Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-Hydroxyindan-1-one

Kew-Yu Chen,* Tzu-Chien Fang and Ming-Jen Chang

Department of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
Correspondence e-mail: kyuchen@fcu.edu.tw
Received 16 March 2011; accepted 24 March 2011
Key indicators: single-crystal X-ray study; $T=297 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.037 ; w R$ factor $=0.081$; data-to-parameter ratio $=11.8$.

In the title compound (5 HIN), $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$, is perfectly planar as all atoms, except the H atoms of both CH_{2} groups, lie on a crystallographic mirror plane. In the crystal, molecules are linked by strong intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming an infinite chain along [100], generating a $C(8)$ motif.

Related literature

For the spectroscopy of the title compound, see: Magnusson et al. (1964). For the synthetic and biological applications on indanones, see: Cai et al. (2005); De Paulis et al. (1981); Howbert \& Crowell (1990); Kwiecien et al. (1991). For the preparation, see: Danishefsky et al. (1979). For related structures, see: Chen et al. (2011); Li et al. (2007); Saeed \& Bolte (2007). For graph-set theory, see: Bernstein et al. (1995).

Experimental

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$
$M_{r}=148.15$
Orthorhombic, Pnma
$a=13.9126$ (7) \AA
$b=6.7332$ (4) \AA
$c=7.5368$ (3) A
$V=706.02(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
$0.39 \times 0.30 \times 0.25 \mathrm{~mm}$

Data collection

Bruker SMART CCD detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.991, T_{\text {max }}=1.000$
2023 measured reflections 920 independent reflections 605 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.081$ independent and constrained
$S=1.03$
920 reflections
78 parameters
refinement
$\Delta \rho_{\max }=0.21 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.98(2)$	$1.69(2)$	$2.6618(19)$	$173(2)$
Symmetry code: (i) $x-\frac{1}{2}, y,-z+\frac{3}{2}$.				

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Financial support from the National Science Council of the Republic of China is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2345).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cai, X., Wu, K. \& Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479-482.
Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. \& Chang, M.-J. (2011). Acta Cryst. E67, 0927.
Danishefsky, S., Harayama, T. \& Singh, R. K. (1979). J. Am. Chem. Soc. 101, 7008-7012.
De Paulis, T., Betts, C. R., Smith, H. E., Mobley, P. L., Marnier, D. H. \& Sulser, F. (1981). J. Med. Chem. 24, 1021-1024.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Howbert, J. J. \& Crowell, T. A. (1990). Synth. Commun. 20, 3193-3200.
Kwiecien, H., Jalowiczor, R., Bogdal, M., Krzywosinski, L. \& Przemyk, B. (1991). Pol. J. Chem. 65, 2057-2160.

Li, Z., Xu, J.-H., Rosli, M. M. \& Fun, H.-K. (2007). Acta Cryst. E63, 03435.
Magnusson, L. B., Craig, C. A. \& Postmus, C. Jr (1964). J. Am. Chem. Soc. 86, 3958-3961.
Saeed, A. \& Bolte, M. (2007). Acta Cryst. E63, o2757.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o992 [doi:10.1107/S1600536811010956]

5-Hydroxyindan-1-one

Kew-Yu Chen, Tzu-Chien Fang and Ming-Jen Chang

S1. Comment

Acid strengths of 5- and 7-hydroxyindan-1-one have been investigated by UV-vis and ${ }^{1} \mathrm{H}$ NMR measurements (Magnusson et al., 1964). In addition, 1-indanones were important precursors in the regiospecific synthesis of 2-fluoro-1naphthols (Cai et al., 2005). 5-Chloro-1-indanone was used to synthesize important biomedical compounds as anticonvulsants (Kwiecien et al., 1991), and anticholinergics (De Paulis et al., 1981), showing great activity against solid tumours (Howbert et al., 1990).
The ORTEP diagram of the title compound (5 HIN) is shown in Figure 1. The complete molecule (exceptions: H2B and H3A) is perfectly planar, which is slightly different from those of previous studies on other 1-indanone derivatives. (Chen, et al., 2011; Li, et al., 2007; Saeed et al., 2007). In the crystal (Figure 2), the molecules are linked by strong intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (1.69 (2) \AA of $\mathrm{O} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 1$ distance and $173(2)^{\circ}$ of $\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}-\mathrm{O} 1$, Table 1) to form an infinite one-dimensional chain along $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$, generating a $C(8)$ motif (Bernstein et al., 1995).

S2. Experimental

5-Hydroxyindan-1-one was purchased from Sigma-Aldrich ($>95 \%$ purity) and used as received without further purification. Yellow needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of three weeks by slow evaporation from a ethyl acetate solution.

S3. Refinement

H atoms bonded to O and C atoms were located in a difference electron density map. The hydroxy H atom and the $\mathrm{C}_{\mathrm{sp} 3} \mathrm{H}$ atoms were freely refined, and the $\mathrm{C}_{\text {sp } 2} \mathrm{H}$ atoms repositioned geometrically and refined using a riding model, $[\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Figure 1
The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Figure 2
A section of the crystal packing of the title compound, viewed along the b axis. For clarity, hydrogen atoms not involved in hydrogen bonding have been omitted.

