Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[di- μ-aqua-diaqua-di- μ_{6}-malonatocobalt(II)dipotassium(I)]

Adama Sy, ${ }^{\text {a }}$ Aliou Hamady Barry, ${ }^{\text {b }}$ Mohamed Gaye, ${ }^{\text {a }}$. Abdou Salam Sall ${ }^{\mathbf{a}}$ and Ahmed Driss ${ }^{\mathrm{c}}$
${ }^{\text {a}}$ Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, ${ }^{\text {b }}$ Département de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and ${ }^{\text {c }}$ Campus Universitaire, Département de Chimie, Faculté des Sciences, Université de Tunis, 1060 Tunis, Tunisia
Correspondence e-mail: mlgayeastou@yahoo.fr

Received 5 April 2011; accepted 6 April 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.022 ; w R$ factor $=0.057$; data-to-parameter ratio $=13.3$.

In the title complex, $\left[\mathrm{CoK}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}$, the Co atom is located on a position with site symmetry $2 / m$, the K atom and one water molecule are located on a mirror plane, and the malonate and one water molecule are located on a twofold rotation axis. The K^{1} atom is seven-coordinated by four carboxylate O atoms from four malonate ligands and by three water O atoms, forming a distorted polyhedron. The $\mathrm{Co}^{\mathrm{II}}$ atom is in an almost octahedral environment formed by four carboxylate O atoms from two malonate ligands and two water O atoms. The structure consists of layers parallel to (201) built up from edge-sharing KO_{7} and CoO_{6} polyhedra, which are connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding including water molecules into a three-dimensional network.

Related literature

For related structures, see: Baggio et al. (2003); Li et al. (2004); Zhao et al. (2007); Wang (2006).

Experimental

Crystal data
$\left[\mathrm{CoK}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=413.28$
Monoclinic, $\mathrm{C} 2 / \mathrm{m}$
$a=9.462$ (2) \AA
$b=11.014$ (3) \AA
$c=7.740(2) \AA$
$\beta=115.65(2)^{\circ}$

Data collection

Enraf-Nonius CAD-4
diffractometer
1825 measured reflections
835 independent reflections
813 reflections with $I>2 \sigma(I)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.057$
$S=1.15$
835 reflections
63 parameters

$$
\begin{aligned}
& V=727.1(3) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.81 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& 0.15 \times 0.13 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

$R_{\text {int }}=0.022$
Standard reflections: 2; every 120 minutes intensity decay: none

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.30$ e \AA^{-3}

Table 1
Selected bond lengths (\AA).

$\mathrm{Co} 1-\mathrm{O} 2$	$2.0584(11)$	$\mathrm{Co} 1-\mathrm{O} 1$	$2.1347(18)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
${\text { O1-HW1 } \cdots \mathrm{O}^{\text {iv }}}^{\text {iv }}$	$0.81(2)$	$1.91(2)$	$2.7077(17)$	$167(2)$
O4-HW2 $^{\mathrm{H}} \mathrm{O}^{\mathrm{H}}$	0.80 (3)	$2.03(3)$	$2.8372(18)$	$176(3)$

Symmetry codes: (i) $-x,-y,-z$; (iv) $-x+\frac{1}{2},-y+\frac{1}{2},-z$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5510).

References

Baggio, R., Garland, M. T. \& Perec, M. (2003). Acta Cryst. C59, m30-m32. Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands,
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Li, X., Cao, R., Sun, D., Yuan, D., Bi, W., Li, X. \& Wang, Y. (2004). J. Mol. Struct. 694, 205-210.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, D.-Q. (2006). Acta Cryst. E62, m1530-m1532.
Zhao, X.-J., Zhang, Z.-H., Wang, Y. \& Du, M. (2007). Inorg. Chim. Acta, 360, 1921-1928.

supporting information

Acta Cryst. (2011). E67, m601 [doi:10.1107/S1600536811012839]

Poly[di- μ-aqua-diaqua-di- μ_{6}-malonato-cobalt(II)dipotassium(I)]

