
H11A-C11-H11B	108.0
O1-C12-C11	122.06 (16)
$\mathrm{O} 1-\mathrm{C} 12-\mathrm{C} 1$	121.14 (16)
C11-C12-C1	116.62 (15)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.3
C1-N1-H1B	109.2
H1A-N1-H1B	109.5
C1-C2-C7-C6	178.79 (17)
N1-C1-C8-C9	-68.43 (18)
C2-C1-C8-C9	167.66 (14)
C12-C1-C8-C9	43.57 (19)
C1-C8-C9-C10	-54.5 (2)
C8-C9-C10-C11	60.3 (2)
C9-C10-C11-C12	-56.4 (2)
C10-C11-C12-O1	-137.39 (18)
C10-C11-C12-C1	47.45 (19)
N1-C1-C12-O1	-101.44 (18)
C2-C1-C12-O1	19.5 (2)
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 12-\mathrm{O} 1$	144.07 (16)
N1-C1-C12-C11	73.77 (17)
C2-C1-C12-C11	-165.31 (14)
C8-C1-C12-C11	-40.72 (19)

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.91	2.20	$3.066(2)$	160

Symmetry code: (i) $-x+1, y-1 / 2,-z+3 / 2$.