5-Hydroxyindan-1-one

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$
$M_{r}=148.15$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=13.9126$ (7) \AA
$b=6.7332$ (4) \AA
$c=7.5368(3) \AA$

$$
\begin{aligned}
& V=706.02(6) \AA^{3} \\
& Z=4 \\
& F(000)=312 \\
& D_{\mathrm{x}}=1.394 \mathrm{Mg} \mathrm{~m} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 962 \text { reflections } \\
& \theta=2.9-29.1^{\circ}
\end{aligned}
$$

$\mu=0.10 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$

Data collection

Bruker SMART CCD detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min }=0.991, T_{\max }=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.081$
$S=1.03$
920 reflections
78 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Parallelepiped, yellow
$0.39 \times 0.30 \times 0.25 \mathrm{~mm}$

2023 measured reflections
920 independent reflections
605 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=29.2^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-19 \rightarrow 19$
$k=-9 \rightarrow 9$
$l=-10 \rightarrow 10$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.040 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
O1	$0.80931(8)$	0.2500	$0.98929(18)$	$0.0531(4)$
O2	$0.34842(9)$	0.2500	$0.85642(18)$	$0.0454(4)$
H2A	$0.3393(16)$	0.2500	$0.728(3)$	$0.078(8)^{*}$
C1	$0.73075(12)$	0.2500	$1.0631(2)$	$0.0342(4)$
C2	$0.71859(13)$	0.2500	$1.2617(2)$	$0.0380(5)$
H2B	$0.7500(10)$	$0.1348(15)$	$1.3102(18)$	$0.058(4)^{*}$
C3	$0.61036(12)$	0.2500	$1.2963(2)$	$0.0354(4)$
H3A	$0.5894(8)$	$0.1337(17)$	$1.3668(17)$	$0.050(4)^{*}$
C4	$0.56635(11)$	0.2500	$1.1138(2)$	$0.0283(4)$
C5	$0.63619(10)$	0.2500	$0.9813(2)$	$0.0284(4)$
C6	$0.60937(11)$	0.2500	$0.8033(2)$	$0.0336(4)$
H6A	0.6558	0.2500	0.7146	0.040^{*}
C7	$0.51359(12)$	0.2500	$0.7604(2)$	$0.0343(4)$

H7A	0.4949	0.2500	0.6419	0.041^{*}
C8	$0.44362(12)$	0.2500	$0.8945(2)$	$0.0311(4)$
C9	$0.47000(12)$	0.2500	$1.0715(2)$	$0.0320(4)$
H9A	0.4236	0.2500	1.1603	0.038^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0222(7)$	$0.0992(10)$	$0.0379(7)$	0.000	$0.0057(7)$	0.000
O2	$0.0228(7)$	$0.0766(9)$	$0.0369(8)$	0.000	$-0.0037(6)$	0.000
C1	$0.0255(10)$	$0.0456(10)$	$0.0315(10)$	0.000	$0.0013(8)$	0.000
C2	$0.0293(11)$	$0.0537(12)$	$0.0311(9)$	0.000	$-0.0035(8)$	0.000
C3	$0.0277(10)$	$0.0528(11)$	$0.0256(9)$	0.000	$0.0005(8)$	0.000
C4	$0.0254(9)$	$0.0337(9)$	$0.0256(8)$	0.000	$0.0004(7)$	0.000
C5	$0.0201(9)$	$0.0386(9)$	$0.0264(9)$	0.000	$0.0012(7)$	0.000
C6	$0.0240(10)$	$0.0502(10)$	$0.0264(8)$	0.000	$0.0069(8)$	0.000
C7	$0.0300(10)$	$0.0482(10)$	$0.0247(8)$	0.000	$-0.0014(8)$	0.000
C8	$0.0203(9)$	$0.0391(9)$	$0.0338(9)$	0.000	$-0.0009(8)$	0.000
C9	$0.0239(10)$	$0.0443(9)$	$0.0278(9)$	0.000	$0.0054(7)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C1	1.2264 (19)	C4-C5	1.393 (2)
$\mathrm{O} 2-\mathrm{C} 8$	1.355 (2)	C4-C9	1.378 (2)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	0.97 (3)	C5-C6	1.393 (2)
C1-C5	1.453 (2)	C6-C7	1.371 (2)
C1-C2	1.506 (2)	C6-H6A	0.9300
C2-C3	1.528 (3)	C7-C8	1.403 (2)
C2-H2B	0.963 (11)	C7-H7A	0.9300
C3-C4	1.506 (2)	C8-C9	1.384 (2)
C3-H3A	0.990 (11)	C9—H9A	0.9300
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	109.8 (14)	C4-C5-C1	109.13 (14)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 5$	127.92 (15)	C6-C5-C1	130.64 (15)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	123.42 (16)	C7-C6-C5	119.18 (15)
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2$	108.65 (15)	C7-C6-H6A	120.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	106.29 (15)	C5-C6-H6A	120.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.1 (8)	C6-C7-C8	120.28 (16)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	112.5 (8)	C6-C7-H7A	119.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	104.15 (14)	C8-C7-H7A	119.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	111.7 (7)	O2-C8-C9	117.62 (16)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	112.4 (7)	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7$	121.68 (15)
C5-C4-C9	120.87 (15)	C9-C8-C7	120.70 (16)
C5-C4-C3	111.78 (14)	C8-C9-C4	118.74 (16)
C9-C4-C3	127.35 (15)	C8-C9-H9A	120.6
C4-C5-C6	120.23 (14)	C4-C9-H9A	120.6

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.98(2)$	$1.69(2)$	$2.6618(19)$	$173(2)$

Symmetry code: (i) $x-1 / 2, y,-z+3 / 2$.

