## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

# Bis(5-phenyl-1H-1,2,4-triazol-3-yl) disulfide dihydrate 

Ai-Xin Zhu, ${ }^{\text {a* }}$ Jun-Na Liu, ${ }^{\mathbf{b}}$ Zhen Li, ${ }^{\text {a }}$ Hong-Can Wang ${ }^{\text {a }}$ and Yuan-Chao Du ${ }^{\text {a }}$

${ }^{\text {a }}$ Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemical Engineering, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
Correspondence e-mail: zaxchem@126.com

Received 2 April 2011; accepted 19 April 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; $R$ factor $=0.042 ; w R$ factor $=0.120$; data-to-parameter ratio $=16.6$.

A crystallographic twofold axis passing through the centre of the disulfide linkage in the title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{~S}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, results in one-half of the molecule and one uncoordinated water molecule described in the asymmetric unit. In the molecule, the mean planes of the benzene and triazole rings are close to being coplanar and are separated by a dihedral angle of $2.08(15)^{\circ}$. The triazole rings are twisted by a dihedral angle of 37.67 (6) ${ }^{\circ}$ from the disulfide linkage. The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds with the water molecules, forming a three-dimensional supramolecular network.

## Related literature

For applications of 1,2,4-triazole and its derivatives in coordination chemistry, see: Zhang et al. (2005); Ouellette et al. (2007); Zhu et al. (2009). For the related structure of a 1,2,4-triazole-based disulfide compound, see: Jiang et al. (2007). For the previous synthesis of the title compound, see: El-Wareth \& Sarhan (2000).


## Experimental

Crystal data

$$
\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{~S}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad M_{r}=388.47
$$

Monoclinic, C2/c
$a=12.3911$ (13) $\AA$
$b=14.7125(16) \AA$
$c=10.2966$ (11) $\AA$
$\beta=104.125$ (2) ${ }^{\circ}$
$V=1820.4(3) \AA^{3}$

## Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.884, T_{\text {max }}=0.945$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.120$
$S=1.06$
1953 reflections
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.40 \times 0.20 \times 0.18 \mathrm{~mm}$

7210 measured reflections
1953 independent reflections 1679 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$

118 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ( $\mathrm{A},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1-\mathrm{H} 1 C \cdots \mathrm{~N} 3$ | 0.90 | 2.02 | $2.9210(19)$ | 178 |
| $\mathrm{~N} 1-\mathrm{H} 1 B \cdots 1^{\mathrm{i}}$ | 0.86 | 1.90 | $2.7077(19)$ | 156 |
| $\mathrm{O}^{\mathrm{H}}-\mathrm{H} 1 D \cdots \mathrm{~N} 2^{\mathrm{ii}}$ | 0.84 | 2.07 | $2.909(2)$ | 171 |

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x,-y+1, z+\frac{1}{2}$.
Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank the Youth Foundation of Yunnan Normal University (grant No. 10QZ02), the Science Foundation of the Education Department of Yunnan Province (grant No. 2010Y004) and Henan University of Science and Technology for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2087).

## References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.
El-Wareth, A. \& Sarhan, A. O. (2000). Heteroat. Chem. 11, 399-402.
Jiang, W.-Q., Liu, T.-B., Zou, J.-P. \& Zhang, Y. (2007). Chin. J. Struct. Chem. 26, 445-449.
Ouellette, W., Prosvirin, A. V., Valeich, J., Dunbar, K. R. \& Zubieta, J. (2007). Inorg. Chem. 46, 9067-9082.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. \& Chen, X.-M. (2005). J. Am. Chem. Soc. 127, 5495-5506.
Zhu, A.-X., Lin, J.-B., Zhang, J.-P. \& Chen, X.-M. (2009). Inorg. Chem. 48, 3882-3889.

