Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 5"-(4-Chlorobenzylidene)-4'-(4-chlorophenyl)-5-fluoro-1',1"-dimethylindoline-3-spiro-2'-pyrrolidine-3'-spiro-3"piperidine-2,4"-dione

#### J. Kalyana Sundar,<sup>a</sup> B. Devi Bala,<sup>b</sup> S. Natarajan,<sup>a</sup> J. Suresh<sup>c</sup> and P. L. Nilantha Lakshman<sup>d</sup>\*

<sup>a</sup>Department of Physics, Madurai Kamaraj University, Madurai 625 021, India, <sup>b</sup>Department of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India, <sup>c</sup>Department of Physics, The Madura College, Madurai 625 011, India, and <sup>d</sup>Department of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka

Correspondence e-mail: plakshmannilantha@ymail.com

Received 7 February 2011; accepted 28 February 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.104; data-to-parameter ratio = 13.1.

The piperidine ring of the title compound,  $C_{30}H_{26}Cl_2FN_3O_2$ , adopts a twisted chair conformation. The pyrrolidine ring has a twisted envelope structure with the N atom at the flap [displaced by 0.592 (3) Å]. The fluorooxindole, chlorophenyl and chlorobenzylidene groups are planar with r.m.s. deviations of 0.0348, 0.0048 and 0.0048 Å, respectively. The structure is stabilized by intermolecular N-H···O hydrogen bonds.

#### **Related literature**

For biological applications of 1,4-dihydropyridine derivatives, see: Jerom & Spencer (1988); Perumal et al. (2001); Hagenbach & Gysin (1952); Mobio et al. (1989); Katritzky & Fan (1990); Ganellin & Spickett (1965); El-Subbagh et al. (2000). For their use as synthetic intermediates in the preparation of various pharmaceuticals, see: Wang & Wuorola (1992). For their ocurrence in natural products such as alkaloids, see: Angle & Breitenbucher (1995).



## organic compounds

4581 independent reflections

intensity decay: none

 $R_{\rm int}=0.020$ 

2891 reflections with  $I > 2\sigma(I)$ 

3 standard reflections every 60 min

## **Experimental**

#### Crystal data

| $V = 2613.3 (14) \text{ Å}^3$             |
|-------------------------------------------|
| Z = 4                                     |
| Mo $K\alpha$ radiation                    |
| $\mu = 0.29 \text{ mm}^{-1}$              |
| T = 293  K                                |
| $0.23 \times 0.21 \times 0.18 \text{ mm}$ |
|                                           |
|                                           |

#### Data collection

Nonius MACH3 diffractometer Absorption correction:  $\psi$  scan (North et al., 1968)  $T_{\min} = 0.936, \ T_{\max} = 0.950$ 5427 measured reflections

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.036$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.104$               | independent and constrained                                |
| S = 1.02                        | refinement                                                 |
| 4581 reflections                | $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 349 parameters                  | $\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

D-N3-

Hydrogen-bond geometry (Å, °).

| $\cdot H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $-H1N \cdots O1^{i}$          | 0.84 (3) | 2.50 (3)                | 3.288 (3)    | 157 (3)                              |
|                               |          |                         |              |                                      |

Symmetry code: (i) x, y - 1, z.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008): molecular graphics: PLATON (Spek, 2009): software used to prepare material for publication: SHELXL97.

JK thanks the UGC for an RFSMS fellowship. SN thanks the CSIR for funding under the Emeritus Scientist Scheme.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2003).

#### References

- Angle, S. R. & Breitenbucher, J. G. (1995). Studies in Natural Products Chemistry; Stereoselective Synthesis, edited by Atta-ur-Rahman, Vol. 16, Part J, pp. 453-502. New York: Elsevier.
- El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands
- Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619-625.
- Hagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184-185.
- Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.
- Jerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. EP 277794.
- Katritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205-3209.
- Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421-427.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148–155. Wang, C.-L. & Wuorola, M. A. (1992). Org. Prep. Proc. Int. 24, 585–621.

## supporting information

Acta Cryst. (2011). E67, o801-o802 [doi:10.1107/S1600536811007550]

## 5''-(4-Chlorobenzylidene)-4'-(4-chlorophenyl)-5-fluoro-1',1''-dimethylindoline-3-spiro-2'-pyrrolidine-3'-spiro-3''-piperidine-2,4''-dione

## J. Kalyana Sundar, B. Devi Bala, S. Natarajan, J. Suresh and P. L. Nilantha Lakshman

#### S1. Comment

In the family of heterocyclic compounds, nitrogen containing heterocycles especially substituted piperidin-4-ones have considerable importance due to their variety of biological properties such as analgesic (Jerom *et al.*, 1988), local anaesthetic (Perumal *et al.*, 2001; Hagenbach & Gysin, 1952), antimicrobial, bactericidal, fungicidal, herbicidal, anticancer, *CNS* stimulant and depressant activities (Mobio *et al.*, 1989; Katritzky & Fan, 1990; Ganellin & Spickett, 1965) and antiviral, antitumour (El-Subbagh *et al.*, 2000). Also they are important synthetic intermediates in the preparation of various pharmaceuticals (Wang & Wuorola, 1992) and widely prevalent in natural products such as alkaloids (Angle & Breitenbucher, 1995). Hence, the present X-ray crystallographic study of the title compound has been carried out to determine the conformation of the system.