Adama Sy, Aliou Hamady Barry, Mohamed Gaye, Abdou Salam Sall and Ahmed Driss

S1. Comment

The structure of the title compound is represented in Fig. 1. The $\mathrm{Co}^{\mathrm{II}}$ cations are in a near perfect octahedral geometry with all trans-octahedral angles being 180° and the K ions are all in seven coordinated environment. In the quasi-regular octahedral environment of the six-coordinated $\mathrm{Co}^{1 I}$ cation, basal coordination positions are occupied by four oxygen atoms from two malonate ligands with $\mathrm{Co}-\mathrm{O}$ distances of 2.0584 (11) \AA and the $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ angles in the range [86.32 (5)-93.68 (5) ${ }^{\circ}$. These values agree with those found in literature (Baggio et al., 2003; Li et al.). The apical coordination position are occupied by oxygen atoms from water mlecules with bond length [Co-O 2.1347 (18) \AA] and an angle value of 180.00 (11) which agree with the values observed for [$\mathrm{Co}($ malonate $)\left(\mathrm{H}_{2} \mathrm{O}\right]^{2-}$ cobalt complex (Zhao et al., 2007). The potassium cation has an O 7 donor set made up by four μ_{2}-bridging malonate oxygen atoms and one μ_{2} bridging water oxygen atoms and two water coordinated molecules. The K cations share four oxygen atoms bridges from malonate groups and two oxygen atoms from water molecule with Co cations. There are hydrogen bonds between water molecules and carbonyl groups of the malonate anions. The cations $\mathrm{Co}^{\mathrm{II}}$ and K^{I} are arranged in the following sequence: $\mathrm{Co}-\mathrm{K}-\mathrm{K}-\mathrm{Co}$. The metal atoms are found at linear positions $\left[\mathrm{K}-\mathrm{Co}-\mathrm{K}, 180.00(0)^{\circ}\right]$ as shown in Fig. 2. The Co-K distance is 3.5726 (13) \AA. Two K atoms are found to be very close together, having a distance of 4.2086 (14) \AA, which is a short metal-metal distance for these types of complexes. The insertion of two polyhedra of KO_{7} between two polyhedra of CoO_{6} results in long $\mathrm{Co}-\mathrm{Co}$ distances. These two types of geometries form zigzag layers parallel to the ac-plane and alternating with malonate groups along the b axis. The water oxygen atoms provide bridges between K cations. The different polyhedra are still bound to each other through edge-sharing with a compact layer structure defining narrow crossed channels.

S2. Experimental

In a round bottomed flask, cobalt acetate tetrahydrate ($0.4982 \mathrm{~g}, 2 \mathrm{mmol}$) dissoveld in a mixture of water and methanol $(10 \mathrm{ml}, 1: 1)$ was introduced. Imidazole ($0.2720 \mathrm{~g}, 4 \mathrm{mmol}$) dissolved in 10 ml of the same mixture was added. The solution turn pink. After 10 mn of stirring, 10 ml of a mixture of methanol and water ($10 \mathrm{ml}, 1: 1$) containing malonic acid $(0.2081 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{KOH}(0.2240 \mathrm{~g}, 4 \mathrm{mmol})$ was added to the pink solution. After 2 h under stirring, the suspension was filtered off and the precipitate was washed with water and diethyl ether before dring under $\mathrm{P}_{2} \mathrm{O}_{5}$. The compound was recrystallized in a mixture of water and dimethylformamide (1/1). After one week, suitable pink crystals for X-ray analyses was obtained. Yield: 72%. m.p. $228 \pm 1^{\circ} \mathrm{C}$. Anal. Calc. For $\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{12} \mathrm{~K}_{2} \mathrm{Co}\right]_{\mathrm{n}}(\%): C, 17.44 ; \mathrm{H}, 2.93$. Found: C,

S3. Refinement

The H atoms of the water molecules were located in a Fourier difference map and freely refined. H atoms of the CH_{2} groups were geometrically placed and refined with a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
An ORTEP view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level. Broken lines indicate hydrogen bonds.

Figure 2
Projection of the structure onto the c axis showing the polyhedra layers connected by the organics molecules.

Poly[di- μ-aqua-diaqua-di- μ_{6}-malonato-cobalt(II)dipotassium]

Crystal data

$\left[\mathrm{CoK}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=413.28$
Monoclinic, $C 2 / m$
Hall symbol: -C 2 y
$a=9.462(2) \AA$
$b=11.014$ (3) \AA
$c=7.740(2) \AA$
$\beta=115.65$ (2) ${ }^{\circ}$
$V=727.1(3) \AA^{3}$
$Z=2$
$F(000)=418$
$D_{\mathrm{x}}=1.888 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=11-15^{\circ}$
$\mu=1.81 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, pink
$0.15 \times 0.13 \times 0.10 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
1825 measured reflections
835 independent reflections
813 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.057$
$S=1.15$
835 reflections
63 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0236 P)^{2}+0.6549 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.33 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.30$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.045 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Co1	0.0000	0.0000	0.0000	$0.01988(16)$	
K1	$-0.27538(6)$	0.0000	$-0.49356(7)$	$0.03100(18)$	
O1	$0.0747(2)$	0.0000	$-0.2237(3)$	$0.0308(4)$	