## supporting information

Acta Cryst. (2011). E67, o1208 [doi:10.1107/S1600536811014607]

## Bis(5-phenyl-1H-1,2,4-triazol-3-yl) disulfide dihydrate

Ai-Xin Zhu, Jun-Na Liu, Zhen Li, Hong-Can Wang and Yuan-Chao Du

## S1. Comment

In the past few years, 1,2,4-triazole and its derivatives have attracted increasing attention as an N-heterocyclic aromatic ligand, since they can combine both imidazoles and pyrazoles in their coordination geometry. In addition, metal-triazolate frameworks can exhibit special luminescent, magnetic and favourable gas-adsorption abilities (Ouellette et al., 2007; Zhang et al., 2005; Zhu et al., 2009). 1,2,4-triazole based thiols and disulfides are important 1,2,4-triazole derivatives, and may exhibit a more diverse coordination geometry by combining heterocyclic nitrogen and sulfur donor atoms, and therefore affect biological activity behaviour. However, only one example of a crystallographic study on organic 1,2,4triazole based disulfide compounds is found in the literature (Jiang et al. 2007). Although the synthesis of the compound 1,2-bis(5-phenyl-1H-1,2,4-triazol-3-yl)disulfide has been reported by El-Wareth \& Sarhan (2000), no crystallographic study has been reported on the ligand and related metal coordination compounds. We reported herein another synthetic method and the crystal structure of the title compound.

A crystallographic 2-fold axis passing through the centroid of the disulfide linkage in the title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{~S}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, results in one-half of the molecule and one uncoordinated water molecule described in the asymmetric unit (Fig. 1). In the molecule, the mean planes of the benzene and triazole rings are close to coplanar, separated by a dihedral angle of $2.08(15)^{\circ}$. The triazole rings are twisted by a dihedral angle of $37.67(6)^{\circ}$ from the disulfide linkage. Crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds with the water molecules forming a three-dimensional supramolecular network (Fig. 2).

## S2. Experimental

A mixture of iron dichloride tetrahydrate ( $40 \mathrm{mg}, 0.2 \mathrm{mmol}$ ), 3-phenyl- $1 \mathrm{H}-1,2,4$-triazole- $5(4 H)$-thione ( $35 \mathrm{mg}, 0.2$ mmol ), 8 ml methanol and 4 ml acetonitrile was stirred for 10 min , then filtered and allowed to stand at room temperature for about two weeks. Yellow polyhedron crystals suitable for X-ray diffraction were obtained.

## S3. Refinement

All H atoms were placed in idealized positions $(\mathrm{O}-\mathrm{H}=0.85 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.95 \AA)$ and refined as riding atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$.


## Figure 1

Molecular structure of the title compound, with atom labels and $30 \%$ probability displacement ellipsoids for non-H atoms.


Figure 2
Packing diagram of the title compound viewed down the $a$ axis. $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the water molecule are shown with dashed lines.

## 5-phenyl-3-[(5-phenyl-1H-1,2,4-triazol-3-yl)disulfanyl]-1H-1,2,4-triazole dihydrate

## Crystal data

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{~S}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=388.47$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=12.3911$ (13) $\AA$
$b=14.7125$ (16) $\AA$
$c=10.2966(11) \AA$
$\beta=104.125(2)^{\circ}$
$V=1820.4$ (3) $\AA^{3}$
$Z=4$

## Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.884, T_{\text {max }}=0.945$
$F(000)=808$
$D_{\mathrm{x}}=1.417 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3134 reflections
$\theta=2.7-26.4^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Polyhedron, yellow
$0.40 \times 0.20 \times 0.18 \mathrm{~mm}$

> 7210 measured reflections
> 1953 independent reflections
> 1679 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.023$
> $\theta_{\max }=27.0^{\circ}, \theta_{\min }=2.2^{\circ}$
> $h=-15 \rightarrow 15$
> $k=-18 \rightarrow 18$
> $l=-13 \rightarrow 13$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.120$
$S=1.06$
1953 reflections
118 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| S1 | $0.43278(4)$ | $0.48004(3)$ | $0.16853(5)$ | $0.0605(2)$ |
| N1 | $0.26234(13)$ | $0.68205(9)$ | $0.22572(14)$ | $0.0535(4)$ |
| H1B | 0.2373 | 0.7366 | 0.2112 | $0.064^{*}$ |
| N2 | $0.33478(13)$ | $0.64316(9)$ | $0.16425(15)$ | $0.0554(4)$ |


