Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 2,6-Di-tert-butyl-4-(3-chloro-2-hydroxypropyl)phenol

### Ayten R. Asgarova,<sup>a</sup> Abel M. Maharramov,<sup>a</sup> Ali N. Khalilov,<sup>a</sup> Atash V. Gurbanov<sup>a</sup> and Seik Weng Ng<sup>b\*</sup>

<sup>a</sup>Department of Organic Chemistry, Baku State University, Baku, Azerbaijan, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 25 February 2011; accepted 7 March 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.049; wR factor = 0.131; data-to-parameter ratio = 19.8.

In the title 2-propanol derivative, C<sub>17</sub>H<sub>27</sub>ClO<sub>2</sub>, the two tertbutyl groups both have one methyl C atom lying in the plane of the aromatic ring. In the crystal, the phenol group forms a hydrogen bond to the hydroxy O atom belonging to the alkyl substituent of an adjacent molecule, forming a chain along the ac diagonal. The Cl atom is disordered over two positions in a 0.73 (4):0.27 (4) ratio.

### **Related literature**

For the synthesis: see: Krysin et al. (2010).



### **Experimental**

#### Crystal data

|                                | II. 1660.05 (14) 13               |
|--------------------------------|-----------------------------------|
| $C_{17}H_{27}ClO_2$            | $V = 1662.05 (14) \text{ A}^3$    |
| $M_r = 298.84$                 | Z = 4                             |
| Monoclinic, $P2_1/c$           | Mo $K\alpha$ radiation            |
| a = 5.9536 (3) Å               | $\mu = 0.23 \text{ mm}^{-1}$      |
| b = 19.4819 (9)  Å             | $T = 100 { m K}$                  |
| c = 14.4310 (7) Å              | $0.30 \times 0.30 \times 0.30$ mm |
| $\beta = 96.798 \ (1)^{\circ}$ |                                   |

### Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.934, \ T_{\max} = 0.934$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.049$ | 1 restraint                                               |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.131$               | H-atom parameters constrained                             |
| S = 1.12                        | $\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 3819 reflections                | $\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$  |
| 193 parameters                  |                                                           |

17600 measured reflections

 $D \cdot \cdot \cdot A$ 

 $D - H \cdot \cdot \cdot A$ 

 $R_{\rm int} = 0.035$ 

3819 independent reflections

3374 reflections with  $I > 2\sigma(I)$ 

### Table 1

 $D - H \cdot \cdot \cdot A$ 

Hydrogen-bond geometry (Å, °).

D-H

 $O2-H2\cdots O1^i$ 0.84 2.31 2.956 (2) 134

 $H \cdot \cdot \cdot A$ 

Symmetry code: (i)  $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$ .

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Baku State University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5167).

### References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Krysin, A. P., Tolstikova, T. G., Bryzgalov, A. O., Shul'ts, E. E. & Shakirov,
- M. M. (2010). Russ. Patent RU 2396248 C1. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

Acta Cryst. (2011). E67, o852 [doi:10.1107/S1600536811008592]

## 2,6-Di-tert-butyl-4-(3-chloro-2-hydroxypropyl)phenol

## Ayten R. Asgarova, Abel M. Maharramov, Ali N. Khalilov, Atash V. Gurbanov and Seik Weng Ng

### S1. Comment

The chlorohydrin unit (*i.e.*, an alkyl chain having a chlorine atom and a hydroxy group on adjacent carbons) is an important unit in compounds used for the treatment of protozoal and bacterial infections; and chlorohydrin-based compounds are important intermediates in the synthesis of some HIV protease inhibitors. The di-*tert*-butyl phenol unit is also an important compound (Scheme I).

The compound can be further transformed; in fact, replacing the chlorine atom by a diisopropylamino group furnishes a 2:1 co-crystal with succinic acid that has been patented for its antiarrhythmic and antihypertensive activities (Krysin *et al.*, 2010).

