organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Ethyl-3-(3-fluorophenylsulfonyl)-2methyl-1-benzofuran

Hong Dae Choi,^a Pil Ja Seo,^a Byeng Wha Son^b and Uk Lee^b*

^aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and ^bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Received 7 April 2011; accepted 24 April 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.077; data-to-parameter ratio = 18.3.

In the title compound, $C_{17}H_{15}FO_3S$, the fluorophenyl ring makes a dihedral angle of 76.11 (5)° with the mean plane of the benzofuran fragment. In the crystal, molecules are linked by weak intermolecular C-H···O hydrogen bonds and C-H··· π interactions.

Related literature

For the biological activity of benzofuran compounds, see: Aslam *et al.* (2009); Galal *et al.* (2009); Khan *et al.* (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto *et al.* (2003). For structural studies of related 5-alkyl-3-(4-fluorophenylsulfonyl)-2-methyl-1-benzofurans, see: Choi *et al.* (2010*a*,*b*,*c*).

Experimental

Crystal data $C_{17}H_{15}FO_3S$ $M_r = 318.35$

Orthorhombic, $P2_12_12_1$ *a* = 8.4395 (1) Å b = 11.3701 (2) Å c = 15.3559 (2) Å V = 1473.52 (4) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\rm min} = 0.920, T_{\rm max} = 0.962$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.032 & \Delta\rho_{max} = 0.23 \text{ e } \text{\AA}^{-3} \\ wR(F^2) &= 0.077 & \Delta\rho_{min} = -0.30 \text{ e } \text{\AA}^{-3} \\ S &= 1.09 & \text{Absolute structure: Flack (1983),} \\ 3665 \text{ reflections} & 1555 \text{ Friedel pairs} \\ 200 \text{ parameters} & \text{Flack parameter: } -0.01 \text{ (6)} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C2-C7 benzene ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C6-H6\cdotsO2^{i}$ $C13-H13\cdotsO3^{ii}$ $C9-H9A\cdots Cg^{iii}$	0.95 0.95 0.99	2.49 2.51 2.68	3.206 (2) 3.395 (2) 3.625 (2)	133 155 159
Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$	$-x + \frac{1}{2}, -y +$	$-1, z + \frac{1}{2};$ (ii)	$-x+1, y-\frac{1}{2}, -$	$z + \frac{1}{2};$ (iii)

Mo $K\alpha$ radiation

 $0.35 \times 0.25 \times 0.16 \text{ mm}$

14844 measured reflections

3665 independent reflections

3453 reflections with $I > 2\sigma(I)$

 $\mu = 0.24 \text{ mm}^{-3}$

T = 173 K

 $R_{\rm int} = 0.035$

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2350).

References

- Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.
- Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). *Microbiol. Res.* **164**, 191–195.
- Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1067.
- Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1813.
- Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o2575.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.
- Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). *Phytochemistry*, 64, 831–834.

supporting information

Acta Cryst. (2011). E67, o1278 [doi:10.1107/S1600536811015443]

5-Ethyl-3-(3-fluorophenylsulfonyl)-2-methyl-1-benzofuran

Hong Dae Choi, Pil Ja Seo, Byeng Wha Son and Uk Lee

S1. Comment

Many compounds having a benzofuran skeleton exhibit interesting biological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam *et al.*, 2009; Galal *et al.*, 2009; Khan *et al.*, 2005). These compounds occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto *et al.*, 2003). As a part of our ongoing study of the substituent effect on the solid state structures of 5-alkyl-3-(4-fluorophenylsulfonyl)-2-methyl-1-benzofuran analogues (Choi *et al.*, 2010*a*,*b*,*c*), we report herein on the molecular and crystal structures of the title compound.

The title compound crystallizes in the non-centrosymmetric space group $P2_12_12_1$ in spite of having no asymmetric C atoms.

In the title compound (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.017 (1) Å from the least-squares plane defined by the nine constituent atoms. The 3-fluorophenyl ring makes a dihedral angle of 76.11 (5)° with the mean plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by weak intermolecular C– H···O hydrogen bonds; the first one between a benzene H atom and the O atom of the sulfonyl group (Table 1; C6– H6···O2ⁱ), and the second one between a 3-fluorophenyl H atom and the O atom of the sulfonyl (Table 1; C13– H13···O3ⁱⁱ). The crystal packing (Fig. 3) is further stabilized by intermolecular C–H··· π interactions between a methylene H atom of the ethyl group and the benzene ring (Table 1; C9–H9A···Cgⁱⁱⁱ, Cg is the centroid of the C2···C7 benzene ring).

