organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(3aR,6S,7aR)-7a-Bromo-2-[(4-methylphenyl)sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole

Basak Kosar,^a* Aydın Demircan,^b Hakan Arslan^c and Orhan Büyükgüngör^d

^aDepartment of Science Education, Faculty of Education, Sinop University, 57100-Sinop, Turkey, ^bDepartment of Chemistry, Faculty of Arts and Sciences, Nigde University, 51240-Nigde, Turkey, ^cDepartment of Chemistry, Faculty of Arts and Science, Mersin University, 33343-Mersin, Turkey, and ^dDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139-Samsun, Turkey Correspondence e-mail: bkosar@sinop.edu.tr

Received 5 March 2011; accepted 22 March 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.048; wR factor = 0.126; data-to-parameter ratio = 16.6.

In the title compound, $C_{15}H_{16}BrNO_3S$, the boat form of the six-membered ring is almost symmetrical with respect to the epoxy bridge. The two five-membered rings generated by the epoxy bridge of the six-membered ring adopt envelope conformations, whereas the N-containing five-membered ring adopts a twisted conformation. In the crystal, molecules are linked by $C-H \cdots O$ hydrogen bonds.

Related literature

For general background to intramolecular Diels-Alder reactions and heteroaromatic Diels-Alder reactions, see: Dell (1998); Kappe et al. (1997); Arai et al. (2010); Lohse & Hsung (2009). For related structures, see: Koşar et al. (2006, 2007a,b). For the synthesis of the title compound and related compounds, see: Carlini et al. (1997); Hart et al. (1997); Shing et al. (1996); Karaarslan et al. (2007); Pontén & Magnusson (1997); Demircan et al. (2006); Arslan & Demircan (2008); Demircan & Parsons (1998). For puckering analysis, see: Cremer & Pople (1975).

a = 16.5136 (6) Å

b = 6.2186 (3) Å c = 16.3487 (7) Å

Experimental .

Crystal data	
C ₁₅ H ₁₆ BrNO ₃ S	
$M_r = 370.26$	
Monoclinic, $P2_1/c$	

 $\beta = 113.802 \ (3)^{\circ}$ $V = 1536.07 (12) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

STOE IPDS 2 CCD diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.310, \ T_{\max} = 0.495$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.126$ S = 1.073163 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6A\cdotsO1^{i}$	0.97	2.50	3.382 (6)	151

 $\mu = 2.82 \text{ mm}^{-1}$

 $0.58 \times 0.44 \times 0.31 \text{ mm}$

7305 measured reflections

3163 independent reflections

2353 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 296 K

 $R_{\rm int} = 0.042$

190 parameters

 $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.44$ e Å⁻³

Symmetry code: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2, publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant F.279 of University Research Fund) and also the Scientific & Technological Research Council of Turkey (TÜBİTAK) for financial support of this work (PN: 107 T831).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2354).

References

- Arai, N., Tanaka, K. & Ohkuma, T. (2010). Tetrahedron Lett. 51, 1273-1275.
- Arslan, H. & Demircan, A. (2008). Mol. Simul. 33, 1285-1291.
- Carlini, R., Higgs, K., Older, C., Randhawa, S. & Rodrigo, R. (1997). J. Org. Chem. 62, 2330-2331.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dell, C. P. (1998). J. Chem. Soc. Perkin Trans. pp. 3873-3905.
- Demircan, A., Karaarslan, M. & Turac, E. (2006). Heterocycl. Commun. 8, 233-240.
- Demircan, A. & Parsons, P. J. (1998). Synlett. pp. 1215-1216.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Hart, D. J., Li, J., Wu, W. L. & Kozikowski, A. P. (1997). J. Org. Chem. 62, 5023-5033
- Kappe, C. O., Murphree, S. S. & Padwa, A. (1997). Tetrahedron 53, 14179-14233.

Karaarslan, M., Gokturk, E. & Demircan, A. (2007). J. Chem. Res. 2,117-120. Koşar, B., Göktürk, E., Demircan, A. & Büyükgüngör, O. (2006). Acta Cryst. E62, 03868-03869.