The two *tert*-butyl groups of  $C_{17}H_{27}CIO_2$  both have one methyl C lying in the plane of the aromatic ring (Fig. 1). The phenolic group forms a hydrogen bond to the hydroxy O atom belonging to the alkyl substituent of an adjacent molecule to form a chain along the *a*–*c* diagonal of the monoclinic unit cell (Fig. 2).

### **S2.** Experimental

The compound was prepared by using a procedure reported in the patent literature (Krysin *et al.*, 2010), and colorless crystals was obtained upon recrystallization from ethanol.

### **S3. Refinement**

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.97 Å; U(H) 1.2 to 1.5U(C)] and were included in the refinement in the riding model approximation. The hydroxy H-atoms were similarly treated (O–H 0.84 Å) and their temperature factors tied by a factor of 1.5.

The chlorine atom is disordered over two positions; the C–Cl pair of distances were restrained to within Å of each other. The disordered refined to a 73 (4): 27 ratio. The thermal ellipsoid of the minor component is somewhat elongated; however, no restraints were imposed to render it to be less elongated.



## Figure 1

Thermal ellipsoid plot (Barbour, 2001) of  $C_{17}H_{27}CIO_2$  at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the chlorine atom is not shown.



## Figure 2

Hydrogen-bonded chain motif.

## 2,6-Di-tert-butyl-4-(3-chloro-2-hydroxypropyl)phenol

| Crystal data                             |                                                                           |
|------------------------------------------|---------------------------------------------------------------------------|
| $C_{17}H_{27}ClO_2$                      | F(000) = 648                                                              |
| $M_{\rm r} = 298.84$                     | $D_{\rm x} = 1.194 {\rm Mg m}^{-3}$                                       |
| Monoclinic $P2_1/c$                      | Mo Ka radiation $\lambda = 0.71073$ Å                                     |
| Hall symbol: -P 2ybc                     | Cell parameters from 6280 reflections                                     |
| a = 5.9536 (3)  Å                        | $\theta = 25-283^{\circ}$                                                 |
| h = 194819(9)  Å                         | $\mu = 0.23 \text{ mm}^{-1}$                                              |
| $c = 14\ 4310\ (7)\ \text{\AA}$          | T = 100  K                                                                |
| $\beta = 96.798 (1)^{\circ}$             | Prism colorless                                                           |
| $V = 1662.05.(14) Å^3$                   | $0.30 \times 0.30 \times 0.30$ mm                                         |
| Z = 4                                    | 0.50 ** 0.50 ** 0.50 mm                                                   |
| Data collection                          |                                                                           |
| Bruker APEXII                            | 17600 measured reflections                                                |
| diffractometer                           | 3819 independent reflections                                              |
| Radiation source: fine-focus sealed tube | 3374 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                   | $R_{\rm int} = 0.035$                                                     |
| $\varphi$ and $\omega$ scans             | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ |
| Absorption correction: multi-scan        | $h = -7 \rightarrow 7$                                                    |
| (SADABS: Sheldrick, 1996)                | $k = -25 \rightarrow 25$                                                  |
| $T_{\min} = 0.934, T_{\max} = 0.934$     | $l = -18 \rightarrow 18$                                                  |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.049$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.131$                               | neighbouring sites                                         |
| S = 1.12                                        | H-atom parameters constrained                              |
| 3819 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.057P)^2 + 1.2061P]$           |
| 193 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 1 restraint                                     | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.59 \ { m e} \ { m \AA}^{-3}$      |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$ |
|                                                 |                                                            |