S2. Experimental

77% 3-Chloroperoxybenzoic acid (560 mg, 2.5 mmol) was added in small portions to a stirred solution of 5-ethyl-3-(3fluorophenylsulfanyl)-2-methyl-1-benzofuran (320 mg, 1.2 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 6 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 ν/ν) to afford the title compound as a colorless solid [yield 71%, m.p. 395-396 K; R_f = 0.51 (hexane-ethyl acetate, 2:1 ν/ν)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in diisopropyl ether at room temperature.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. $U_{iso}(H) = 1.2U_{eq}(C)$ for aryl and methylene H atoms, and $1.5U_{eq}(C)$ for methyl H atoms.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Figure 2

A view of the C–H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x+1/2, -y+1, z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iv) -x+1/2, -y+1, z-1/2; (v) -x+1, y+1/2, -z+1/2].

Figure 3

A view of the C–H··· π interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (iii) x-1/2, -y+1/2, -z+1; (vi) x+1/2, -y+1/2, -z+1].

5-Ethyl-3-(3-fluorophenylsulfonyl)-2-methyl-1-benzofuran

Crystal data	
C ₁₇ H ₁₅ FO ₃ S	$D_{\rm x} = 1.435 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 318.35$	Melting point: 395 K
Orthorhombic, $P2_12_12_1$	Mo Ka radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 6176 reflections
a = 8.4395 (1) Å	$\theta = 2.2 - 27.6^{\circ}$
b = 11.3701(2) Å	$\mu = 0.24 \text{ mm}^{-1}$
c = 15.3559(2) Å	T = 173 K
V = 1473.52 (4) Å ³	Block, colourless
Z=4	$0.35 \times 0.25 \times 0.16 \text{ mm}$
F(000) = 664	
Data collection	
Bruker SMART APEXII CCD	14844 measured reflections
diffractometer	3665 independent reflections
Radiation source: rotating anode	3453 reflections with $I > 2\sigma(I)$
Graphite multilayer monochromator	$R_{\rm int} = 0.035$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
φ and ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -14 \rightarrow 15$
(SADABS; Bruker, 2009)	$l = -19 \rightarrow 20$
$T_{\min} = 0.920, T_{\max} = 0.962$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.077$	H-atom parameters constrained
S = 1.09	$w = 1/[\sigma^2(F_o^2) + (0.0404P)^2 + 0.1728P]$
3665 reflections	where $P = (F_o^2 + 2F_c^2)/3$
200 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta ho_{ m max} = 0.23 \ { m e} \ { m \AA}^{-3}$
0 constraints	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 1555 Friedel
direct methods	pairs
	Absolute structure parameter: -0.01 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	V	Z	U_{iso}^*/U_{eq}	
<u>S1</u>	0.55279 (4)	0.61633 (3)	0.30198 (2)	0.02203 (9)	
F1	0.83613 (14)	0.24805 (9)	0.20382 (9)	0.0530 (3)	
01	0.45021 (12)	0.62846 (9)	0.55130 (7)	0.0262 (2)	
O2	0.43231 (13)	0.56682 (11)	0.24756 (7)	0.0326 (3)	
03	0.59979 (14)	0.73710 (10)	0.29031 (8)	0.0320 (3)	
C1	0.49455 (16)	0.59635 (12)	0.40936 (9)	0.0208 (3)	
C2	0.41587 (16)	0.49312 (12)	0.44346 (9)	0.0203 (3)	
C3	0.36195 (16)	0.38604 (13)	0.40976 (9)	0.0221 (3)	
Н3	0.3794	0.3663	0.3504	0.027*	
C4	0.28224 (17)	0.30910 (13)	0.46495 (10)	0.0241 (3)	
C5	0.25768 (18)	0.34013 (14)	0.55252 (11)	0.0278 (3)	
H5	0.2020	0.2870	0.5891	0.033*	
C6	0.31114 (19)	0.44473 (15)	0.58750 (11)	0.0278 (3)	
H6	0.2944	0.4648	0.6468	0.033*	
C7	0.39063 (17)	0.51841 (13)	0.53065 (10)	0.0227 (3)	
C8	0.51210 (18)	0.67416 (13)	0.47591 (10)	0.0246 (3)	
C9	0.2197 (2)	0.19327 (14)	0.43146 (11)	0.0300 (4)	
H9A	0.2258	0.1931	0.3671	0.036*	
H9B	0.1066	0.1860	0.4479	0.036*	
C10	0.3089 (2)	0.08760 (15)	0.46610 (15)	0.0425 (5)	
H10A	0.4204	0.0929	0.4488	0.064*	
H10B	0.2625	0.0155	0.4422	0.064*	
H10C	0.3016	0.0860	0.5298	0.064*	
C11	0.5782 (2)	0.79444 (14)	0.48421 (12)	0.0351 (4)	
H11A	0.6645	0.7941	0.5269	0.042*	
H11B	0.4949	0.8484	0.5036	0.042*	
H11C	0.6191	0.8203	0.4276	0.042*	
C12	0.72448 (17)	0.52843 (13)	0.29036 (9)	0.0210 (3)	
C13	0.70954 (19)	0.41921 (14)	0.25199 (11)	0.0272 (3)	
H13	0.6099	0.3904	0.2327	0.033*	
C14	0.8463 (2)	0.35391 (15)	0.24302 (12)	0.0322 (4)	
C15	0.9925 (2)	0.39204 (16)	0.27131 (11)	0.0327 (4)	
H15	1.0838	0.3439	0.2649	0.039*	