O2	$0.15473(12)$	$0.13440(10)$	$0.15312(16)$	$0.0290(3)$	
O3	$0.24932(14)$	$0.31676(10)$	$0.26017(17)$	$0.0334(3)$	
O4	-0.5000	$-0.16509(19)$	-0.5000	$0.0479(5)$	
C1	$0.14331(17)$	$0.24844(13)$	$0.1464(2)$	$0.0234(3)$	
C2	0.0000	$0.3130(2)$	0.0000	$0.0519(8)$	0.50
H1	-0.0371	0.3657	0.0720	0.062^{*}	0.50
H2	0.0371	0.3657	-0.0720	0.062^{*}	$0.054(7)^{*}$
HW1	$0.134(2)$	$0.055(2)$	$-0.217(3)$	$0.066(8)^{*}$	
HW2	$-0.431(3)$	$-0.211(2)$	$-0.435(4)$		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.0200(2)$	$0.0129(2)$	$0.0208(2)$	0.000	$0.00322(16)$	0.000
K1	$0.0360(3)$	$0.0267(3)$	$0.0248(3)$	0.000	$0.0079(2)$	0.000
O1	$0.0357(9)$	$0.0200(7)$	$0.0416(10)$	0.000	$0.0215(8)$	0.000
O2	$0.0261(5)$	$0.0169(5)$	$0.0309(6)$	$-0.0021(4)$	$0.0001(4)$	$0.0004(4)$
O3	$0.0328(6)$	$0.0228(6)$	$0.0330(6)$	$-0.0090(4)$	$0.0034(5)$	$-0.0032(5)$
O4	$0.0287(9)$	$0.0348(10)$	$0.0599(13)$	0.000	$0.0000(9)$	0.000
C1	$0.0253(7)$	$0.0185(7)$	$0.0233(7)$	$-0.0039(6)$	$0.0076(6)$	$-0.0002(5)$
C2	$0.0451(15)$	$0.0169(11)$	$0.0555(17)$	0.000	$-0.0141(13)$	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Co} 1-\mathrm{O}^{2}{ }^{\text {i }}$	2.0584 (11)	$\mathrm{K} 1-\mathrm{O} 1^{\text {vii }}$	3.4628 (19)
$\mathrm{Co} 1-\mathrm{O} 2$	2.0584 (11)	K1-K1 ${ }^{\text {iv }}$	4.2086 (14)
$\mathrm{Co} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.0584 (11)	K1-HW2	2.89 (3)
$\mathrm{Co} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.0584 (11)	O1-K1 ${ }^{\text {vii }}$	3.4628 (19)
Col-O1	2.1347 (18)	O1—HW1	0.81 (2)
$\mathrm{Col}-\mathrm{Ol}^{\text {i }}$	2.1347 (18)	$\mathrm{O} 2-\mathrm{C} 1$	1.2598 (18)
$\mathrm{Col}-\mathrm{K} 1^{\text {i }}$	3.5726 (13)	$\mathrm{O} 2-\mathrm{K} 1^{\mathrm{i}}$	2.7987 (13)
Col-K1	3.5726 (13)	$\mathrm{O} 3-\mathrm{C} 1$	1.2582 (18)
K1-O4	2.7811 (15)	$\mathrm{O} 3-\mathrm{K} 1^{\text {viii }}$	2.8541 (14)
$\mathrm{K} 1-\mathrm{O} 4^{\text {iv }}$	2.7811 (15)	O4-K1 ${ }^{\text {iv }}$	2.7810 (15)
$\mathrm{K} 1-\mathrm{O} 2^{\text {iii }}$	2.7987 (13)	O4-HW2	0.80 (3)
$\mathrm{K} 1-\mathrm{O} 2^{\text {i }}$	2.7987 (13)	C1-C2	1.5157 (19)
$\mathrm{K} 1-\mathrm{O}^{\text {v }}$	2.8541 (14)	$\mathrm{C} 2-\mathrm{C} 1{ }^{\text {iii }}$	1.5157 (19)
$\mathrm{K} 1-\mathrm{O}^{\text {vi }}$	2.8541 (14)	$\mathrm{C} 2-\mathrm{H} 1$	0.9700
$\mathrm{K} 1-\mathrm{O} 1$	3.057 (2)	C2-H2	0.9700
$\mathrm{O} 2 \mathrm{i}-\mathrm{Co} 1-\mathrm{O} 2$	180.00 (11)	$\mathrm{O} 3{ }^{v}-\mathrm{K} 1-\mathrm{O} 1^{\text {vii }}$	49.62 (3)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 2{ }^{\text {ii }}$	88.03 (6)	$\mathrm{O} 3{ }^{\text {vi }}-\mathrm{K} 1-\mathrm{Ol}^{\text {vii }}$	49.62 (3)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 2{ }^{\text {ii }}$	91.97 (6)	$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 1^{\text {vii }}$	72.74 (6)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Co} 1-\mathrm{O} 2{ }^{\text {iii }}$	91.97 (6)	O4-K1-Co1	102.54 (2)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 2{ }^{\text {iii }}$	88.03 (6)	$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{Co} 1$	102.54 (2)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Co} 1-\mathrm{O} 2^{\text {iii }}$	180.0	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{Co} 1$	35.11 (2)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 1$	86.32 (5)	O2- ${ }^{\text {i }} 1-\mathrm{Co} 1$	35.11 (2)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 1$	93.68 (5)	$\mathrm{O}^{\mathrm{v}}-\mathrm{K} 1-\mathrm{Co} 1$	118.77 (3)