The piperidine ring of the title compound,  $C_{30}H_{26}N_3O_2Cl_2F$ , adopts a twisted chair conformation (C8/C9/C10/C11/N1/C12). Pyrrolidine ring has the twisted envelope structure with N atom at the flap (0.592 (3)Å from the mean plane formed by the atoms C10/C14/C23/C24) and this orientation may be influenced by the intramolecular C23—H23A···O2 hydrogen bond (Table 1).

Fluorooxindole, the chlorophenyl and chlorophenylmethylidine groups are planar as confirmed by thevalues of the r.m.s. deviation (0.0348 Å, 0.0048Å and 0.0048 Å), respectively, from the mean planes of the above groups. Flurooxindole is inclined with the plane of chlorophenyl by 33.99 (2)° and 55.56 (2)° with the mean plane of chlorophenylmethilidine. The sum of the bond angles around N1 atom (334.22°) of the piperidine ring in the molecule is in accordance with the *sp*<sup>2</sup> hybridization. Further, the structure is stabilized by intermolecular N—H…O hydrogen bond and intramolecular C—H…O hydrogen bonds.

#### **S2. Experimental**

A mixture of 1-methyl-3,5-bis[(*E*)-chlorobenzylidene]tetrahydro-4 (1*H*)-pyridin-ones (1 mmol), 5-fluoroisatin (1 mmol) and sarcosine in methanol (10 ml) was refluxed for 30 min. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to obtain the pure product. The product was dissolved in methonol and allowed to evoporate at room temperature. Transparent, needle-shaped, colourless crystals of small sizes (8 x 2 x 2 mm<sup>3</sup>)were obtained in a period of about a week. Yield:94%; *M*.p:224 °C

#### S3. Refinement

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.97 Å, and  $U_{iso}$  =  $1.2U_{eq}(C)$  for CH<sub>2</sub> and CH groups and  $U_{iso}$  =  $1.5U_{eq}(C)$  for CH<sub>3</sub> group. The N-bound H atom is located in a difference Fourier map and its positional parameters were refined.





The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.



#### Figure 2

Packing diagram

# 5''-(4-Chlorobenzylidene)-4'-(4-chlorophenyl)-5-fluoro-1',1''-dimethylindoline- 3-spiro-2'-pyrrolidine-3'-spiro-3''-piperidine-2,4''-dione

#### Crystal data

C<sub>30</sub>H<sub>26</sub>Cl<sub>2</sub>FN<sub>3</sub>O<sub>2</sub>  $M_r = 550.44$ Monoclinic, P2<sub>1</sub>/n Hall symbol: -P 2yn a = 16.694 (3) Å b = 8.705 (4) Å c = 18.474 (3) Å  $\beta = 103.27$  (4)° V = 2613.3 (14) Å<sup>3</sup> Z = 4 F(000) = 1144  $D_x = 1.399 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections  $\theta = 2-25^{\circ}$   $\mu = 0.29 \text{ mm}^{-1}$  T = 293 KBlock, colourless  $0.23 \times 0.21 \times 0.18 \text{ mm}$  Data collection

| Nonius MACH3                             | 4581 independent reflections                                |
|------------------------------------------|-------------------------------------------------------------|
| diffractometer                           | 2891 reflections with $I > 2\sigma(I)$                      |
| Radiation source: fine-focus sealed tube | $R_{int} = 0.020$                                           |
| Graphite monochromator                   | $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ |
| $\omega$ -2 $\theta$ scans               | $h = 0 \rightarrow 19$                                      |
| Absorption correction: $\psi$ scan       | $k = -1 \rightarrow 10$                                     |
| (North <i>et al.</i> , 1968)             | $l = -21 \rightarrow 21$                                    |
| $T_{\min} = 0.936, T_{\max} = 0.950$     | 3 standard reflections every 60 min                         |
| 5427 measured reflections                | intensity decay: none                                       |
| Refinement                               |                                                             |
| Refinement on $F^2$                      | Secondary atom site location: difference Fourier            |
| Least-squares matrix: full               | map                                                         |
| $R[F^2 > 2\sigma(F^2)] = 0.036$          | Hydrogen site location: inferred from                       |
| $wR(F^2) = 0.104$                        | neighbouring sites                                          |
| S = 1.02                                 | H atoms treated by a mixture of independent                 |
| 4581 reflections                         | and constrained refinement                                  |
| 349 parameters                           | $w = 1/[\sigma^2(F_o^2) + (0.0445P)^2 + 0.726P]$            |