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(A^2)$ | 2) |
|-----------------------------------------------------------------------------------------------------|----|
|-----------------------------------------------------------------------------------------------------|----|

|      | <i>x</i>   | у            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|------------|--------------|--------------|-----------------------------|-----------|
| Cl1  | 1.2917 (5) | 0.47575 (14) | 0.5791 (3)   | 0.0266 (6)                  | 0.73 (4)  |
| C11′ | 1.311 (2)  | 0.4728 (6)   | 0.5926 (16)  | 0.048 (2)                   | 0.27 (4)  |
| 01   | 1.1454 (2) | 0.31683 (6)  | 0.56395 (9)  | 0.0212 (3)                  |           |
| H1   | 1.2420     | 0.3195       | 0.5261       | 0.032*                      |           |
| O2   | 0.3696 (2) | 0.18279 (6)  | 0.25797 (9)  | 0.0199 (3)                  |           |
| H2   | 0.3138     | 0.2071       | 0.2130       | 0.030*                      |           |
| C1   | 1.0528 (3) | 0.43104 (10) | 0.61378 (14) | 0.0235 (4)                  |           |
| H1A  | 1.0903     | 0.4130       | 0.6779       | 0.028*                      | 0.73 (4)  |
| H1B  | 0.9240     | 0.4631       | 0.6139       | 0.028*                      | 0.73 (4)  |
| H1'A | 1.0701     | 0.4134       | 0.6786       | 0.028*                      | 0.27 (4)  |
| H1′B | 0.9292     | 0.4653       | 0.6082       | 0.028*                      | 0.27 (4)  |
| C2   | 0.9867 (3) | 0.37230 (9)  | 0.54759 (13) | 0.0202 (4)                  |           |
| H2A  | 0.9834     | 0.3886       | 0.4817       | 0.024*                      |           |
| C3   | 0.7524 (3) | 0.34483 (9)  | 0.56317 (12) | 0.0190 (4)                  |           |
| H3A  | 0.7664     | 0.3169       | 0.6209       | 0.023*                      |           |
| H3B  | 0.6514     | 0.3840       | 0.5721       | 0.023*                      |           |
| C4   | 0.6473 (3) | 0.30175 (9)  | 0.48281 (12) | 0.0159 (3)                  |           |
| C5   | 0.5064 (3) | 0.33223 (9)  | 0.41043 (12) | 0.0159 (3)                  |           |
| H5   | 0.4776     | 0.3801       | 0.4134       | 0.019*                      |           |
| C6   | 0.4059 (3) | 0.29514 (8)  | 0.33367 (11) | 0.0144 (3)                  |           |
| C7   | 0.4559 (3) | 0.22451 (9)  | 0.33061 (11) | 0.0146 (3)                  |           |
| C8   | 0.5969 (3) | 0.19141 (8)  | 0.40264 (11) | 0.0145 (3)                  |           |
| C9   | 0.6889 (3) | 0.23165 (9)  | 0.47749 (12) | 0.0155 (3)                  |           |
| H9   | 0.7837     | 0.2104       | 0.5268       | 0.019*                      |           |
| C10  | 0.2464 (3) | 0.33124 (9)  | 0.25678 (12) | 0.0169 (3)                  |           |
| C11  | 0.2100 (3) | 0.40719 (9)  | 0.27950 (14) | 0.0244 (4)                  |           |
| H11A | 0.3558     | 0.4311       | 0.2862       | 0.037*                      |           |
| H11B | 0.1420     | 0.4107       | 0.3379       | 0.037*                      |           |
| H11C | 0.1089     | 0.4282       | 0.2289       | 0.037*                      |           |
| C12  | 0.3501 (3) | 0.33046 (10) | 0.16400 (13) | 0.0225 (4)                  |           |
| H12A | 0.4996     | 0.3522       | 0.1729       | 0.034*                      |           |
| H12B | 0.2516     | 0.3558       | 0.1166       | 0.034*                      |           |
| H12C | 0.3653     | 0.2829       | 0.1434       | 0.034*                      |           |
| C13  | 0.0101 (3) | 0.29757 (10) | 0.24768 (13) | 0.0211 (4)                  |           |
|      |            |              |              |                             |           |