$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Co} 1-\mathrm{O} 1$	93.68 (5)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Co} 1-\mathrm{O} 1$	86.32 (5)
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{Ol}^{\text {i }}$	93.68 (5)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{Ol}^{\text {i }}$	86.32 (5)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Col}-\mathrm{Ol}^{\mathrm{i}}$	86.32 (5)
$\mathrm{O} 2{ }^{\text {iii] }}-\mathrm{Co} 1-\mathrm{Ol}^{\mathrm{i}}$	93.68 (5)
$\mathrm{O} 1-\mathrm{Col-O1}{ }^{\text {i }}$	180.00 (8)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{K} 1^{\text {i }}$	128.56 (3)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{K} 1^{\text {i }}$	51.44 (3)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Co} 1-\mathrm{K} 1^{\text {i }}$	51.44 (3)
$\mathrm{O} 2{ }^{\text {iii] }}-\mathrm{Co} 1-\mathrm{K} 1^{\mathrm{i}}$	128.56 (3)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{K} 1^{\text {i }}$	121.53 (5)
O1- ${ }^{\text {i }}$ Co1-K1 ${ }^{\text {i }}$	58.47 (5)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{K} 1$	51.44 (3)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{K} 1$	128.56 (3)
O2 ${ }^{\text {ii }}-\mathrm{Co} 1-\mathrm{K} 1$	128.56 (3)
O2 ${ }^{\text {iii] }}$ - $\mathrm{Co} 1-\mathrm{K} 1$	51.44 (3)
$\mathrm{O} 1-\mathrm{Col}-\mathrm{K} 1$	58.47 (5)
$\mathrm{O} 1-\mathrm{Col-K1}$	121.53 (5)
$\mathrm{K} 1{ }^{\mathrm{i}}$ - $\mathrm{Co} 1-\mathrm{K} 1$	180.0
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 4{ }^{\text {iv }}$	81.66 (7)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 2^{\text {iii }}$	111.08 (4)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 2^{\text {iii }}$	70.62 (3)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 2{ }^{\mathrm{i}}$	70.62 (3)
$\mathrm{O} 4^{\mathrm{iv}}-\mathrm{K} 1-\mathrm{O} 2^{\text {i }}$	111.08 (4)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 2^{\text {i }}$	63.86 (5)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 3^{\text {v }}$	78.97 (4)
$\mathrm{O} 4^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 3^{v}$	137.16 (4)
$\mathrm{O} 2{ }^{\text {iiil }}$-K1-O3 ${ }^{\text {v }}$	152.22 (4)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O}^{\text {v }}$	97.86 (4)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O}^{\text {vi }}$	137.16 (4)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 3^{\text {vi }}$	78.97 (4)
$\mathrm{O} 2{ }^{\text {iii] }}-\mathrm{K} 1-\mathrm{O} 3^{\text {vi }}$	97.86 (4)
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 3^{\text {vi }}$	152.22 (4)
$\mathrm{O} 3{ }^{v}-\mathrm{K} 1-\mathrm{O} 3^{\text {vi }}$	90.00 (5)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 1$	127.30 (3)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 1$	127.30 (3)
$\mathrm{O} 2{ }^{\text {iiii }}-\mathrm{K} 1-\mathrm{O} 1$	58.47 (4)
O2 ${ }^{\text {i }}$-K1-O1	58.47 (4)
O3 ${ }^{\text {v }}$-K1-O1	94.50 (4)
$\mathrm{O} 3{ }^{\text {vi }}-\mathrm{K} 1-\mathrm{O} 1$	94.50 (4)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 1^{\text {vii }}$	127.77 (3)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 1^{\text {vii }}$	127.77 (3)
$\mathrm{O} 2{ }^{\text {iiil }}$ - $\mathrm{K} 1-\mathrm{O} 1^{\text {vii }}$	118.90 (4)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 1^{\text {vii }}$	118.90 (4)