Koşar, B., Karaarslan, M., Demircan, A. & Büyükgüngör, O. (2007a). Acta Cryst. E63, 03691

- Koşar, B., Karaarslan, M., Yıldız, Y. K., Demircan, A. & Büyükgüngör, O. (2007b). Acta Cryst. E63, 01169–01170.
 Lohse, A. G. & Hsung, R. P. (2009). Org. Lett. 11, 3430–3433.
 Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Pontén, F. & Magnusson, G. (1997). J. Org. Chem. 62, 7978-7983.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shing, T. K. M., Zhu, X. Y. & Mak, T. C. W. (1996). Chem. Commun. pp. 2369-2370.
- Stoe & Cie (2002). *X-AREA* and *X-RED32*. Stoe & Cie, Darmstadt, Germany. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.

supporting information

Acta Cryst. (2011). E67, o994-o995 [doi:10.1107/S1600536811010750]

(3a*R*,6*S*,7a*R*)-7a-Bromo-2-[(4-methylphenyl)sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole

Başak Koşar, Aydın Demircan, Hakan Arslan and Orhan Büyükgüngör

S1. Comment

Thermal intramolecular [4 + 2] type cycloaddition processes, or intramolecular Diels Alder (IMDA) reactions, have been a highly useful tool for the construction of many cycloaddition products (Dell, 1998). The IMDA reaction is especially useful for asymmetrical syntheses towards natural products such as, (±)-xestoquinone (Carlini *et al.*, 1997), (+)-himbelive (Hart *et al.*, 1997) and (S)-(±)-carvone (Shing *et al.*, 1996). In this context, the use of heteroaromatic compounds has been gaining popularity (Kappe *et al.*, 1997). IMDA reactions with furan derivatives, called IMDAF, have been widely used for the construction of some new molecules (Karaarslan *et al.*, 2007; Pontén & Magnusson, 1997; Demircan *et al.*, 2006; Koşar *et al.*, 2007*a*; Koşar *et al.*, 2007*b*; Arslan & Demircan, 2008; Demircan & Parsons, 1998; Koşar *et al.*, 2006). These compounds have been used as strategic intermediates in combinatorial synthesis.

In view of a recent literature research (Arai *et al.*, 2010; Lohse & Hsung, 2009), we would like to report here a thermal IMDAF reaction of an alkenyl furan with a nitrogen linked chain which undergoes intramolecular cycloaddition upon heating to 371 K for two days (Fig. 1 and 2). The product of the intramolecular thermal cycloaddition reaction of compound (I) was characterized by ¹H NMR, ¹³C NMR, FT-IR, MS, elemental analysis and X-ray single crystal diffraction studies. Despite of the presence of three new stereocenters in the product molecules only one pair of mirror symmetric enatiomers was formed in the reaction, i.e. the intramolecular thermal cycloaddition of II to I is diastereoselective under the chosen reaction conditions.

Related with the above mentioned reaction, we presented here the crystal structure of the title compound, $C_{15}H_{16}BrNO_3S$. Fig. 1 shows the molecular structure of the title compound, I. The pyrrolidine (C4/C5/N1/C6/C7) ring adopts a twisted conformation with a total puckering parameter Q_T value of 0.329 (5) Å (Cremer & Pople, 1975). The tetrahydrofuran (O1/C1-C4) and bromo-attached tetrahydrofuran (O1/C4/C7/C8/C1) rings adopt envelope conformations with total puckering parameters of 0.514 (5) and 0.627 (5) Å, respectively.

The title compound displays an intramolecular hydrogen bond between atoms C10 and O2 and the crystal structure is stabilized by weak van der Waals interactions and a weak intermolecular hydrogen bond, C6—H6a…O1 in a three dimensional network (Fig. 3). Geometrical parameters of the intra- and intermolecular H-bonds are listed in Table 1.

S2. Experimental

N-(2-Bromoprop-2-en-1-yl)-4-methyl-*N*-[(5-methyl-2-furyl)methyl]benzenesulfonamide, II, (1 g, 2.7 mmol) was stirred and heated under reflux in water (25 mL) at 372 K for two days (Fig. 2). The mixture was poured into ethyl acetate (25 mL) and the aqueous phase was washed with excess ethyl acetate (2 x 25 mL). The combined organic phases were dried over magnesium sulphate and filtered off. The solvent was then removed under reduced pressure. The residue was subjected to flash column chromatography (R_f (Hexane:Ethyl acetate = 7:3): 0.47) to afford I (0.7 g, 70 % yield) as yellow crystals. M. p.: 396-398 K, v_{max} (Thin film) / cm⁻¹: 2932 (s, CH), 2161 (m, SO), 1977 (m, S=O), 1453, 1159, 1065 (s, C-

