Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-\{(E)-N-[2-(1H-Inden-3-yl)ethyl]imino-methyl\}-1H-imidazole

Zhao Li, \ddagger Chong Tian, Wanli Nie* and Maxim V. Borzov

Key Laboratory of Synthetic and Natural Chemistry of the Ministry of Education, College of Chemistry and Material Science, the North-West University of Xi'an, Taibai Bei avenue 229, Xi'an 710069, Shaanxi Province, People's Republic of China Correspondence e-mail: niewl126@126.com

Received 17 March 2011; accepted 8 April 2011
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.044 ; ~ w R$ factor $=0.113$; data-to-parameter ratio $=8.8$.

The asymmetric unit of the title compound, $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3}$, contains two crystallographically independent molecules with very similar geometries. The imidazole and indenyl planes are approximately orthogonal, making dihedral angles of 88.21 (9) and $83.08(9) \% \mathrm{deg}$; in the two independent molecules. In the crystal, the imidazole units are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into chains parallel to the 101) plane stretched in the diagonal direction [translation vector ($\overline{1}, 1,0$); $C(4)$ motif]. Within a chain, there are two types of symmetrically nonequivalent alternating H -bonds which slightly differ in their parameters.

Related literature

For the structural parameters of 3-organyl substituted 1 H indenes (organic structures only), see: Sun et al. (2010) and references cited therein. For the structural parameters of 2-organyl- 1 H -imidazoles (organic structures only, not bi- or oligocyclic, non-ionic, recent publications only), see: LassalleKaiser et al. (2006). For the structural parameters of Li, Ti, and Zr complexes derived from $1 H$-imidazol(in)-2-yl side-chainfunctionalized cyclopentadienes see: Krut'ko et al. (2006); Nie et al. (2008); Wang et al. (2009); Ge et al. (2010). For the structural parameters of $1 H$-imidazol(in)-2-yl side-chainfunctionalized 3 -substituted 1 H -indene and Li-indenide, see: Sun et al. $(2009,2010)$. For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002). For preparation of 2-(1H-inden-3-yl)ethanamine, see: Winter et al. (1967).

Experimental

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3}$
$M_{r}=237.30$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.8827$ (5) A
$b=8.3326$ (7) \AA
$c=51.909(4) \AA$
$V=2544.5(4) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.36 \times 0.22 \times 0.14 \mathrm{~mm}$
Data collection
Bruker SMART APEXII
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.973, T_{\text {max }}=0.990$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.113 \quad$ independent and constrained
$S=1.03$
2939 reflections
333 parameters

13315 measured reflections 2939 independent reflections 2328 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.041$ refinement
$\Delta \rho_{\max }=0.14 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}_{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{~N} 2 B$	$0.80(4)$	$2.16(4)$	$2.935(4)$	$162(4)$
$\mathrm{N} 1 B-\mathrm{H} 1 B \cdots \mathrm{~N} 2 A^{\mathrm{i}}$	$0.92(4)$	$2.10(4)$	$3.006(4)$	$170(3)$

Symmetry code: (i) $x-1, y+1, z$.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL and OLEX2.

Financial support from the National Natural Science Foundation of China (project Nos. 20702041 and 21072157) and the Shaanxi Province Administration of Foreign Experts Bureau Foundation (grant No. 20106100079) is gratefully acknowledged. The authors are thankful to Mr Wang Minchang and Mr Su Pengfei (Xi'an Modern Chemistry Research Institute) for their help in carrying out the NMR spectroscopic and X-ray diffraction experiments.

[^0]
organic compounds

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262. Ge, F., Nie, W., Borzov, M. V. \& Churakov, A. V. (2010). Acta Cryst. E66, m546-m547
Krut'ko, D. P., Borzov, M. V., Liao, L., Nie, W., Churakov, A. V., Howard, J. A. K. \& Lemenovskii, D. A. (2006). Russ. Chem. Bull. 55, 1574-1580.

Lassalle-Kaiser, B., Guillot, R., Anxolabehere-Mallart, E. \& Aukauloo, A. (2006). Tetrahedron Lett. 47, 3379-3382.