direct methods

Primary atom site location: structure-invariant

0 restraints

# *Special details* **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

where  $P = (F_0^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\rm max} = 0.001$  $\Delta\rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x             | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|---------------|--------------|--------------|-----------------------------|--|
| Cl1  | 0.15668 (5)   | 0.37573 (8)  | 0.72167 (3)  | 0.0831 (2)                  |  |
| C12  | -0.36431 (5)  | 0.61752 (10) | 0.00265 (4)  | 0.0919 (3)                  |  |
| N1   | -0.05322 (10) | 0.13961 (19) | 0.27962 (9)  | 0.0464 (4)                  |  |
| 01   | 0.07132 (10)  | 0.52336 (18) | 0.24553 (8)  | 0.0613 (4)                  |  |
| C8   | 0.03804 (12)  | 0.3538 (2)   | 0.33420 (11) | 0.0419 (5)                  |  |
| F1   | 0.32228 (9)   | 0.21475 (19) | 0.36806 (8)  | 0.0808 (5)                  |  |
| N3   | 0.05530 (14)  | -0.1040 (2)  | 0.21711 (12) | 0.0603 (6)                  |  |
| C12  | -0.02137 (13) | 0.2314 (2)   | 0.34544 (11) | 0.0473 (5)                  |  |
| H12A | 0.0060        | 0.1641       | 0.3854       | 0.057*                      |  |
| H12B | -0.0671       | 0.2797       | 0.3608       | 0.057*                      |  |
| С9   | 0.03991 (12)  | 0.4022 (2)   | 0.25700 (11) | 0.0435 (5)                  |  |
| O2   | -0.05184 (11) | -0.0289(2)   | 0.12232 (10) | 0.0724 (5)                  |  |
| N2   | 0.08528 (11)  | 0.2056 (2)   | 0.11641 (9)  | 0.0524 (5)                  |  |
| C20  | 0.12500 (14)  | -0.0377 (3)  | 0.26298 (13) | 0.0511 (6)                  |  |
| C15  | 0.12839 (13)  | 0.1176 (2)   | 0.24568 (11) | 0.0448 (5)                  |  |
|      |               |              |              |                             |  |

| C5               | 0.04926 (13)               | 0.3405 (3)             | 0.50697 (12)               | 0.0521 (6)             |
|------------------|----------------------------|------------------------|----------------------------|------------------------|
| Н5               | 0.0001                     | 0.3012                 | 0.4789                     | 0.063*                 |
| C10              | -0.00213 (12)              | 0.2963 (2)             | 0.19252 (11)               | 0.0420 (5)             |
| C11              | -0.07990 (13)              | 0.2364 (2)             | 0.21440 (11)               | 0.0459 (5)             |
| H11A             | -0.1125                    | 0.3216                 | 0.2256                     | 0.055*                 |
| H11B             | -0.1132                    | 0.1776                 | 0.1739                     | 0.055*                 |
| C4               | 0.10401 (13)               | 0.4086(2)              | 0.47049 (11)               | 0.0451 (5)             |
| C17              | 0.25566 (14)               | 0.1306 (3)             | 0.33291 (13)               | 0.0570 (6)             |
| C25              | -0.10489(14)               | 0.4406(2)              | 0.08703(11)                | 0.0270(0)<br>0.0475(5) |
| C28              | -0.26410(16)               | 0.1100(2)<br>0.5504(3) | 0.03646(13)                | 0.0592 (6)             |
| C24              | -0.01808(13)               | 0.3837(3)              | 0.03010(13)<br>0.11635(11) | 0.0392(0)<br>0.0487(5) |
| С24<br>Н24       | 0.0175                     | 0.3037 (3)             | 0.1241                     | 0.058*                 |
| C14              | 0.0175<br>0.05642(13)      | 0.4740<br>0.1582 (2)   | 0.1241<br>0.18243 (11)     | 0.038                  |
| C14<br>C16       | 0.03042(13)<br>0.10562(13) | 0.1382(2)<br>0.2034(3) | 0.18243(11)<br>0.28070(12) | 0.0404(3)              |
| U16              | 0.19502 (15)               | 0.2034 (3)             | 0.2606                     | 0.0505 (5)             |
| П10<br>С2(       | 0.2002                     | 0.5008                 | 0.2090                     | $0.000^{\circ}$        |
| C20              | -0.124/1(1/)               | 0.5925 (5)             | 0.09730(13)                | 0.0588 (6)             |