O). $\delta_{\rm H}$ (400 MHz, CDCl₃): 7,67 (d, 2H, J = 8 Hz), 7.24 (d, 2H, J = 8 Hz, H10-H13), 6.40 (dd, 1H, J = 5.6 Hz, J = 1.8 Hz, AB), 6.34 (d, 1H, J = 5.6 Hz, AB), 4.95 (dd, 1H, J = 4.5 Hz, J = 1.8 Hz), 4.06 (d, 1H, J = 12 Hz), 4.01 (d, 1H, J = 12 Hz), 3.67 (d, 1H, J = 12 Hz), 3.43 (d, 1H, J = 12 Hz), 2.39 (dd, 1H, J = 4.5 Hz, J = 12 Hz), 2.36 (s, 3H), 1.63 (d, 1H, J = 12 Hz), $\delta_{\rm C}$ (100 MHz, CDCl₃): 143.8, 137.2, 134.7, 134.5, 129.9 (2 x C), 127.7 (2 x C), 97.2, 81.0, 64.0, 63.3, 47.5, 41.4, 21.7. m/z (70 eV, EI): 371,00 [M⁺(⁸¹Br), 42%)], 369, [M⁺(⁷⁹Br, 42%)], 216,00 [M⁺(⁸¹Br)-Ts, 100%], 214 [M⁺(⁷⁹Br)-H+Ts, 100%]. Elemental Analysis (C₁₅H₁₆BrNO₃S): % Calculated (Found): C, 48.66 (48.72); H, 4.36 (4.39); N, 3.78 (3.74).

S3. Refinement

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97, 0.98 and 0.93 Å for CH₃, CH₂, CH and CH (aromatic), respectively. The displacement parameters of the H atoms were constrained with $U_{iso}(H) = 1.2U_{eq}$ (aromatic, methylene or methine C) or $1.5U_{eq}$ (methyl C).

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Synthesis of the title compound.

Figure 3

A packing diagram of the title compound. Dashed lines indicate the O—H…O intermolecular hydrogen bonds.

(3aR,6S,7aR)-7a-Bromo-2-[(4-methylphenyl)sulfonyl]- 1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole

Crystal data	
$C_{15}H_{16}BrNO_{3}S$ $M_{r} = 370.26$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc $a = 16.5136 (6) \text{ Å}$ $b = 6.2186 (3) \text{ Å}$ $c = 16.3487 (7) \text{ Å}$ $\beta = 113.802 (3)^{\circ}$ $V = 1536.07 (12) \text{ Å}^{3}$ $Z = 4$	F(000) = 752 $D_x = 1.601 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 10108 reflections $\theta = 1.5-28.0^{\circ}$ $\mu = 2.82 \text{ mm}^{-1}$ T = 296 K Prism, colourless $0.58 \times 0.44 \times 0.31 \text{ mm}$
Data collection	
STOE IPDS 2 CCD diffractometer Radiation source: fine-focus sealed tube Plane graphite monochromator Detector resolution: 6.67 pixels mm ⁻¹ rotation method scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.310, T_{max} = 0.495$	7305 measured reflections 3163 independent reflections 2353 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 26.5^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -20 \rightarrow 20$ $k = -7 \rightarrow 7$ $l = -20 \rightarrow 20$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.126$ S = 1.07 3163 reflections 190 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0617P)^2 + 0.5082P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.40$ e Å ⁻³ $\Delta\rho_{min} = -0.44$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.9623 (3)	0.6757 (7)	0.0923 (3)	0.0640 (11)	
H1	1.0211	0.7174	0.0966	0.077*	
C2	0.9042 (3)	0.5742 (8)	0.0062 (3)	0.0681 (12)	
H2	0.9082	0.5913	-0.0485	0.082*	
C3	0.8459 (3)	0.4559 (7)	0.0218 (3)	0.0617 (10)	
H3	0.8013	0.3717	-0.0189	0.074*	
C4	0.8668 (3)	0.4857 (6)	0.1192 (3)	0.0537 (9)	
C5	0.8358 (3)	0.3394 (6)	0.1725 (3)	0.0642 (11)	
H5A	0.7765	0.2875	0.1372	0.077*	
H5B	0.8753	0.2172	0.1945	0.077*	
C6	0.8569 (3)	0.7032 (6)	0.2354 (3)	0.0519 (9)	
H6A	0.9170	0.7400	0.2752	0.062*	
H6B	0.8163	0.7984	0.2472	0.062*	
C7	0.8443 (3)	0.7184 (6)	0.1376 (3)	0.0489 (8)	
C8	0.9107 (3)	0.8549 (7)	0.1161 (3)	0.0571 (10)	
H8A	0.9488	0.9380	0.1674	0.069*	
H8B	0.8812	0.9506	0.0660	0.069*	
C9	0.6718 (3)	0.5012 (6)	0.2434 (3)	0.0526 (9)	
C10	0.6473 (3)	0.7028 (7)	0.2619 (3)	0.0617 (10)	
H10	0.6869	0.7852	0.3082	0.074*	
C11	0.5636 (4)	0.7800 (8)	0.2109 (4)	0.0736 (13)	
H11	0.5473	0.9149	0.2236	0.088*	
C12	0.5033 (3)	0.6607 (9)	0.1410 (3)	0.0724 (12)	
C13	0.5291 (3)	0.4605 (9)	0.1249 (3)	0.0725 (12)	
H13	0.4891	0.3777	0.0790	0.087*	
C14	0.6117 (3)	0.3787 (7)	0.1743 (3)	0.0627 (11)	
H14	0.6273	0.2429	0.1617	0.075*	
C15	0.4125 (5)	0.7472 (12)	0.0862 (5)	0.117 (2)	
H15A	0.3802	0.6448	0.0408	0.175*	
H15B	0.4175	0.8799	0.0586	0.175*	
H15C	0.3818	0.7722	0.1242	0.175*	
N1	0.8373 (2)	0.4748 (5)	0.2466 (2)	0.0526 (8)	
01	0.96199 (18)	0.5098 (4)	0.15645 (19)	0.0589 (7)	
O2	0.8163 (2)	0.5198 (5)	0.38595 (19)	0.0729 (8)	
O3	0.7776 (2)	0.1766 (5)	0.3018 (2)	0.0707 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