Nie, W., Liao, L., Xu, W., Borzov, M. V., Krut'ko, D. P., Churakov, A. V., Howard, J. A. K. \& Lemenovskii, D. A. (2008). J. Organomet. Chem. 693, 2355-2368.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sun, Q., Nie, W. \& Borzov, M. V. (2010). Acta Cryst. E66, o285-o286. Sun, G., Tian, C., Nie, W. \& Borzov, M. V. (2009). Acta Cryst. E65, m478.
Wang, X., Nie, W., Ge, F. \& Borzov, M. V. (2009). Acta Cryst. C65, m255-m259. Winter, J. C., Gessner, P. K. \& Godse, D. D. (1967). J. Med. Chem. 10, 856-859.

supporting information

Acta Cryst. (2011). E67, o1165-o1166 [doi:10.1107/S1600536811013286]

2-\{(E)-N-[2-(1 H-Inden-3-yl)ethyl]iminomethyl\}-1 H-imidazole

Zhao Li, Chong Tian, Wanli Nie and Maxim V. Borzov

S1. Comment

1H-Imidazol(in)-2-yl side-chain functionalized cyclopentadiene-type (Cp) ligands were introduced into the organometallic chemistry, and, particularly into that of the Group 4 transition metals, not long ago (Krut'ko et al., 2006; Nie et al., 2008; Wang et al., 2009; Sun et al., 2009; Sun et al., 2010; Ge et al., 2010). All these compounds are usually considered to be prospective precursors for catalytic systems capable to effectively polymerize ethylene and α-olefins. However, in all of these previously reported ligands, the Cp - and imidazol-2-yl groups are linked by a $\mathrm{C}_{1}-$ or C_{2}-hydrocarbon bridge. Incorporating into the bridge another heteroatom groups capable of coordination towards a metal centre presents, this way, a logical step forward in the ligand design development. This contribution reports the first structural characterization of a potent tridentate ligand of the type where Cp - $(1 H$-inden-3-yl) and $1 H$-imidazol-2-yl groups are connected with a bridge with a $\mathrm{C}=\mathrm{N}$ imino-function.
The achiral title compound, $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3}$, I, was prepared by a condensation reaction of 2-($1 H$-inden-3-yl)ethanamine and $1 H$-imidazol-2-carbaldehyde. It crystallizes in a chiral space group $P 2_{1} 2_{1} 2_{1}$, with the c-axis of the lattice being very long comparatively to the others [51.909(4) \AA]. The asymmetric unit of I is presented by two crystallographically independent molecules with very close geometries (see Fig. 1). Imidazole moieties of the asymmetric unit are linked by NH $\cdots \mathrm{N}$ hydrogen bonds and the units assemble in chains parallel to $a 0 b$ plane stretched in the diagonal direction [translation vector ($-1,1,0$); $C(4)$ motif; see Fig. 2]. Within a chain, these hydrogen bonds slightly alternate (see Table).
Both indenyl groups are planar within $0.03 \AA$ and nearly parallel one to each other [interplane angle $\left.1.44(6)^{\circ}\right]$. Within the independent molecules, the imidazole and indenyl r. m. s. planes are approximately orthogonal [interplane angles 88.21 (9) and $\left.96.92(9)^{\circ}\right]$. However, the imidazole rings in the units form a noticible interplane angle [7.43 (11) ${ }^{\circ}$] what could be a result of their mutual hydrogen binding. The same binding could also be a reason of noticible twisting of the $\mathrm{C}=\mathrm{N}$ fragments in respect to the imidazole ring planes [torsion angles 7.5 (4) and $7.3(4)^{\circ}$].

Analysis of the Cambridge Structural database [CSD; Version 5.27, release May 2009; Allen, 2002; 317 entries, 483 fragments] reveals that the observed $\mathrm{C}=\mathrm{N}$ distances in I [1.251 (4) and 1.253 (4) \AA] are close to the median value for $\mathrm{C}=\mathrm{N}$ bond in Schiff bases derived from primary aliphatic amines and aromatic (and/or heteroaromatic) aldehydes (1.27 \AA). As for the $1 H$-inden-3-yl and $1 H$-imidazol-2-yl groups, all the bond lengths and angles are within normal ranges (for references, see Related literature section).

S2. Experimental

Methanol was refluxed with Mg powder until the metal dissolved and then distilled from over $\mathrm{Mg}(\mathrm{OMe})_{2} .1 \mathrm{H}-$ Imidazol-2-carbaldehyde was purchased from Fluka. 2-(1H-inden-3-yl)ethanamine was prepared as described by Winter et al., 1967.