| H26              | -0.0836                    | 0.6590                 | 0.1214                     | 0.071*                 |
|                  | 0.13/61 (16)               | 0.3869 (3)             | 0.62522 (12)               | 0.0577(6)              |
| C3               | 0.17622 (15)               | 0.4682 (3)             | 0.51528 (13)               | 0.0566 (6)             |
| H3               | 0.2138                     | 0.5169                 | 0.4929                     | 0.068*                 |
| <b>C</b> 7       | 0.09049 (13)               | 0.4260 (3)             | 0.38996 (12)               | 0.0468 (5)             |
| H7               | 0.1237                     | 0.4993                 | 0.3747                     | 0.056*                 |
| C21              | 0.01022 (16)               | -0.0003(3)             | 0.16971 (14)               | 0.0549 (6)             |
| C18              | 0.25207 (16)               | -0.0208 (3)            | 0.35107 (13)               | 0.0630 (7)             |
| H18              | 0.2942                     | -0.0649                | 0.3868                     | 0.076*                 |
| C6               | 0.06523 (15)               | 0.3289 (3)             | 0.58344 (12)               | 0.0562 (6)             |
| H6               | 0.0274                     | 0.2823                 | 0.6064                     | 0.067*                 |
| C23              | 0.01550 (14)               | 0.2770 (3)             | 0.06552 (12)               | 0.0587 (6)             |
| H23A             | -0.0251                    | 0.2010                 | 0.0429                     | 0.070*                 |
| H23B             | 0.0330                     | 0.3337                 | 0.0267                     | 0.070*                 |
| C19              | 0.18501 (16)               | -0.1081(3)             | 0.31565 (13)               | 0.0611 (6)             |
| H19              | 0.1809                     | -0.2113                | 0.3273                     | 0.073*                 |
| C30              | -0.16798 (15)              | 0.3466 (3)             | 0.04937 (13)               | 0.0584 (6)             |
| H30              | -0.1566                    | 0.2444                 | 0.0410                     | 0.070*                 |
| C29              | -0.24709(15)               | 0.4006(3)              | 0.02398 (14)               | 0.0625(7)              |
| H29              | -0.2884                    | 0.3358                 | -0.0014                    | 0.075*                 |
| C27              | -0.20378(18)               | 0.6475(3)              | 0.07271 (14)               | 0.0682(7)              |
| H27              | -0.2159                    | 0 7495                 | 0.0807                     | 0.082*                 |
| $C^2$            | 0 19346 (16)               | 0.4570 (3)             | 0.59173(14)                | 0.062                  |
| С <u>2</u><br>Н2 | 0.2423                     | 0.4964                 | 0.6203                     | 0.076*                 |
| C13              | -0.11773(16)               | 0.1301<br>0.0373(3)    | 0.0205                     | 0.0723 (8)             |
| H13A             | -0.0963                    | -0.0271                | 0.3342                     | 0.087*                 |
| H13R             | -0.1368                    | -0.0255                | 0.3342                     | 0.087*                 |
|                  | -0.1627                    | 0.0235                 | 0.2408                     | 0.087*                 |
| C22              | 0.1027<br>0.12756 (17)     | 0.0270                 | 0.3012<br>0.08262 (14)     | 0.007                  |
| U22              | 0.12730(17)                | 0.0002 (3)             | 0.06203 (14)               | 0.0740(0)              |
| 1122A<br>1122D   | 0.0902                     | 0.0033                 | 0.0047                     | 0.009.                 |
| 11220            | 0.1/5/                     | 0.049/                 | 0.1171                     | 0.009                  |
| П22U             | 0.1403                     | 0.1322                 | 0.0419                     | 0.089*                 |