S1	0.78021 (8)	0.40698 (16)	0.30290 (6)	0.0559 (3)	
Br1	0.71982 (3)	0.78750 (8)	0.06223 (3)	0.06777 (18)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
C1	0.060 (3)	0.068 (3)	0.066 (3)	0.007 (2)	0.028 (2)	0.000 (2)
C2	0.082 (3)	0.067 (3)	0.057 (2)	0.019 (2)	0.030 (2)	-0.001 (2)
C3	0.072 (3)	0.057 (2)	0.055 (2)	0.006 (2)	0.024 (2)	-0.0128 (19)
C4	0.058 (2)	0.043 (2)	0.054 (2)	0.0055 (17)	0.0174 (19)	-0.0063 (17)
C5	0.088 (3)	0.041 (2)	0.069 (3)	-0.003 (2)	0.038 (3)	-0.0124 (19)
C6	0.062 (2)	0.0406 (19)	0.053 (2)	-0.0077 (17)	0.0232 (19)	-0.0103 (17)
C7	0.050 (2)	0.0403 (18)	0.052 (2)	0.0033 (16)	0.0160 (17)	-0.0051 (16)
C8	0.064 (3)	0.047 (2)	0.061 (2)	0.0017 (18)	0.026 (2)	-0.0006 (18)
C9	0.064 (2)	0.044 (2)	0.054 (2)	-0.0029 (18)	0.029 (2)	0.0008 (17)
C10	0.069 (3)	0.052 (2)	0.067 (3)	-0.002 (2)	0.031 (2)	-0.008(2)
C11	0.084 (3)	0.059 (3)	0.090 (3)	0.013 (2)	0.048 (3)	0.003 (2)
C12	0.063 (3)	0.083 (3)	0.073 (3)	0.007 (2)	0.030 (2)	0.004 (3)
C13	0.066 (3)	0.078 (3)	0.069 (3)	-0.011 (2)	0.022 (2)	-0.009 (2)
C14	0.068 (3)	0.052 (2)	0.069 (3)	-0.006 (2)	0.029 (2)	-0.008(2)
C15	0.087 (4)	0.140 (6)	0.113 (5)	0.038 (4)	0.029 (4)	0.004 (4)
N1	0.065 (2)	0.0388 (16)	0.0541 (18)	0.0059 (14)	0.0239 (16)	-0.0009 (13)
O1	0.0538 (16)	0.0582 (17)	0.0582 (16)	0.0158 (13)	0.0159 (13)	0.0002 (13)
O2	0.092 (2)	0.077 (2)	0.0429 (14)	-0.0032 (18)	0.0201 (15)	-0.0060 (14)
O3	0.089 (2)	0.0489 (17)	0.0693 (19)	0.0038 (15)	0.0267 (18)	0.0154 (14)
S 1	0.0708 (7)	0.0462 (5)	0.0474 (5)	0.0020 (4)	0.0203 (5)	0.0036 (4)
Br1	0.0521 (2)	0.0697 (3)	0.0701 (3)	0.0172 (2)	0.01277 (19)	0.0041 (2)