Compound I: Solutions of 2-(1 H -inden-3-yl)ethanamine ($1.56 \mathrm{~g}, 10 \mathrm{mmol}$) and 1 H -imidazol-2-carbaldehyde ($0.96 \mathrm{~g}, 10$ mmol) in anhydrous methanol (total amount 20 ml) were mixed under stirring at 253 K , the reaction mixture was kept at
this temperature for 6 h and then cooled down to 233 K . The solution was removed from the wthite thin-crystalline precipitate with a canula. The precipitate was washed with small portions of cold diethyl ether and dried on the highvacuum line what gave $1.85 \mathrm{~g}(78 \%)$ of I. Single crystal of I suitable for the X-ray diffraction analysis was prepared by re-crystallization from anhydrous methanol (slow evaporation, ambient temperature).

S3. Refinement

Non-H atoms were refined anisotropically. All H atoms except of the ones located at nitrogen atom of the imidazole groups were treated as riding atoms with distances $\mathrm{C}-\mathrm{H}=0.97\left(\mathrm{CH}_{2}\right), 0.93 \AA\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right)$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$, and 1.2 $U_{\mathrm{eq}}(\mathrm{C})$, respectively. H atoms at N atoms were found from the difference Fourier synthesis and refined isotropically. Despite of the fact that an achiral compound I crystallizes in a chiral space group $P 2_{1} 2_{1} 2_{1}$, neither the absolute structure determination nor approval of the inversion twinning was possible due to evident reasons (Mo-K radiation with no atoms heavier than nitrogen). Thus, the refinement for I was preformed with the Friedel opposites merged (MERG 3 instruction).

Figure 1

Asymmetric unit of the compound I with labelling and thermal ellipsoids at the 50% probability level. Hydrogen bond is depicted as a dashed line.

Figure 2

Chain-assembling of the molecules of I. Prospective view along c-axis. Only atoms participating in the hydrogen bond formation are labeled. Hydrogen bonds are depicted as dashed lines.

2-\{(E)-N-[2-(1H-Inden-3-yl)ethyl]iminomethyl\}-1 H - imidazole

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3}$
$M_{r}=237.30$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=5.8827$ (5) \AA
$b=8.3326$ (7) \AA
$c=51.909$ (4) \AA
$V=2544.5$ (4) \AA^{3}
$Z=8$

$$
\begin{aligned}
& F(000)=1008 \\
& D_{\mathrm{x}}=1.239 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 8457 \text { reflections } \\
& \theta=2.4-28.2^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.36 \times 0.22 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.333 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.973, T_{\text {max }}=0.990$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.113$
$S=1.03$
2939 reflections
333 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

$$
\begin{aligned}
& 13315 \text { measured reflections } \\
& 2939 \text { independent reflections } \\
& 2328 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.041 \\
& \theta_{\max }=26.0^{\circ}, \theta_{\min }=2.4^{\circ} \\
& h=-7 \rightarrow 5 \\
& k=-10 \rightarrow 10 \\
& l=-64 \rightarrow 61
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.057 P)^{2}+0.4576 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \AA^{-3}$

Special details

Experimental. - NMR spectra were recorded on a Varian INOVA-400 instrument in CDCl_{3} at 298 K . For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra, the TMS resonances $\left(\delta_{\mathrm{H}}=0.0\right.$ and $\left.\delta_{\mathrm{C}}=0.0\right)$ were used as internal reference standards. - Chromatomass spectrum was measured on Agilent 6890 Series GC system equipped with HP 5973 mass-selective detector. - ${ }^{1} \mathrm{H}$ NMR: $\delta=2.93\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Indenyl- $\left.\mathrm{CH}_{2}\right), 3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ in indene), $3.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$ in indene), 7.15 ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{HC}=\mathrm{CH}$ in imidazole), $7.21,7.30,7.38,7.46$ (all m, all $1 \mathrm{H}, \mathrm{CH}$ in benzene ring of indene), 8.22 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}) .-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}: \delta=29.02\left(\right.$ Indenyl- $\left.\mathrm{CH}_{2}\right), 37.78\left(\mathrm{NCH}_{2}\right), 59.13\left(\mathrm{CH}_{2}\right.$ in indene), $118.70(=\mathrm{CH}$ in indene), $118.23,130.60$ (both br, $\mathrm{HC}=\mathrm{CH}$ in imidazole), $123.79,124.68,125.98,129.24$ (CH in benzene ring of indene), 141.38 ($=\mathrm{C}$ in indene), $144.24,144.88$ (C in benzene ring of indene), $152.86(\mathrm{HC=N})$. - EI MS $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%): 237$
(8) $[M], 141$ (9) [benztropilium], 128 (28) [benzpentafulvene], 115 (13) [indenilium], 109 (100) [$\left.\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3}\right], 108$ (36)
[$\left.\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3}\right], 82(25)\left[\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right], 81$ (82) $\left[\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2}\right]$.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1A	$0.6784(5)$	$0.2550(3)$	$0.62194(4)$	$0.0481(6)$
H1A	$0.616(7)$	$0.334(5)$	$0.6273(7)$	$0.092(15)^{*}$
N2A	$0.9145(4)$	$0.0506(3)$	$0.61856(4)$	$0.0490(6)$
N3A	$0.9748(5)$	$0.3849(3)$	$0.66146(4)$	$0.0510(6)$
C1A	$0.8760(5)$	$0.1896(3)$	$0.63011(5)$	$0.0439(7)$
C2A	$0.5871(6)$	$0.1520(4)$	$0.60450(5)$	$0.0549(8)$