| H13A | -0.0494    | 0.2991      | 0.3081       | 0.032*     |  |
|------|------------|-------------|--------------|------------|--|
| H13B | 0.0218     | 0.2497      | 0.2279       | 0.032*     |  |
| H13C | -0.0922    | 0.3226      | 0.2013       | 0.032*     |  |
| C14  | 0.6512 (3) | 0.11431 (8) | 0.39914 (12) | 0.0158 (3) |  |
| C15  | 0.8079 (3) | 0.09121 (9) | 0.48583 (13) | 0.0215 (4) |  |
| H15A | 0.9483     | 0.1179      | 0.4907       | 0.032*     |  |
| H15B | 0.8430     | 0.0423      | 0.4803       | 0.032*     |  |
| H15C | 0.7324     | 0.0986      | 0.5417       | 0.032*     |  |
| C16  | 0.4356 (3) | 0.07064 (9) | 0.39586 (14) | 0.0234 (4) |  |
| H16A | 0.3307     | 0.0835      | 0.3411       | 0.035*     |  |
| H16B | 0.3637     | 0.0785      | 0.4526       | 0.035*     |  |
| H16C | 0.4749     | 0.0220      | 0.3917       | 0.035*     |  |
| C17  | 0.7752 (3) | 0.09881 (9) | 0.31401 (13) | 0.0216 (4) |  |
| H17A | 0.6804     | 0.1128      | 0.2570       | 0.032*     |  |
| H17B | 0.8062     | 0.0495      | 0.3114       | 0.032*     |  |
| H17C | 0.9182     | 0.1242      | 0.3193       | 0.032*     |  |
|      |            |             |              |            |  |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$   | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|------|-------------|------------|-------------|-------------|-------------|-------------|
| C11  | 0.0251 (8)  | 0.0174 (9) | 0.0380 (11) | -0.0002 (7) | 0.0068 (6)  | 0.0062 (11) |
| Cl1′ | 0.022 (2)   | 0.042 (4)  | 0.078 (5)   | -0.016 (2)  | 0.001 (3)   | -0.034 (3)  |
| 01   | 0.0165 (6)  | 0.0191 (6) | 0.0277 (7)  | 0.0035 (5)  | 0.0020 (5)  | -0.0010 (5) |
| O2   | 0.0264 (7)  | 0.0159 (6) | 0.0154 (6)  | 0.0009 (5)  | -0.0061 (5) | -0.0014 (5) |
| C1   | 0.0196 (9)  | 0.0227 (9) | 0.0280 (10) | -0.0023 (7) | 0.0022 (7)  | -0.0025 (7) |
| C2   | 0.0180 (8)  | 0.0182 (8) | 0.0238 (9)  | 0.0019 (7)  | -0.0002(7)  | -0.0011 (7) |
| C3   | 0.0171 (8)  | 0.0202 (8) | 0.0186 (8)  | 0.0021 (7)  | -0.0020 (6) | -0.0044 (7) |
| C4   | 0.0122 (7)  | 0.0189 (8) | 0.0167 (8)  | -0.0006 (6) | 0.0022 (6)  | -0.0027 (6) |
| C5   | 0.0154 (8)  | 0.0137 (7) | 0.0189 (8)  | 0.0005 (6)  | 0.0029 (6)  | -0.0001 (6) |
| C6   | 0.0128 (7)  | 0.0158 (8) | 0.0145 (8)  | 0.0002 (6)  | 0.0017 (6)  | 0.0022 (6)  |
| C7   | 0.0139 (7)  | 0.0165 (8) | 0.0133 (8)  | -0.0011 (6) | 0.0015 (6)  | -0.0016 (6) |
| C8   | 0.0132 (7)  | 0.0146 (8) | 0.0160 (8)  | 0.0012 (6)  | 0.0030 (6)  | 0.0009 (6)  |
| C9   | 0.0132 (7)  | 0.0189 (8) | 0.0141 (8)  | 0.0013 (6)  | 0.0008 (6)  | 0.0012 (6)  |
| C10  | 0.0157 (8)  | 0.0163 (8) | 0.0180 (8)  | 0.0003 (6)  | -0.0011 (6) | 0.0022 (6)  |
| C11  | 0.0277 (10) | 0.0159 (8) | 0.0276 (10) | 0.0041 (7)  | -0.0051 (8) | 0.0024 (7)  |
| C12  | 0.0237 (9)  | 0.0257 (9) | 0.0176 (9)  | -0.0010 (7) | 0.0007 (7)  | 0.0059 (7)  |
| C13  | 0.0142 (8)  | 0.0238 (9) | 0.0242 (9)  | 0.0003 (7)  | -0.0018 (7) | 0.0020 (7)  |
| C14  | 0.0171 (8)  | 0.0138 (8) | 0.0162 (8)  | 0.0014 (6)  | 0.0006 (6)  | 0.0013 (6)  |
| C15  | 0.0228 (9)  | 0.0182 (8) | 0.0222 (9)  | 0.0051 (7)  | -0.0023 (7) | 0.0027 (7)  |
| C16  | 0.0205 (9)  | 0.0191 (9) | 0.0298 (10) | -0.0025 (7) | 0.0001 (7)  | 0.0053 (7)  |
| C17  | 0.0256 (9)  | 0.0173 (8) | 0.0226 (9)  | 0.0044 (7)  | 0.0058 (7)  | -0.0006 (7) |