Geometric parameters (Å, °)

C101	1.472 (5)	C8—H8A	0.9700
C1—C2	1.487 (7)	C8—H8B	0.9700
C1—C8	1.544 (6)	C9—C10	1.388 (6)
C1—H1	0.9800	C9—C14	1.392 (6)
C2—C3	1.316 (7)	C9—S1	1.757 (4)
С2—Н2	0.9300	C10—C11	1.380 (7)
C3—C4	1.498 (5)	C10—H10	0.9300
С3—Н3	0.9300	C11—C12	1.390 (8)
C4—O1	1.446 (5)	C11—H11	0.9300
C4—C5	1.487 (6)	C12—C13	1.375 (7)
C4—C7	1.553 (5)	C12—C15	1.502 (8)
C5—N1	1.467 (5)	C13—C14	1.373 (7)
С5—Н5А	0.9700	C13—H13	0.9300
С5—Н5В	0.9700	C14—H14	0.9300
C6—N1	1.484 (5)	C15—H15A	0.9600
С6—С7	1.530 (5)	C15—H15B	0.9600
С6—Н6А	0.9700	C15—H15C	0.9600
С6—Н6В	0.9700	N1—S1	1.616 (3)

С7—С8	1.535 (6)	O2—S1	1.427 (3)
C7—Br1	1.971 (4)	O3—S1	1.433 (3)
O1—C1—C2	101.0 (4)	C1—C8—H8A	111.7
O1—C1—C8	99.5 (3)	C7—C8—H8B	111.7
C2—C1—C8	109.5 (4)	C1—C8—H8B	111.7
O1—C1—H1	115.0	H8A—C8—H8B	109.5
C2—C1—H1	115.0	C10-C9-C14	119.7 (4)
C8-C1-H1	115.0	C10-C9-S1	120.1 (3)
$C_3 - C_2 - C_1$	107.2 (4)	C14-C9-S1	120.1(3)
C3—C2—H2	126.4	C11—C10—C9	119.5 (4)
C1-C2-H2	126.4	$C_{11} - C_{10} - H_{10}$	120.3
$C_2 - C_3 - C_4$	105 3 (4)	C9-C10-H10	120.3
C2—C3—H3	127.3	C10-C11-C12	121.4 (4)
C4-C3-H3	127.3	C10-C11-H11	119 3
01 - C4 - C5	112.9.(3)	C12— $C11$ — $H11$	119.3
01 - C4 - C3	112.9(3) 101.9(3)	$C_{12} = C_{11} = C_{11}$	117.8 (5)
C_{5}	101.9(5) 124.1(4)	C_{13} C_{12} C_{15}	117.8(5) 121.5(5)
$C_{3} - C_{4} - C_{3}$	124.1(4)	$C_{13}^{} C_{12}^{} C_{13}^{} C_{13}^{$	121.3(5)
$C_{1} - C_{4} - C_{7}$	97.3(3)	$C_{11} = C_{12} = C_{13}$	120.7(3)
$C_{3} = C_{4} = C_{7}$	100.9(3) 110.5(2)	C14 - C13 - C12	122.5 (5)
$C_{3} - C_{4} - C_{7}$	110.3(3) 102.8(3)	$C_{14} = C_{13} = H_{13}$	110.0
NI = C5 = U5 A	105.8 (5)	С12—С13—Н13	110.2 (4)
NI-C5-H5A	111.0	C12 - C14 - C9	119.5 (4)
C4—C5—H5A	111.0	C13 - C14 - H14	120.4
NI-C5-H5B	111.0	C9—C14—H14	120.4
C4—C5—H5B	111.0	C12—C15—H15A	109.5
H5A—C5—H5B	109.0	С12—С15—Н15В	109.5
N1—C6—C7	104.1 (3)	H15A—C15—H15B	109.5
N1—C6—H6A	110.9	C12—C15—H15C	109.5
С7—С6—Н6А	110.9	H15A—C15—H15C	109.5
N1—C6—H6B	110.9	H15B—C15—H15C	109.5
С7—С6—Н6В	110.9	C5—N1—C6	112.2 (3)
H6A—C6—H6B	108.9	C5—N1—S1	120.1 (3)
C6—C7—C8	117.7 (3)	C6—N1—S1	121.8 (2)
C6—C7—C4	101.7 (3)	C4—O1—C1	95.1 (3)
C8—C7—C4	102.9 (3)	O2—S1—O3	120.16 (19)
C6—C7—Br1	109.5 (3)	O2—S1—N1	107.28 (19)
C8—C7—Br1	113.4 (3)	O3—S1—N1	105.97 (18)
C4—C7—Br1	110.7 (3)	O2—S1—C9	107.7 (2)
C7—C8—C1	100.1 (3)	O3—S1—C9	107.9 (2)
С7—С8—Н8А	111.7	N1—S1—C9	107.18 (17)
O1—C1—C2—C3	31.5 (4)	C10-C11-C12-C13	1.0 (7)
C8—C1—C2—C3	-72.9 (5)	C10—C11—C12—C15	-180.0 (5)
C1—C2—C3—C4	0.8 (5)	C11—C12—C13—C14	-1.0 (7)
C2-C3-C4-O1	-33.6 (4)	C15—C12—C13—C14	-180.0 (5)
C2—C3—C4—C5	-162.1 (4)	C12—C13—C14—C9	0.2 (7)
C2—C3—C4—C7	68.9 (4)	C10-C9-C14-C13	0.6 (6)