H2A	0.4512	0.1645	0.5956	0.066*
C3A	0.7330 (5)	0.0284 (4)	0.60277 (5)	0.0534 (8)
H3A	0.7125	-0.0604	0.5922	0.064*
C4A	1.0258 (5)	0.2616 (4)	0.64897 (5)	0.0478 (7)
H4A	1.1664	0.2141	0.6519	0.057*
C5A	1.1416 (6)	0.4457 (4)	0.67957 (5)	0.0556 (8)
H5AA	1.1685	0.5587	0.6762	0.067*
H5AB	1.2841	0.3889	0.6772	0.067*
C6A	1.0601 (5)	0.4243 (4)	0.70698 (5)	0.0510 (8)
H6AA	0.9112	0.4731	0.7086	0.061*
H6AB	1.0437	0.3105	0.7104	0.061*
C7A	1.2152 (5)	0.4959 (3)	0.72690 (5)	0.0407 (6)
C8A	1.4034 (5)	0.5814 (4)	0.72351 (5)	0.0518 (7)
H8A	1.4662	0.6050	0.7075	0.062*
C9A	1.5019 (6)	0.6351 (4)	0.74873 (7)	0.0600 (8)
H9AA	1.6560	0.5959	0.7509	0.072*
H9AB	1.5016	0.7512	0.7501	0.072*
C10A	1.3448 (5)	0.5610 (3)	0.76792 (5)	0.0463 (7)
C11A	1.1729 (5)	0.4801 (3)	0.75462 (5)	0.0393 (6)
C12A	1.0062 (5)	0.3973 (3)	0.76790 (5)	0.0500 (7)
H12A	0.8936	0.3419	0.7590	0.060*
C13A	1.0092 (7)	0.3980 (4)	0.79442 (5)	0.0621 (9)
H13A	0.8967	0.3441	0.8036	0.074*
C14A	1.1783 (7)	0.4783 (5)	0.80745 (6)	0.0680 (10)
H14A	1.1796	0.4766	0.8254	0.082*
C15A	1.3455 (7)	0.5612 (4)	0.79457 (6)	0.0654 (10)
H15A	1.4572	0.6164	0.8036	0.078*
N1B	0.2511 (4)	0.7865 (3)	0.62860 (4)	0.0468 (6)
H1B	0.143 (6)	0.860 (4)	0.6239 (6)	0.071 (11)*
N2B	0.4626 (4)	0.5689 (3)	0.62951 (4)	0.0510 (6)
N3B	-0.0309 (5)	0.6341 (3)	0.59023 (4)	0.0513 (6)
C1B	0.2802 (5)	0.6370 (4)	0.61924 (5)	0.0443 (7)
C2B	0.4232 (5)	0.8149 (4)	0.64549 (5)	0.0541 (8)
H2B	0.4474	0.9081	0.6549	0.065*
C3B	0.5514 (5)	0.6812 (4)	0.64584 (5)	0.0527 (8)
H3B	0.6816	0.6673	0.6557	0.063*
C4B	0.1292 (5)	0.5614 (4)	0.60103 (5)	0.0473 (7)
H4B	0.1518	0.4536	0.5971	0.057*
C5B	-0.1762 (6)	0.5435 (4)	0.57281 (5)	0.0577 (8)
H5BA	-0.3337	0.5575	0.5778	0.069*
H5BB	-0.1399	0.4302	0.5741	0.069*
C6B	-0.1461 (5)	0.5976 (4)	0.54526 (5)	0.0497 (7)
H6BA	-0.1654	0.7131	0.5444	0.060*
H6BB	0.0077	0.5731	0.5398	0.060*
C7B	-0.3092 (5)	0.5204 (3)	0.52707 (5)	0.0414 (6)
C8B	-0.4903 (5)	0.4293 (4)	0.53233 (5)	0.0529 (7)
H8B	-0.5359	0.4018	0.5489	0.063*
C9B	-0.6111 (5)	0.3769 (4)	0.50844 (6)	0.0560 (8)