| H1N    | 0.0456 (         | (17)            | -0.198 (3)  | 0.2158 (15)  | 0.082 (9)    | *            |
|--------|------------------|-----------------|-------------|--------------|--------------|--------------|
| Atomic | displacement par | ameters (Ų)     |             |              |              |              |
|        | $U^{11}$         | U <sup>22</sup> | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
| C11    | 0.1218 (6)       | 0.0714 (4)      | 0.0461 (3)  | -0.0034 (4)  | -0.0010 (4)  | -0.0014 (3)  |
| Cl2    | 0.0795 (5)       | 0.1069 (6)      | 0.0911 (5)  | 0.0369 (5)   | 0.0232 (4)   | 0.0095 (5)   |
| N1     | 0.0503 (10)      | 0.0402 (10)     | 0.0473 (10) | -0.0088(8)   | 0.0085 (8)   | 0.0028 (8)   |
| 01     | 0.0828 (12)      | 0.0474 (9)      | 0.0543 (10) | -0.0240 (9)  | 0.0167 (8)   | -0.0025 (8)  |
| C8     | 0.0432 (11)      | 0.0390 (11)     | 0.0447 (11) | 0.0002 (10)  | 0.0124 (9)   | -0.0023 (10) |
| F1     | 0.0623 (9)       | 0.0975 (12)     | 0.0743 (9)  | -0.0097 (9)  | -0.0015 (7)  | 0.0029 (9)   |
| N3     | 0.0734 (15)      | 0.0359 (11)     | 0.0717 (14) | -0.0051 (11) | 0.0170 (11)  | -0.0048 (11) |
| C12    | 0.0506 (12)      | 0.0472 (13)     | 0.0442 (12) | -0.0026 (11) | 0.0113 (10)  | 0.0036 (10)  |
| C9     | 0.0455 (12)      | 0.0373 (12)     | 0.0486 (12) | -0.0024 (10) | 0.0127 (10)  | -0.0008 (10) |
| O2     | 0.0784 (12)      | 0.0592 (11)     | 0.0723 (11) | -0.0169 (10) | 0.0025 (10)  | -0.0181 (9)  |
| N2     | 0.0589 (11)      | 0.0572 (12)     | 0.0434 (10) | -0.0002 (10) | 0.0162 (9)   | -0.0012 (9)  |
| C20    | 0.0606 (15)      | 0.0426 (12)     | 0.0537 (13) | 0.0031 (12)  | 0.0205 (12)  | -0.0020 (11) |
| C15    | 0.0500 (12)      | 0.0434 (12)     | 0.0432 (11) | -0.0005 (11) | 0.0154 (10)  | -0.0017 (10) |
| C5     | 0.0487 (13)      | 0.0594 (15)     | 0.0467 (13) | 0.0006 (11)  | 0.0077 (10)  | -0.0037 (11) |
| C10    | 0.0478 (12)      | 0.0371 (11)     | 0.0413 (11) | -0.0046 (10) | 0.0104 (9)   | -0.0008(9)   |
| C11    | 0.0487 (12)      | 0.0422 (12)     | 0.0459 (12) | -0.0047 (10) | 0.0086 (10)  | 0.0018 (10)  |
| C4     | 0.0475 (12)      | 0.0403 (12)     | 0.0463 (12) | 0.0032 (10)  | 0.0082 (10)  | -0.0038 (10) |
| C17    | 0.0491 (14)      | 0.0706 (17)     | 0.0517 (13) | -0.0016 (13) | 0.0125 (11)  | -0.0044 (13) |
| C25    | 0.0652 (14)      | 0.0380 (12)     | 0.0396 (11) | -0.0039 (11) | 0.0125 (11)  | 0.0057 (9)   |
| C28    | 0.0681 (16)      | 0.0607 (16)     | 0.0515 (14) | 0.0134 (14)  | 0.0193 (12)  | 0.0090 (12)  |
| C24    | 0.0575 (13)      | 0.0437 (12)     | 0.0442 (12) | -0.0103 (11) | 0.0101 (10)  | 0.0011 (10)  |
| C14    | 0.0555 (13)      | 0.0399 (12)     | 0.0442 (12) | -0.0048 (10) | 0.0124 (10)  | -0.0037 (10) |
| C16    | 0.0539 (13)      | 0.0502 (13)     | 0.0493 (12) | -0.0017 (12) | 0.0173 (11)  | -0.0004 (11) |
| C26    | 0.0792 (17)      | 0.0440 (13)     | 0.0509 (13) | -0.0030(13)  | 0.0103 (12)  | -0.0024 (11) |
| C1     | 0.0786 (17)      | 0.0429 (13)     | 0.0457 (12) | 0.0062 (13)  | 0.0019 (12)  | -0.0018 (11) |
| C3     | 0.0594 (15)      | 0.0506 (13)     | 0.0575 (15) | -0.0081(12)  | 0.0087 (12)  | -0.0037(12)  |
| C7     | 0.0472 (12)      | 0.0440 (12)     | 0.0508 (13) | -0.0016 (10) | 0.0142 (10)  | -0.0016 (10) |
| C21    | 0.0652 (16)      | 0.0441 (14)     | 0.0570 (14) | -0.0068(12)  | 0.0172 (13)  | -0.0107 (12) |
| C18    | 0.0652 (16)      | 0.0706 (18)     | 0.0539 (14) | 0.0174 (14)  | 0.0151 (12)  | 0.0086 (13)  |
| C6     | 0.0616 (15)      | 0.0574 (15)     | 0.0500 (13) | 0.0031 (12)  | 0.0137 (12)  | 0.0013 (12)  |
| C23    | 0.0654 (15)      | 0.0668 (16)     | 0.0437 (12) | -0.0009(13)  | 0.0123 (11)  | 0.0007 (12)  |
| C19    | 0.0769 (17)      | 0.0476 (14)     | 0.0632 (15) | 0.0096 (14)  | 0.0250 (13)  | 0.0059 (13)  |
| C30    | 0.0679 (16)      | 0.0395 (13)     | 0.0615 (14) | -0.0006 (12) | 0.0015 (12)  | 0.0005 (11)  |
| C29    | 0.0621 (16)      | 0.0540 (15)     | 0.0657 (15) | -0.0020 (13) | 0.0029 (13)  | 0.0061 (13)  |
| C27    | 0.095 (2)        | 0.0495 (15)     | 0.0602 (15) | 0.0153 (15)  | 0.0188 (15)  | -0.0031 (13) |
| C2     | 0.0702 (16)      | 0.0525 (14)     | 0.0582 (15) | -0.0077 (13) | -0.0056 (13) | -0.0046 (12) |
| C13    | 0.0798 (18)      | 0.0659 (17)     | 0.0662 (16) | -0.0311 (15) | 0.0068 (14)  | 0.0128 (14)  |
| C22    | 0.0839 (19)      | 0.0835 (19)     | 0.0605 (15) | 0.0118 (16)  | 0.0286 (14)  | -0.0052(14)  |