O3 ${ }^{\text {vi}}-\mathrm{K} 1-\mathrm{Col}$	118.77 (3)
O1—K1-Co1	36.53 (4)
O1 ${ }^{\text {vii }}$-K1-Co1	109.27 (4)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{K} 1^{\text {iv }}$	40.83 (3)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{K} 1^{\text {iv }}$	40.83 (3)
$\mathrm{O} 2{ }^{\text {iii }}$ - $\mathrm{K} 1-\mathrm{K} 1^{\text {iv }}$	91.05 (3)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{iv}}$	91.05 (3)
O3v-K1-K1 ${ }^{\text {iv }}$	110.98 (3)
$\mathrm{O} 3{ }^{\text {vi}}-\mathrm{K} 1-\mathrm{K} 1^{\text {iv }}$	110.98 (3)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{K} 1^{\text {iv }}$	143.21 (4)
$\mathrm{O} 1^{\text {vii }}$-K1-K1 ${ }^{\text {iv }}$	144.05 (4)
Co1-K1-K1 ${ }^{\text {iv }}$	106.68 (3)
O4-K1-HW2	16.2 (5)
$\mathrm{O} 4{ }^{\text {iv }}$-K1-HW2	95.2 (5)
O2iii-K1-HW2	107.8 (5)
O2-K1-HW2	57.0 (5)
O3 ${ }^{\text {- }-K 1-H W 2 ~}$	74.4 (6)
O3 ${ }^{\text {vi }}$-K1-HW2	150.2 (5)
O1-K1-HW2	111.6 (5)
O1 ${ }^{\text {vii }}$-K1-HW2	123.8 (6)
Co1-K1-HW2	91.0 (5)
K1 ${ }^{\text {iv }}$-K1-HW2	54.9 (5)
Col-O1-K1	85.00 (6)
Co1-O1-K1 ${ }^{\text {vii }}$	167.75 (8)
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {vii }}$	107.26 (6)
Col-O1-HW1	114.1 (18)
K1-O1-HW1	124.1 (16)
K1 ${ }^{\text {vii }}$-O1-HW1	59.3 (17)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Co} 1$	131.78 (10)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{K} 1^{\mathrm{i}}$	123.99 (10)
$\mathrm{Co} 1-\mathrm{O} 2-\mathrm{K} 1^{\text {i }}$	93.45 (4)
$\mathrm{C} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {viii }}$	128.27 (10)
$\mathrm{K} 1-\mathrm{O} 4-\mathrm{K} 1^{\text {iv }}$	98.34 (7)
$\mathrm{K} 1-\mathrm{O} 4-\mathrm{HW} 2$	89.5 (19)
$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 4-\mathrm{HW} 2$	146 (2)
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{O} 2$	122.62 (14)
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2$	115.27 (15)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	122.11 (15)
$\mathrm{C} 1 \mathrm{iii}-\mathrm{C} 2-\mathrm{C} 1$	124.1 (2)
$\mathrm{C} 1 \mathrm{iii}-\mathrm{C} 2-\mathrm{H} 1$	106.3
C1-C2-H1	106.3
$\mathrm{C} 1{ }^{\text {iii- }} \mathrm{C} 2-\mathrm{H} 2$	106.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	106.3
$\mathrm{H} 1-\mathrm{C} 2-\mathrm{H} 2$	106.4

[^0]
supporting information

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} W 1 \cdots \mathrm{O}^{\text {ix }}$	$0.81(2)$	$1.91(2)$	$2.7077(17)$	$167(2)$
$\mathrm{O} 4 — \mathrm{H} W 2 \cdots 3^{\mathrm{i}}$	$0.80(3)$	$2.03(3)$	$2.8372(18)$	$176(3)$

Symmetry codes: (i) $-x,-y,-z$; (ix) $-x+1 / 2,-y+1 / 2,-z$.

[^0]: Symmetry codes: (i) $-x,-y,-z$; (ii) $x,-y, z$; (iii) $-x, y,-z$; (iv) $-x-1,-y,-z-1$; (v) $x-1 / 2, y-1 / 2, z-1$; (vi) $x-1 / 2,-y+1 / 2, z-1$; (vii) $-x,-y,-z-1$; (viii) $x+1 / 2, y+1 / 2, z+1$.