H9BA	-0.6134	0.2609	0.5070	0.067^{*}
H9BB	-0.7658	0.4170	0.5081	0.067^{*}
C10B	$-0.4709(5)$	$0.4507(3)$	$0.48763(5)$	$0.0459(7)$
C11B	$-0.2911(4)$	$0.5363(3)$	$0.49889(5)$	$0.0388(6)$
C12B	$-0.1338(5)$	$0.6134(4)$	$0.48353(5)$	$0.0507(7)$
H12B	-0.0144	0.6706	0.4908	0.061^{*}
C13B	$-0.1569(6)$	$0.6040(4)$	$0.45713(6)$	$0.0631(9)$
H13B	-0.0517	0.6558	0.4467	0.076^{*}
C14B	$-0.3317(6)$	$0.5201(4)$	$0.44599(6)$	$0.0642(9)$
H14B	-0.3437	0.5154	0.4281	0.077^{*}
C15B	$-0.4900(6)$	$0.4426(4)$	$0.46121(6)$	$0.0578(8)$
H15B	-0.6085	0.3854	0.4537	0.069^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1A	0.0537 (16)	0.0473 (15)	0.0431 (12)	0.0049 (13)	-0.0006 (12)	-0.0032 (11)
N2A	0.0555 (15)	0.0510 (14)	0.0405 (11)	0.0040 (13)	-0.0006 (11)	-0.0071 (11)
N3A	0.0610 (16)	0.0558 (15)	0.0361 (10)	0.0018 (14)	-0.0071 (12)	-0.0014 (11)
C1A	0.0502 (16)	0.0463 (16)	0.0352 (12)	0.0020 (14)	0.0010 (13)	0.0042 (12)
C2A	0.0556 (18)	0.060 (2)	0.0493 (15)	-0.0018 (17)	-0.0098 (15)	-0.0027 (14)
C3A	0.0610 (18)	0.0567 (19)	0.0425 (14)	-0.0020 (17)	-0.0021 (14)	-0.0092 (14)
C4A	0.0515 (17)	0.0516 (17)	0.0404 (13)	0.0030 (15)	-0.0016 (14)	0.0024 (13)
C5A	0.0615 (19)	0.057 (2)	0.0488 (15)	-0.0048 (17)	-0.0009 (15)	-0.0056 (14)
C6A	0.0495 (17)	0.060 (2)	0.0429 (13)	-0.0078 (16)	-0.0047 (13)	-0.0053 (13)
C7A	0.0378 (14)	0.0359 (14)	0.0485 (14)	0.0015 (13)	-0.0039 (12)	-0.0006 (12)
C8A	0.0460 (16)	0.0516 (18)	0.0578 (16)	-0.0050 (15)	-0.0026 (14)	0.0062 (14)
C9A	0.0421 (15)	0.0497 (17)	0.088 (2)	-0.0053 (15)	-0.0163 (16)	-0.0005 (16)
C10A	0.0431 (15)	0.0377 (15)	0.0582 (16)	0.0068 (14)	-0.0153 (14)	-0.0095 (13)
C11A	0.0414 (15)	0.0312 (13)	0.0453 (13)	0.0047 (12)	-0.0065 (12)	-0.0030 (11)
C12A	0.0539 (17)	0.0439 (16)	0.0521 (15)	-0.0039 (15)	-0.0037 (15)	-0.0002 (13)
C13A	0.076 (2)	0.062 (2)	0.0486 (15)	0.007 (2)	0.0017 (17)	0.0053 (15)
C14A	0.088 (3)	0.072 (2)	0.0447 (16)	0.022 (2)	-0.0061 (18)	-0.0082 (16)
C15A	0.073 (2)	0.060 (2)	0.0635 (19)	0.010 (2)	-0.0289 (18)	-0.0162 (17)
N1B	0.0498 (15)	0.0462 (14)	0.0445 (12)	0.0052 (13)	-0.0047 (12)	-0.0026 (11)
N2B	0.0510 (15)	0.0540 (15)	0.0480 (12)	0.0078 (13)	0.0008 (12)	0.0008 (12)
N3B	0.0612 (15)	0.0544 (15)	0.0384 (11)	-0.0022 (14)	-0.0042 (12)	-0.0049 (11)
C1B	0.0484 (16)	0.0462 (16)	0.0382 (12)	0.0013 (14)	0.0033 (13)	0.0007 (12)
C2B	0.0565 (19)	0.0560 (19)	0.0498 (15)	-0.0073 (17)	-0.0081 (15)	-0.0078 (14)
C3B	0.0495 (17)	0.062 (2)	0.0464 (15)	-0.0006 (16)	-0.0071 (14)	0.0015 (14)
C4B	0.0630 (18)	0.0413 (15)	0.0376 (13)	0.0011 (15)	0.0012 (13)	0.0026 (12)
C5B	0.0613 (19)	0.063 (2)	0.0486 (15)	-0.0129 (18)	-0.0072 (15)	-0.0007 (14)
C6B	0.0500 (17)	0.0567 (18)	0.0422 (13)	-0.0045 (15)	-0.0042 (13)	-0.0030 (13)
C7B	0.0404 (14)	0.0396 (15)	0.0442 (13)	-0.0017 (13)	-0.0025 (12)	-0.0034 (12)
C8B	0.0511 (17)	0.0542 (18)	0.0532 (15)	-0.0044 (16)	0.0016 (14)	0.0039 (14)
C9B	0.0413 (16)	0.0535 (18)	0.0732 (19)	-0.0068 (15)	-0.0060 (15)	-0.0093 (15)
C10B	0.0419 (15)	0.0378 (14)	0.0580 (15)	0.0063 (13)	-0.0094 (14)	-0.0076 (13)
C11B	0.0378 (13)	0.0297 (13)	0.0489 (14)	0.0034 (12)	-0.0062 (12)	-0.0042 (11)