## Geometric parameters (Å, °)

| Cl1—C1  | 1.788 (3) | С9—Н9   | 0.9500    |  |
|---------|-----------|---------|-----------|--|
| Cl1′—C1 | 1.795 (6) | C10—C11 | 1.537 (2) |  |
| O1—C2   | 1.437 (2) | C10—C12 | 1.539 (3) |  |
| 01—H1   | 0.8400    | C10—C13 | 1.544 (2) |  |
|         |           |         |           |  |

| O2—C7                       | 1.377 (2)   | C11—H11A                                             | 0.9800                   |
|-----------------------------|-------------|------------------------------------------------------|--------------------------|
| O2—H2                       | 0.8400      | C11—H11B                                             | 0.9800                   |
| C1—C2                       | 1.513 (3)   | C11—H11C                                             | 0.9800                   |
| C1—H1A                      | 0.9900      | C12—H12A                                             | 0.9800                   |
| C1—H1B                      | 0.9900      | C12—H12B                                             | 0.9800                   |
| С1—Н1′А                     | 0.9900      | C12—H12C                                             | 0.9800                   |
| C1—H1′B                     | 0 9900      | C13—H13A                                             | 0.9800                   |
| $C^2 - C^3$                 | 1 535 (2)   | C13—H13B                                             | 0.9800                   |
| $C_2 H_2 \Delta$            | 1,0000      | C13_H13C                                             | 0.9800                   |
| $C_2 = 112/X$               | 1.506 (2)   |                                                      | 1.536(2)                 |
| $C_{2}$ $H_{2}^{A}$         | 0.0000      | C14 - C16                                            | 1.536(2)                 |
| $C_2 = H_2 D$               | 0.9900      | C14 - C10                                            | 1.530(2)                 |
| C3—H3B                      | 0.9900      |                                                      | 1.537 (2)                |
| C4—C9                       | 1.392 (2)   | CI5—HISA                                             | 0.9800                   |
| C4—C5                       | 1.393 (2)   | СІ5—НІ5В                                             | 0.9800                   |
| C5—C6                       | 1.396 (2)   | C15—H15C                                             | 0.9800                   |
| С5—Н5                       | 0.9500      | C16—H16A                                             | 0.9800                   |
| C6—C7                       | 1.410 (2)   | C16—H16B                                             | 0.9800                   |
| C6—C10                      | 1.542 (2)   | C16—H16C                                             | 0.9800                   |
| C7—C8                       | 1.412 (2)   | С17—Н17А                                             | 0.9800                   |
| C8—C9                       | 1.393 (2)   | С17—Н17В                                             | 0.9800                   |
| C8—C14                      | 1.539 (2)   | C17—H17C                                             | 0.9800                   |
|                             |             |                                                      |                          |
| C2—O1—H1                    | 109.5       | C11—C10—C6                                           | 112.10(14)               |