supporting information

C16	1.00295 (19)	0.50192 (15)	0.30918 (11)	0.0312 (3)	
H16	1.1028	0.5301	0.3288	0.037*	
C17	0.86942 (18)	0.57153 (13)	0.31887 (10)	0.0251 (3)	
H17	0.8769	0.6473	0.3445	0.030*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.02206 (16)	0.02353 (17)	0.02051 (16)	0.00299 (14)	0.00042 (13)	0.00420 (14)
F1	0.0469 (6)	0.0286 (6)	0.0835 (9)	0.0008 (5)	0.0124 (6)	-0.0213 (6)
01	0.0279 (5)	0.0269 (5)	0.0239 (5)	-0.0037 (5)	0.0046 (4)	-0.0048 (4)
O2	0.0275 (6)	0.0449 (7)	0.0254 (6)	0.0034 (5)	-0.0062 (5)	0.0003 (5)
O3	0.0394 (6)	0.0228 (5)	0.0337 (6)	0.0054 (5)	0.0075 (5)	0.0086 (5)
C1	0.0188 (6)	0.0215 (7)	0.0221 (7)	-0.0002 (5)	0.0015 (5)	0.0002 (5)
C2	0.0174 (6)	0.0217 (7)	0.0218 (7)	0.0023 (5)	0.0003 (5)	0.0016 (5)
C3	0.0209 (6)	0.0237 (7)	0.0216 (7)	0.0011 (6)	-0.0012 (5)	0.0008 (6)
C4	0.0195 (7)	0.0246 (8)	0.0282 (8)	-0.0002 (5)	-0.0018 (6)	0.0039 (6)
C5	0.0241 (8)	0.0310 (8)	0.0282 (8)	-0.0023 (6)	0.0045 (6)	0.0048 (6)
C6	0.0264 (7)	0.0334 (9)	0.0236 (8)	-0.0009 (6)	0.0056 (6)	0.0002 (6)
C7	0.0195 (6)	0.0247 (7)	0.0239 (7)	0.0007 (6)	0.0008 (5)	-0.0026 (6)
C8	0.0223 (7)	0.0266 (8)	0.0250 (7)	-0.0001 (6)	0.0026 (6)	-0.0011 (6)
C9	0.0302 (8)	0.0258 (8)	0.0341 (9)	-0.0071 (6)	-0.0021 (7)	0.0023 (7)
C10	0.0443 (10)	0.0253 (9)	0.0579 (13)	-0.0019 (7)	-0.0031 (9)	0.0033 (8)
C11	0.0406 (9)	0.0279 (8)	0.0368 (9)	-0.0094 (7)	0.0056 (8)	-0.0075 (7)
C12	0.0226 (6)	0.0204 (7)	0.0198 (7)	0.0005 (5)	0.0026 (5)	0.0043 (5)
C13	0.0262 (7)	0.0272 (8)	0.0281 (8)	-0.0038 (6)	0.0031 (6)	-0.0007 (6)
C14	0.0366 (9)	0.0231 (8)	0.0369 (9)	0.0007 (6)	0.0087 (8)	-0.0039 (6)
C15	0.0277 (7)	0.0301 (8)	0.0402 (9)	0.0067 (7)	0.0070 (7)	0.0047 (7)
C16	0.0228 (7)	0.0337 (8)	0.0372 (9)	-0.0014 (6)	-0.0036 (7)	0.0019 (7)
C17	0.0266 (7)	0.0229 (7)	0.0259 (8)	-0.0012 (6)	-0.0003 (6)	0.0008 (6)

Geometric parameters (Å, °)

<u>81—02</u>	1.4315 (12)	C9—C10	1.515 (2)	
S1—O3	1.4405 (12)	С9—Н9А	0.9900	
S1—C1	1.7356 (14)	С9—Н9В	0.9900	
S1—C12	1.7692 (14)	C10—H10A	0.9800	
F1-C14	1.3484 (19)	C10—H10B	0.9800	
O1—C8	1.3723 (18)	C10—H10C	0.9800	
O1—C7	1.3853 (18)	C11—H11A	0.9800	
C1—C8	1.360 (2)	C11—H11B	0.9800	
C1—C2	1.4466 (19)	C11—H11C	0.9800	
C2—C7	1.386 (2)	C12—C13	1.380 (2)	
C2—C3	1.399 (2)	C12—C17	1.389 (2)	
C3—C4	1.391 (2)	C13—C14	1.379 (2)	
С3—Н3	0.9500	C13—H13	0.9500	
C4—C5	1.406 (2)	C14—C15	1.378 (2)	
C4—C9	1.509 (2)	C15—C16	1.381 (3)	