C12B	$0.0501(17)$	$0.0502(17)$	$0.0520(15)$	$-0.0043(16)$	$-0.0040(14)$	$-0.0018(13)$
C13B	$0.067(2)$	$0.071(2)$	$0.0509(16)$	$0.000(2)$	$0.0056(16)$	$-0.0003(16)$
C14B	$0.072(2)$	$0.074(2)$	$0.0472(15)$	$0.014(2)$	$-0.0115(17)$	$-0.0101(16)$
C15B	$0.0548(18)$	$0.0578(19)$	$0.0608(17)$	$0.0079(17)$	$-0.0197(16)$	$-0.0173(15)$

Geometric parameters (\AA, ${ }^{\circ}$)

N1A-C1A	1.352 (4)	N1B-C1B	1.348 (4)
N1A-C2A	1.358 (4)	N1B-C2B	1.360 (4)
N1A-H1A	0.80 (4)	N1B-H1B	0.92 (4)
N2A-C1A	1.324 (4)	N2B-C1B	1.326 (4)
N2A-C3A	1.359 (4)	N2B-C3B	1.366 (4)
N3A-C4A	1.251 (3)	N3B-C4B	1.253 (4)
N3A-C5A	1.451 (4)	N3B-C5B	1.456 (4)
C1A-C4A	1.448 (4)	C1B-C4B	1.442 (4)
C2A-C3A	1.344 (4)	C2B-C3B	1.345 (4)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	0.9300	C2B-H2B	0.9300
$\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	0.9300	C3B-H3B	0.9300
C4A-H4A	0.9300	C4B-H4B	0.9300
C5A-C6A	1.512 (4)	C5B-C6B	1.510 (4)
C5A-H5AA	0.9700	C5B-H5BA	0.9700
C5A-H5AB	0.9700	C5B-H5BB	0.9700
C6A-C7A	1.502 (4)	C6B-C7B	1.492 (4)
C6A-H6AA	0.9700	C6B-H6BA	0.9700
C6A-H6AB	0.9700	C6B-H6BB	0.9700
C7A-C8A	1.328 (4)	C7B-C8B	1.336 (4)
C7A-C11A	1.466 (3)	C7B-C11B	1.473 (3)
C8A-C9A	1.500 (4)	C8B-C9B	1.495 (4)
C8A-H8A	0.9300	C8B-H8B	0.9300
C9A-C10A	1.492 (5)	C9B-C10B	1.491 (4)
C9A-H9AA	0.9700	C9B-H9BA	0.9700
C9A-H9AB	0.9700	C9B-H9BB	0.9700
C10A-C15A	1.383 (4)	C10B-C15B	1.377 (4)
C10A-C11A	1.397 (4)	C10B-C11B	1.403 (4)
C11A-C12A	1.383 (4)	C11B-C12B	1.380 (4)
C12A-C13A	1.377 (4)	C12B-C13B	1.379 (4)
C12A-H12A	0.9300	C12B-H12B	0.9300
C13A-C14A	1.377 (5)	C13B-C14B	1.371 (5)
C13A-H13A	0.9300	C13B-H13B	0.9300
C14A-C15A	1.375 (5)	C14B-C15B	1.382 (5)
C14A-H14A	0.9300	C14B-H14B	0.9300
C15A-H15A	0.9300	C15B-H15B	0.9300
C1A-N1A-C2A	107.1 (3)	C1B-N1B-C2B	107.4 (3)
C1A-N1A-H1A	128 (3)	C1B-N1B-H1B	128 (2)
C2A-N1A-H1A	124 (3)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B}$	125 (2)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	104.9 (3)	$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	105.4 (3)
C4A-N3A-C5A	117.4 (3)	$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	118.0 (3)