| С7—О2—Н2                    | 109.5       | C12—C10—C6                                           | 110 19 (14)              |
| $C_{2}$ $C_{1}$ $C_{1}$     | 110 38 (18) | $C_{11} - C_{10} - C_{13}$                           | 106.08(14)               |
| $C_2 = C_1 = C_{11}$        | 113 5 (5)   | $C_{12}$ $C_{10}$ $C_{13}$                           | 112 16 (15)              |
| $C_2$ $C_1$ $H_1$           | 109.6       | C6-C10-C13                                           | 112.10(13)<br>110.17(14) |
|                             | 109.6       | $C_{10}$ $C_{11}$ $H_{11A}$                          | 100.5                    |
| $C_{111}$ $C_{12}$ $H_{1A}$ | 102.5       | $C_{10}$ $C_{11}$ $H_{11}$ $H_{11}$                  | 109.5                    |
| CII - CI - HIA              | 102.5       |                                                      | 109.5                    |
| C2—CI—HIB                   | 109.6       | HIIA—CII—HIIB                                        | 109.5                    |
| CII—CI—HIB                  | 109.6       | CIO-CII-HIIC                                         | 109.5                    |
| CII'—CI—HIB                 | 113.1       | HIIA—CII—HIIC                                        | 109.5                    |
| H1A—C1—H1B                  | 108.1       | H11B—C11—H11C                                        | 109.5                    |
| C2—C1—H1'A                  | 108.9       | C10—C12—H12A                                         | 109.5                    |
| Cl1—C1—H1'A                 | 115.9       | C10-C12-H12B                                         | 109.5                    |
| Cl1′—C1—H1′A                | 108.9       | H12A—C12—H12B                                        | 109.5                    |
| C2—C1—H1′B                  | 108.9       | C10—C12—H12C                                         | 109.5                    |
| Cl1'—C1—H1'B                | 108.9       | H12A—C12—H12C                                        | 109.5                    |
| H1'A—C1—H1'B                | 107.7       | H12B—C12—H12C                                        | 109.5                    |
| O1—C2—C1                    | 110.37 (15) | C10-C13-H13A                                         | 109.5                    |
| O1—C2—C3                    | 107.78 (14) | C10—C13—H13B                                         | 109.5                    |
| C1—C2—C3                    | 110.14 (15) | H13A—C13—H13B                                        | 109.5                    |
| 01-C2-H2A                   | 109.5       | C10-C13-H13C                                         | 109.5                    |
| C1 - C2 - H2A               | 109.5       | $H_{13} = C_{13} = H_{13} C_{13}$                    | 109.5                    |
| $C_1 C_2 H_{2\Lambda}$      | 109.5       | H13R C13 H12C                                        | 109.5                    |
| $C_{3}$                     | 109.5       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 107.5                    |
| $C_4 = C_2 = U_2^{-1}$      | 112.34 (14) | $C_{17} = C_{14} = C_{10}$                           | 110.21(13)<br>100.02(12) |
| C4 - C3 - H3A               | 109.1       | $C_1/-C_14-C_8$                                      | 109.93 (13)              |
| C2—C3—H3A                   | 109.1       | C16—C14—C8                                           | 111.33 (14)              |