C5—C6	1.381 (2)	C15—H15	0.9500
С5—Н5	0.9500	C16—C17	1.385 (2)
C6—C7	1.383 (2)	С16—Н16	0.9500
С6—Н6	0.9500	С17—Н17	0.9500
C8—C11	1.483 (2)		
O2—S1—O3	119.86 (7)	С4—С9—Н9В	108.9
O2—S1—C1	107.58 (7)	С10—С9—Н9В	108.9
O3—S1—C1	108.72 (7)	H9A—C9—H9B	107.7
O2—S1—C12	107.50 (7)	C9—C10—H10A	109.5
O3—S1—C12	107.48 (7)	C9—C10—H10B	109.5
C1—S1—C12	104.70 (7)	H10A—C10—H10B	109.5
C8—O1—C7	106.68 (12)	C9—C10—H10C	109.5
C8—C1—C2	107.81 (13)	H10A—C10—H10C	109.5
C8—C1—S1	126.72 (12)	H10B-C10-H10C	109.5
C2—C1—S1	125.46 (11)	C8—C11—H11A	109.5
C7—C2—C3	119.21 (13)	C8—C11—H11B	109.5
C7—C2—C1	104.59 (13)	H11A—C11—H11B	109.5
C3—C2—C1	136.17 (14)	C8—C11—H11C	109.5
C4—C3—C2	118.62 (14)	H11A—C11—H11C	109.5
С4—С3—Н3	120.7	H11B—C11—H11C	109.5
С2—С3—Н3	120.7	C13—C12—C17	122.18 (14)
C3—C4—C5	119.75 (14)	C13—C12—S1	118.45 (12)
C3—C4—C9	120.68 (14)	C17—C12—S1	119.36 (11)
C5—C4—C9	119.56 (14)	C14—C13—C12	116.78 (15)
C6—C5—C4	122.70 (15)	C14—C13—H13	121.6
С6—С5—Н5	118.7	C12—C13—H13	121.6
С4—С5—Н5	118.7	F1-C14-C15	118.59 (15)
C5—C6—C7	115.76 (15)	F1-C14-C13	118.16 (16)
С5—С6—Н6	122.1	C15—C14—C13	123.25 (16)
С7—С6—Н6	122.1	C14—C15—C16	118.35 (15)
C6—C7—O1	125.35 (14)	C14—C15—H15	120.8
C6—C7—C2	123.95 (14)	C16—C15—H15	120.8
O1—C7—C2	110.65 (13)	C15—C16—C17	120.67 (15)
C1—C8—O1	110.26 (13)	С15—С16—Н16	119.7
C1—C8—C11	134.90 (15)	С17—С16—Н16	119.7
O1—C8—C11	114.83 (13)	C16—C17—C12	118.77 (14)
C4—C9—C10	113.49 (14)	C16—C17—H17	120.6
С4—С9—Н9А	108.9	C12—C17—H17	120.6
С10—С9—Н9А	108.9		
O2—S1—C1—C8	-140.71 (14)	C2-C1-C8-O1	0.08 (17)
O3—S1—C1—C8	-9.51 (16)	S1—C1—C8—O1	179.27 (10)
C12—S1—C1—C8	105.13 (15)	C2-C1-C8-C11	-178.45 (17)
O2—S1—C1—C2	38.35 (14)	S1—C1—C8—C11	0.7 (3)
O3—S1—C1—C2	169.55 (12)	C7—O1—C8—C1	-0.53 (16)
C12—S1—C1—C2	-75.81 (13)	C7—O1—C8—C11	178.32 (13)
C8—C1—C2—C7	0.40 (16)	C3—C4—C9—C10	109.92 (17)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 benzene ring.

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H··· A
C6—H6···O2 ⁱ	0.95	2.49	3.206 (2)	133
С13—Н13…ОЗіі	0.95	2.51	3.395 (2)	155
C9—H9 <i>A</i> ··· <i>Cg</i> ⁱⁱⁱ	0.99	2.68	3.625 (2)	159

Symmetry codes: (i) -*x*+1/2, -*y*+1, *z*+1/2; (ii) -*x*+1, *y*-1/2, -*z*+1/2; (iii) *x*-1/2, -*y*+1/2, -*z*+1.