$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	111.0 (3)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	124.4 (3)
N1A-C1A-C4A	124.7 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	106.0 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	127.0
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	127.0
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	110.9 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	124.5
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	124.5
N3A-C4A-C1A	123.0 (3)
N3A-C4A-H4A	118.5
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A}$	118.5
N3A-C5A-C6A	110.7 (2)
N3A-C5A-H5AA	109.5
C6A-C5A-H5AA	109.5
N3A-C5A-H5AB	109.5
C6A-C5A-H5AB	109.5
H5AA-C5A-H5AB	108.1
C7A-C6A-C5A	114.1 (2)
C7A-C6A-H6AA	108.7
C5A-C6A-H6AA	108.7
C7A-C6A-H6AB	108.7
C5A-C6A-H6AB	108.7
H6AA-C6A-H6AB	107.6
C8A-C7A-C11A	108.6 (3)
C8A-C7A-C6A	128.9 (3)
C11A-C7A-C6A	122.5 (2)
C7A-C8A-C9A	111.5 (3)
C7A-C8A-H8A	124.3
C9A-C8A-H8A	124.3
C10A-C9A-C8A	102.7 (3)
C10A-C9A-H9AA	111.2
C8A-C9A-H9AA	111.2
C10A-C9A-H9AB	111.2
C8A-C9A-H9AB	111.2
H9AA-C9A-H9AB	109.1
C15A-C10A-C11A	119.8 (3)
C15A-C10A-C9A	131.7 (3)
C11A-C10A-C9A	108.5 (2)
C12A-C11A-C10A	120.5 (2)
C12A-C11A-C7A	130.8 (3)
C10A-C11A-C7A	108.6 (2)
C13A-C12A-C11A	119.2 (3)
C13A-C12A-H12A	120.4
C11A-C12A-H12A	120.4
C14A-C13A-C12A	120.2 (3)
C14A-C13A-H13A	119.9
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{H} 13 \mathrm{~A}$	119.9

$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	110.6 (3)
N2B-C1B-C4B	125.1 (3)
N1B-C1B-C4B	124.2 (3)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	106.4 (3)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	126.8
N1B-C2B-H2B	126.8
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	110.1 (3)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	124.9
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	124.9
N3B-C4B-C1B	123.0 (3)
N3B-C4B-H4B	118.5
C1B-C4B-H4B	118.5
N3B-C5B-C6B	111.4 (3)
N3B-C5B-H5BA	109.4
C6B-C5B-H5BA	109.4
N3B-C5B-H5BB	109.4
C6B-C5B-H5BB	109.4
H5BA-C5B-H5BB	108.0
C7B-C6B-C5B	113.3 (3)
C7B-C6B-H6BA	108.9
C5B-C6B-H6BA	108.9
C7B-C6B-H6BB	108.9
C5B-C6B-H6BB	108.9
H6BA-C6B-H6BB	107.7
C8B-C7B-C11B	108.2 (2)
C8B-C7B-C6B	128.9 (2)
C11B-C7B-C6B	122.9 (2)
C7B-C8B-C9B	112.0 (3)
C7B-C8B-H8B	124.0
C9B-C8B-H8B	124.0
C10B-C9B-C8B	102.6 (2)
C10B-C9B-H9BA	111.2
C8B-C9B-H9BA	111.2
C10B-C9B-H9BB	111.2
C8B-C9B-H9BB	111.2
H9BA-C9B-H9BB	109.2
C15B-C10B-C11B	120.1 (3)
C15B-C10B-C9B	131.0 (3)
C11B-C10B-C9B	108.9 (2)
C12B-C11B-C10B	120.1 (2)
C12B-C11B-C7B	131.6 (3)
C10B-C11B-C7B	108.3 (2)
C13B-C12B-C11B	118.8 (3)
C13B-C12B-H12B	120.6
C11B-C12B-H12B	120.6
C14B-C13B-C12B	121.5 (3)
C14B-C13B-H13B	119.3
C12B-C13B-H13B	119.3