| 109.1       | C17—C14—C15                                                                                                                                                                                                                                                                                              | 106.87 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 109.1       | C16—C14—C15                                                                                                                                                                                                                                                                                              | 106.72 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 107.8       | C8—C14—C15                                                                                                                                                                                                                                                                                               | 111.65 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 118.18 (15) | C14—C15—H15A                                                                                                                                                                                                                                                                                             | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 121.94 (15) | C14—C15—H15B                                                                                                                                                                                                                                                                                             | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 119.88 (15) | H15A—C15—H15B                                                                                                                                                                                                                                                                                            | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 122.53 (15) | C14—C15—H15C                                                                                                                                                                                                                                                                                             | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 118.7       | H15A—C15—H15C                                                                                                                                                                                                                                                                                            | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 118.7       | H15B—C15—H15C                                                                                                                                                                                                                                                                                            | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 117.23 (15) | C14—C16—H16A                                                                                                                                                                                                                                                                                             | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 120.29 (15) | C14—C16—H16B                                                                                                                                                                                                                                                                                             | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 122.48 (15) | H16A—C16—H16B                                                                                                                                                                                                                                                                                            | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 122.59 (15) | C14—C16—H16C                                                                                                                                                                                                                                                                                             | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 115.26 (14) | H16A—C16—H16C                                                                                                                                                                                                                                                                                            | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 122.14 (15) | H16B—C16—H16C                                                                                                                                                                                                                                                                                            | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 117.30 (15) | C14—C17—H17A                                                                                                                                                                                                                                                                                             | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 120.65 (14) | C14—C17—H17B                                                                                                                                                                                                                                                                                             | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 122.04 (15) | H17A—C17—H17B                                                                                                                                                                                                                                                                                            | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 122.60 (15) | C14—C17—H17C                                                                                                                                                                                                                                                                                             | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 118.7       | H17A—C17—H17C                                                                                                                                                                                                                                                                                            | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 118.7       | H17B—C17—H17C                                                                                                                                                                                                                                                                                            | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 106.04 (15) |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | $109.1 \\ 109.1 \\ 107.8 \\ 118.18 (15) \\ 121.94 (15) \\ 122.53 (15) \\ 122.53 (15) \\ 122.53 (15) \\ 122.53 (15) \\ 120.29 (15) \\ 122.48 (15) \\ 122.59 (15) \\ 115.26 (14) \\ 122.14 (15) \\ 117.30 (15) \\ 120.65 (14) \\ 122.04 (15) \\ 122.60 (15) \\ 118.7 \\ 118.7 \\ 118.7 \\ 106.04 (15) \\ $ | 109.1 $C17-C14-C15$ $109.1$ $C16-C14-C15$ $107.8$ $C8-C14-C15$ $118.18 (15)$ $C14-C15-H15A$ $121.94 (15)$ $C14-C15-H15B$ $119.88 (15)$ $H15A-C15-H15B$ $122.53 (15)$ $C14-C15-H15C$ $118.7$ $H15A-C15-H15C$ $118.7$ $H15B-C15-H15C$ $118.7$ $H15B-C15-H15C$ $118.7$ $H15B-C15-H16A$ $120.29 (15)$ $C14-C16-H16B$ $122.48 (15)$ $H16A-C16-H16B$ $122.59 (15)$ $C14-C16-H16C$ $115.26 (14)$ $H16B-C16-H16C$ $117.30 (15)$ $C14-C17-H17B$ $122.04 (15)$ $H17A-C17-H17B$ $122.60 (15)$ $C14-C17-H17C$ $118.7$ $H17A-C17-H17C$ $118.7$ $H17B-C17-H17C$ $118.7$ $H17B-C17-H17C$ $118.7$ $H17B-C17-H17C$ $118.7$ $H17B-C17-H17C$ $118.7$ $H17B-C17-H17C$ $118.7$ $H17B-C17-H17C$ |

## Hydrogen-bond geometry (Å, °)

| D—H···A               | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------------------|------|-------|-----------|-------------------------|
| 02—H2…O1 <sup>i</sup> | 0.84 | 2.31  | 2.956 (2) | 134                     |

Symmetry code: (i) x-1, -y+1/2, z-1/2.