## Geometric parameters (Å, °)

| Cl1—C1  | 1.739 (2) | C17—C16 | 1.375 (3) |
|---------|-----------|---------|-----------|
| Cl2—C28 | 1.746 (3) | C25—C26 | 1.386 (3) |

## supporting information

| N1 C12                                               | 1 450 (3)            | C25 C30                    | 1 388 (3)   |
|------------------------------------------------------|----------------------|----------------------------|-------------|
| N1-C11                                               | 1.450(3)             | $C_{25} = C_{30}$          | 1.588(3)    |
| NI-CI2                                               | 1.454(5)             | $C_{23} = C_{24}$          | 1.310(3)    |
| NI-C13                                               | 1.430(3)             | C28-C29                    | 1.300(3)    |
| 01-09                                                | 1.218 (2)            | $C_{28} = C_{27}$          | 1.367 (4)   |
|                                                      | 1.345 (3)            | C24—C23                    | 1.517(3)    |
| C8—C9                                                | 1.494 (3)            | C24—H24                    | 0.9800      |
| C8—C12                                               | 1.502 (3)            | C14—C21                    | 1.572 (3)   |
| F1—C17                                               | 1.365 (3)            | C16—H16                    | 0.9300      |
| N3—C21                                               | 1.358 (3)            | C26—C27                    | 1.379 (3)   |
| N3—C20                                               | 1.397 (3)            | C26—H26                    | 0.9300      |
| N3—H1N                                               | 0.84 (3)             | C1—C6                      | 1.372 (3)   |
| C12—H12A                                             | 0.9700               | C1—C2                      | 1.374 (4)   |
| C12—H12B                                             | 0.9700               | C3—C2                      | 1.379 (3)   |
| C9—C10                                               | 1.542 (3)            | С3—Н3                      | 0.9300      |
| O2—C21                                               | 1.219 (3)            | С7—Н7                      | 0.9300      |
| N2—C23                                               | 1.457 (3)            | C18—C19                    | 1.387 (3)   |
| N2—C22                                               | 1.461 (3)            | C18—H18                    | 0.9300      |
| N2—C14                                               | 1.469 (3)            | С6—Н6                      | 0.9300      |
| C20—C19                                              | 1.371 (3)            | C23—H23A                   | 0.9700      |
| C20—C15                                              | 1 393 (3)            | C23—H23B                   | 0 9700      |
| $C_{15}$ $C_{16}$                                    | 1 380 (3)            | C19—H19                    | 0.9300      |
| $C_{15} - C_{14}$                                    | 1.513 (3)            | $C_{30}$                   | 1.379(3)    |
| $C_{5}$ $C_{6}$                                      | 1 380 (3)            | $C_{30}$ $H_{30}$          | 0.0300      |
| C5_C4                                                | 1.380(3)<br>1.387(3) | C20 H20                    | 0.9300      |
| C5 H5                                                | 1.387 (3)            | C27 H27                    | 0.9300      |
|                                                      | 0.9300               | $C_2 = H_2$                | 0.9300      |
|                                                      | 1.557 (5)            | C2—H2                      | 0.9300      |
| C10—C24                                              | 1.568 (3)            | CI3—HI3A                   | 0.9600      |
| C10—C14                                              | 1.587 (3)            | С13—Н13В                   | 0.9600      |
| C11—H11A                                             | 0.9700               | C13—H13C                   | 0.9600      |
| C11—H11B                                             | 0.9700               | C22—H22A                   | 0.9600      |
| C4—C3                                                | 1.396 (3)            | C22—H22B                   | 0.9600      |
| C4—C7                                                | 1.461 (3)            | C22—H22C                   | 0.9600      |
| C17—C18                                              | 1.364 (4)            |                            |             |
|                                                      |                      |                            |             |
| C12—N1—C11                                           | 111.05 (16)          | C15—C14—C21                | 100.68 (17) |
| C12—N1—C13                                           | 110.34 (18)          | N2-C14-C10                 | 102.30 (16) |
| C11—N1—C13                                           | 112.83 (17)          | C15—C14—C10                | 119.19 (17) |
| C7—C8—C9                                             | 116.53 (19)          | C21—C14—C10                | 112.84 (17) |
| C7—C8—C12                                            | 124.05 (19)          | C17—C16—C15                | 117.6 (2)   |
| C9—C8—C12                                            | 119.41 (17)          | C17—C16—H16                | 121.2       |
| C21—N3—C20                                           | 112.2 (2)            | C15—C16—H16                | 121.2       |
| C21—N3—H1N                                           | 123.9 (19)           | C27—C26—C25                | 121.8 (2)   |
| $C_{20}$ N3—H1N                                      | 123.5(19)            | $C_{27} - C_{26} - H_{26}$ | 1191        |
| N1-C12-C8                                            | 113.68 (17)          | C25—C26—H26                | 119.1       |
| N1-C12-H12A                                          | 108.8                | C6-C1-C2                   | 120.7(2)    |
| C8-C12-H12A                                          | 108.8                | C6-C1-C11                  | 120.7(2)    |
| N1 C12 H12P                                          | 108.8                | $C_2 = C_1 = C_1$          | 120.16(10)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 100.0                | $C_2 = C_1 = C_{11}$       | 120.10(19)  |
| Co-C12-H12B                                          | 108.8                | L2-L3-L4                   | 122.0 (2)   |