C15A-C14A-C13A	121.5 (3)
C15A-C14A-H14A	119.3
C13A-C14A-H14A	119.3
C14A-C15A-C10A	118.9 (3)
C14A-C15A-H15A	120.5
C10A-C15A-H15A	120.5
C3A-N2A-C1A-N1A	-0.4 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	179.5 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	0.3 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	-179.6 (3)
C1A-N1A-C2A-C3A	-0.1 (3)
N1A-C2A-C3A-N2A	-0.2 (3)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	0.4 (3)
C $5 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	-179.3 (2)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}$	-172.7 (3)
N1A-C1A-C4A-N3A	7.3 (4)
C4A-N3A-C5A-C6A	-111.5 (3)
N3A-C5A-C6A-C7A	-175.5 (3)
C5A-C6A-C7A-C8A	4.2 (5)
C5A-C6A-C7A-C11A	-176.5 (3)
C11A-C7A-C8A-C9A	-1.6 (3)
C6A-C7A-C8A-C9A	177.8 (3)
C7A-C8A-C9A-C10A	2.2 (3)
C8A-C9A-C10A-C15A	178.0 (3)
C8A-C9A-C10A-C11A	-2.0 (3)
C15A-C10A-C11A-C12A	-1.4 (4)
C9A-C10A-C11A-C12A	178.6 (3)
C15A-C10A-C11A-C7A	-178.8 (3)
C9A-C10A-C11A-C7A	1.2 (3)
C8A-C7A-C11A-C12A	-176.8 (3)
C6A-C7A-C11A-C12A	3.8 (5)
C8A-C7A-C11A-C10A	0.2 (3)
C6A-C7A-C11A-C10A	-179.2 (3)
C10A-C11A-C12A-C13A	1.2 (4)
C7A-C11A-C12A-C13A	177.9 (3)
C11A-C12A-C13A-C14A	-0.9 (5)
C12A-C13A-C14A-C15A	0.9 (5)
C13A-C14A-C15A-C10A	-1.1(5)
C11A-C10A-C15A-C14A	1.3 (5)
C9A-C10A-C15A-C14A	-178.7 (3)

C13B-C14B-C15B	$120.2(3)$
C13B-C14B-H14B	119.9
C15B-C14B-H14B	119.9
C10B-C15B-C14B	$119.4(3)$
C10B-C15B-H15B	120.3
C14B-C15B-H15B	120.3

-0.4 (3)
-178.9 (3)
0.2 (3)
178.8 (3)
0.0 (3)
-0.2 (3)
0.4 (3)
-178.1 (3)
-174.1 (3)
7.5 (4)
-112.1 (3)
-173.8 (3)
9.4 (5)
-170.9 (3)
-0.4 (3)
179.3 (3)
0.5 (3)
177.8 (3)
-0.3 (3)
0.4 (4)
178.8 (3)
-178.3 (3)
0.1 (3)
-178.2 (3)
2.0 (5)
0.2 (3)
-179.6 (3)
-0.1 (4)
178.1 (3)
-0.1 (5)
0.1 (5)
-0.4 (4)
-178.3 (3)
0.1 (5)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{~N} 2 B$	$0.80(4)$	$2.16(4)$	$2.935(4)$	$162(4)$

supporting information

$\mathrm{N} 1 B-\mathrm{H} 1 B \cdots \mathrm{~N} 2 A$
$0.92(4) \quad 2.10(4) \quad 3.006(4)$
170 (3)

Symmetry code: (i) $x-1, y+1, z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2276).