O1-C4-C5-N1	80.2 (4)	S1-C9-C14-C13	-176.0 (3)
C3—C4—C5—N1	-156.0 (4)	C4—C5—N1—C6	7.1 (5)
C7—C4—C5—N1	-25.6 (4)	C4—C5—N1—S1	160.4 (3)
N1—C6—C7—C8	-139.8 (3)	C7—C6—N1—C5	14.3 (5)
N1—C6—C7—C4	-28.3 (4)	C7—C6—N1—S1	-138.6 (3)
N1—C6—C7—Br1	88.8 (3)	C5-C4-O1-C1	-174.3 (3)
O1—C4—C7—C6	-82.6 (3)	C3—C4—O1—C1	50.3 (3)
C5—C4—C7—C6	34.1 (4)	C7—C4—O1—C1	-62.5 (3)
C3—C4—C7—C6	171.8 (3)	C2-C1-O1-C4	-49.4 (3)
O1—C4—C7—C8	39.7 (4)	C8—C1—O1—C4	62.7 (3)
C5—C4—C7—C8	156.4 (4)	C5—N1—S1—O2	160.6 (3)
C3—C4—C7—C8	-65.9 (4)	C6—N1—S1—O2	-48.6 (4)
O1—C4—C7—Br1	161.2 (2)	C5—N1—S1—O3	31.1 (4)
C5—C4—C7—Br1	-82.2 (4)	C6—N1—S1—O3	-178.1 (3)
C3—C4—C7—Br1	55.6 (4)	C5—N1—S1—C9	-83.9 (3)
C6—C7—C8—C1	108.8 (4)	C6—N1—S1—C9	66.9 (3)
C4—C7—C8—C1	-2.0 (4)	C10—C9—S1—O2	23.2 (4)
Br1—C7—C8—C1	-121.5 (3)	C14—C9—S1—O2	-160.2 (3)
O1—C1—C8—C7	-35.8 (4)	C10—C9—S1—O3	154.3 (3)
C2—C1—C8—C7	69.5 (4)	C14—C9—S1—O3	-29.1 (4)
C14—C9—C10—C11	-0.6 (6)	C10—C9—S1—N1	-92.0 (3)
S1—C9—C10—C11	176.1 (3)	C14—C9—S1—N1	84.6 (3)
C9—C10—C11—C12	-0.3 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C6—H6A···O1 ⁱ	0.97	2.50	3.382 (6)	151
C10—H10…O2	0.93	2.59	2.937 (6)	103

Symmetry code: (i) -x+2, y+1/2, -z+1/2.