| H12A—C12—H12B | 107.7       | С2—С3—Н3      | 119.0       |
|---------------|-------------|---------------|-------------|
| O1—C9—C8      | 120.96 (19) | С4—С3—Н3      | 119.0       |
| O1—C9—C10     | 121.42 (19) | C8—C7—C4      | 130.8 (2)   |
| C8—C9—C10     | 117.59 (18) | С8—С7—Н7      | 114.6       |
| C23—N2—C22    | 114.55 (18) | С4—С7—Н7      | 114.6       |
| C23—N2—C14    | 106.82 (16) | O2—C21—N3     | 125.6 (2)   |
| C22—N2—C14    | 116.15 (19) | O2—C21—C14    | 126.4 (2)   |
| C19—C20—C15   | 122.4 (2)   | N3—C21—C14    | 107.9 (2)   |
| C19—C20—N3    | 128.1 (2)   | C17—C18—C19   | 119.3 (2)   |
| C15—C20—N3    | 109.5 (2)   | C17—C18—H18   | 120.3       |
| C16—C15—C20   | 119.3 (2)   | C19—C18—H18   | 120.3       |
| C16—C15—C14   | 130.7 (2)   | C1—C6—C5      | 119.1 (2)   |
| C20—C15—C14   | 109.71 (19) | С1—С6—Н6      | 120.4       |
| C6—C5—C4      | 122.3 (2)   | С5—С6—Н6      | 120.4       |
| С6—С5—Н5      | 118.8       | N2—C23—C24    | 102.47 (17) |
| С4—С5—Н5      | 118.8       | N2—C23—H23A   | 111.3       |
| C11—C10—C9    | 105.19 (16) | С24—С23—Н23А  | 111.3       |
| C11—C10—C24   | 114.90 (17) | N2—C23—H23B   | 111.3       |
| C9—C10—C24    | 110.89 (17) | C24—C23—H23B  | 111.3       |
| C11—C10—C14   | 110.74 (16) | H23A—C23—H23B | 109.2       |
| C9—C10—C14    | 111.11 (16) | C20-C19-C18   | 118.0 (2)   |
| C24—C10—C14   | 104.14 (16) | С20—С19—Н19   | 121.0       |
| N1—C11—C10    | 107.35 (16) | C18—C19—H19   | 121.0       |
| N1—C11—H11A   | 110.2       | C29—C30—C25   | 121.8 (2)   |
| C10-C11-H11A  | 110.2       | С29—С30—Н30   | 119.1       |
| N1—C11—H11B   | 110.2       | С25—С30—Н30   | 119.1       |
| C10-C11-H11B  | 110.2       | C28—C29—C30   | 119.2 (2)   |
| H11A—C11—H11B | 108.5       | С28—С29—Н29   | 120.4       |
| C5—C4—C3      | 116.5 (2)   | С30—С29—Н29   | 120.4       |
| C5—C4—C7      | 125.05 (19) | C28—C27—C26   | 119.2 (2)   |
| C3—C4—C7      | 118.4 (2)   | С28—С27—Н27   | 120.4       |
| C18—C17—F1    | 118.6 (2)   | С26—С27—Н27   | 120.4       |
| C18—C17—C16   | 123.5 (2)   | C1—C2—C3      | 119.3 (2)   |
| F1—C17—C16    | 118.0 (2)   | C1—C2—H2      | 120.4       |
| C26—C25—C30   | 117.0 (2)   | С3—С2—Н2      | 120.4       |
| C26—C25—C24   | 120.2 (2)   | N1—C13—H13A   | 109.5       |
| C30—C25—C24   | 122.8 (2)   | N1—C13—H13B   | 109.5       |
| C29—C28—C27   | 121.0 (2)   | H13A—C13—H13B | 109.5       |
| C29—C28—Cl2   | 118.6 (2)   | N1—C13—H13C   | 109.5       |
| C27—C28—Cl2   | 120.4 (2)   | H13A—C13—H13C | 109.5       |
| C25—C24—C23   | 116.08 (18) | H13B—C13—H13C | 109.5       |
| C25—C24—C10   | 115.64 (17) | N2—C22—H22A   | 109.5       |
| C23—C24—C10   | 104.34 (17) | N2—C22—H22B   | 109.5       |
| C25—C24—H24   | 106.7       | H22A—C22—H22B | 109.5       |
| C23—C24—H24   | 106.7       | N2—C22—H22C   | 109.5       |
| C10—C24—H24   | 106.7       | H22A—C22—H22C | 109.5       |
| N2-C14-C15    | 110.68 (17) | H22B—C22—H22C | 109.5       |
| N2-C14-C21    | 111.43 (17) |               |             |
|               |             |               |             |

| C11—N1—C12—C8                       | -46.9 (2)    | C24—C10—C14—N2                      | 15.56 (19)   |
|-------------------------------------|--------------|-------------------------------------|--------------|
| C13—N1—C12—C8                       | -172.82 (19) | C11—C10—C14—C15                     | -98.0 (2)    |
| C7—C8—C12—N1                        | -162.6 (2)   | C9—C10—C14—C15                      | 18.5 (2)     |
| C9—C8—C12—N1                        | 18.2 (3)     | C24—C10—C14—C15                     | 137.96 (18)  |
| C7—C8—C9—O1                         | -17.5 (3)    | C11—C10—C14—C21                     | 19.7 (2)     |
| C12—C8—C9—O1                        | 161.9 (2)    | C9—C10—C14—C21                      | 136.27 (18)  |
| C7—C8—C9—C10                        | 164.77 (18)  | C24—C10—C14—C21                     | -104.29 (19) |
| C12—C8—C9—C10                       | -15.9 (3)    | C18—C17—C16—C15                     | 0.3 (3)      |
| C21—N3—C20—C19                      | -178.2(2)    | F1—C17—C16—C15                      | -179.82(18)  |
| C21—N3—C20—C15                      | -0.7 (3)     | C20-C15-C16-C17                     | -1.4 (3)     |
| C19—C20—C15—C16                     | 2.2 (3)      | C14—C15—C16—C17                     | -174.3(2)    |
| N3—C20—C15—C16                      | -175.45 (19) | C30—C25—C26—C27                     | 1.3 (3)      |
| C19—C20—C15—C14                     | 176.5 (2)    | C24—C25—C26—C27                     | -178.5(2)    |
| N3—C20—C15—C14                      | -1.1 (2)     | C5—C4—C3—C2                         | 1.5 (3)      |
| O1—C9—C10—C11                       | -139.5 (2)   | C7—C4—C3—C2                         | 179.8 (2)    |
| C8-C9-C10-C11                       | 38.2 (2)     | C9—C8—C7—C4                         | 179.3 (2)    |
| O1—C9—C10—C24                       | -14.7 (3)    | C12—C8—C7—C4                        | 0.0 (4)      |
| C8-C9-C10-C24                       | 163.01 (17)  | C5—C4—C7—C8                         | -18.4(4)     |
| 01-C9-C10-C14                       | 100.6 (2)    | C3—C4—C7—C8                         | 163.5 (2)    |
| C8-C9-C10-C14                       | -81.7(2)     | $C_{20} N_{3} C_{21} O_{2}$         | 177.5 (2)    |
| C12—N1—C11—C10                      | 74.2 (2)     | $C_{20} - N_{3} - C_{21} - C_{14}$  | 2.2 (3)      |
| C13 - N1 - C11 - C10                | -161.35(19)  | N2-C14-C21-O2                       | -60.5(3)     |
| C9-C10-C11-N1                       | -66.3 (2)    | $C_{15}$ $C_{14}$ $C_{21}$ $O_{2}$  | -177.9(2)    |
| $C_{24}$ $C_{10}$ $C_{11}$ $N_{1}$  | 171.46 (16)  | C10-C14-C21-O2                      | 54.0 (3)     |
| C14—C10—C11—N1                      | 53.8 (2)     | N2-C14-C21-N3                       | 114.7 (2)    |
| C6-C5-C4-C3                         | -1.2(3)      | $C_{15}$ $C_{14}$ $C_{21}$ $N_{3}$  | -2.7(2)      |
| C6-C5-C4-C7                         | -1793(2)     | C10-C14-C21-N3                      | -130.82(19)  |
| C26—C25—C24—C23                     | -138.5(2)    | F1-C17-C18-C19                      | -179.7(2)    |
| $C_{30}$ $C_{25}$ $C_{24}$ $C_{23}$ | 41.7 (3)     | $C_{16}$ $C_{17}$ $C_{18}$ $C_{19}$ | 0.2(4)       |
| $C_{26} - C_{25} - C_{24} - C_{10}$ | 98.8 (2)     | $C_{2}$ $C_{1}$ $C_{6}$ $C_{5}$     | 0.5(4)       |
| $C_{30}$ $C_{25}$ $C_{24}$ $C_{10}$ | -81.1(3)     | $C_{11} - C_{1} - C_{6} - C_{5}$    | 178.68 (18)  |
| $C_{11} - C_{10} - C_{24} - C_{25}$ | 18.4 (3)     | C4-C5-C6-C1                         | 0.2 (4)      |
| C9-C10-C24-C25                      | -100.7(2)    | $C_{22}$ N2 $C_{23}$ $C_{24}$       | 176.68 (19)  |
| $C_{14}$ $C_{10}$ $C_{24}$ $C_{25}$ | 139.74 (18)  | $C_{14} N_{2} C_{23} C_{24}$        | 46.6 (2)     |
| $C_{11} - C_{10} - C_{24} - C_{23}$ | -110.3(2)    | $C_{25}$ $C_{24}$ $C_{23}$ $N_{2}$  | -162.38(18)  |
| C9-C10-C24-C23                      | 130.57 (18)  | C10-C24-C23-N2                      | -33.9(2)     |
| C14-C10-C24-C23                     | 110(2)       | $C_{15}$ $C_{20}$ $C_{19}$ $C_{18}$ | -1.7(3)      |
| $C_{23}$ N2 $C_{14}$ $C_{15}$       | -16658(18)   | N3-C20-C19-C18                      | 1755(2)      |
| $C_{22} = N_{2} = C_{14} = C_{15}$  | 64.2 (2)     | $C_{17}$ $C_{18}$ $C_{19}$ $C_{20}$ | 0.5(3)       |
| $C_{23}$ N2 $C_{14}$ $C_{21}$       | 82.3 (2)     | $C_{26}$ $C_{25}$ $C_{30}$ $C_{29}$ | -0.8(3)      |
| $C_{22} = N_2 = C_{14} = C_{21}$    | -469(3)      | $C_{24}$ $C_{25}$ $C_{30}$ $C_{29}$ | 1791(2)      |
| $C_{23}$ N2 $C_{14}$ $C_{10}$       | -38.6 (2)    | C27—C28—C29—C30                     | 0.9 (4)      |
| $C_{22}$ N2 $C_{14}$ $C_{10}$       | -167.77(18)  | Cl2—C28—C29—C30                     | 179.04 (18)  |
| C16—C15—C14—N2                      | 57.8 (3)     | C25—C30—C29—C28                     | -0.3 (4)     |
| C20—C15—C14—N2                      | -115.70 (19) | C29—C28—C27—C26                     | -0.4(4)      |
| C16—C15—C14—C21                     | 175.7 (2)    | Cl2—C28—C27—C26                     | -178.46 (18) |
| C20-C15-C14-C21                     | 2.3 (2)      | C25—C26—C27—C28                     | -0.8 (4)     |
| -                                   | × /          |                                     | <hr/>        |

| C16-C15-C14-C10 | -60.4 (3)    | C6—C1—C2—C3  | -0.2 (4)     |
|-----------------|--------------|--------------|--------------|
| C20-C15-C14-C10 | 126.16 (19)  | Cl1—C1—C2—C3 | -178.34 (19) |
| C11—C10—C14—N2  | 139.59 (16)  | C4—C3—C2—C1  | -0.9 (4)     |
| C9-C10-C14-N2   | -103.89 (18) |              |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                           | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H···A |
|-----------------------------------|-------------|----------|--------------|---------|
| С11—Н11В…О2                       | 0.97        | 2.37     | 2.968 (3)    | 119     |
| C23—H23A····O2                    | 0.97        | 2.58     | 3.162 (3)    | 119     |
| C24—H24…O1                        | 0.98        | 2.26     | 2.787 (3)    | 113     |
| N3—H1 <i>N</i> ···O1 <sup>i</sup> | 0.84 (3)    | 2.50 (3) | 3.288 (3)    | 157 (3) |

Symmetry code: (i) x, y-1, z.