|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| N3 | $0.28640(12)$ | $0.54543(9)$ | $0.30878(14)$ | $0.0501(3)$ |
| C1 | $0.13764(18)$ | $0.58140(14)$ | $0.4862(2)$ | $0.0673(5)$ |
| H1A | 0.1698 | 0.5240 | 0.4897 | $0.081^{*}$ |
| C2 | $0.0682(2)$ | $0.60203(17)$ | $0.5693(2)$ | $0.0792(6)$ |
| H2A | 0.0543 | 0.5586 | 0.6288 | $0.095^{*}$ |
| C3 | $0.01979(18)$ | $0.68669(16)$ | $0.5640(2)$ | $0.0729(6)$ |
| H3A | -0.0284 | 0.6999 | 0.6180 | $0.087^{*}$ |
| C4 | $0.0428(2)$ | $0.75119(16)$ | $0.4792(2)$ | $0.0723(6)$ |
| H4A | 0.0115 | 0.8088 | 0.4773 | $0.087^{*}$ |
| C5 | $0.11194(17)$ | $0.73153(13)$ | $0.3963(2)$ | $0.0615(5)$ |
| H5A | 0.1270 | 0.7759 | 0.3388 | $0.074^{*}$ |
| C6 | $0.15919(13)$ | $0.64584(11)$ | $0.39834(16)$ | $0.0478(4)$ |
| C7 | $0.23446(14)$ | $0.62407(11)$ | $0.31284(16)$ | $0.0461(4)$ |
| C8 | $0.34687(14)$ | $0.56106(11)$ | $0.21779(17)$ | $0.0503(4)$ |
| O1 | $0.27936(14)$ | $0.35247(9)$ | $0.37303(13)$ | $0.0762(5)$ |
| H1D | 0.3018 | 0.3501 | 0.4572 | $0.091^{*}$ |
| H1C | 0.2833 | 0.418 | 0.3533 | $0.091^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 | $0.0728(4)$ | $0.0462(3)$ | $0.0721(3)$ | $-0.00574(19)$ | $0.0364(3)$ | $-0.01332(19)$ |
| N1 | $0.0701(9)$ | $0.0405(7)$ | $0.0563(8)$ | $0.0046(6)$ | $0.0276(7)$ | $0.0048(6)$ |
| N2 | $0.0731(9)$ | $0.0448(8)$ | $0.0561(8)$ | $-0.0012(7)$ | $0.0305(7)$ | $0.0014(6)$ |
| N3 | $0.0584(8)$ | $0.0412(7)$ | $0.0564(8)$ | $-0.0014(6)$ | $0.0248(6)$ | $0.0027(6)$ |
| C1 | $0.0780(13)$ | $0.0589(11)$ | $0.0745(12)$ | $0.0101(9)$ | $0.0371(10)$ | $0.0135(9)$ |
| C2 | $0.0917(16)$ | $0.0835(15)$ | $0.0757(14)$ | $0.0031(12)$ | $0.0463(12)$ | $0.0154(11)$ |
| C3 | $0.0697(13)$ | $0.0864(15)$ | $0.0716(13)$ | $0.0043(11)$ | $0.0347(10)$ | $-0.0062(11)$ |
| C4 | $0.0757(13)$ | $0.0681(13)$ | $0.0813(14)$ | $0.0161(10)$ | $0.0347(11)$ | $-0.0006(10)$ |
| C5 | $0.0693(12)$ | $0.0539(10)$ | $0.0671(11)$ | $0.0098(9)$ | $0.0278(9)$ | $0.0082(8)$ |
| C6 | $0.0478(8)$ | $0.0494(9)$ | $0.0477(8)$ | $-0.0011(7)$ | $0.0142(7)$ | $0.0003(7)$ |
| C7 | $0.0517(9)$ | $0.0405(8)$ | $0.0476(8)$ | $-0.0031(6)$ | $0.0150(7)$ | $0.0014(6)$ |
| C8 | $0.0596(10)$ | $0.0420(8)$ | $0.0543(9)$ | $-0.0052(7)$ | $0.0233(7)$ | $-0.0033(7)$ |
| O1 | $0.1323(14)$ | $0.0421(7)$ | $0.0576(8)$ | $-0.0052(7)$ | $0.0300(8)$ | $-0.0033(5)$ |
|  |  |  |  |  |  |  |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| $\mathrm{S} 1-\mathrm{C} 8$ | $1.7536(17)$ | $\mathrm{C} 2-\mathrm{C} 3$ | $1.378(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{S} 1-\mathrm{S} 1^{\mathrm{i}}$ | $2.0556(11)$ | $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 0.9300 |
| $\mathrm{~N} 1-\mathrm{C} 7$ | $1.343(2)$ | $\mathrm{C} 3-\mathrm{C} 4$ | $1.366(3)$ |
| $\mathrm{N} 1-\mathrm{N} 2$ | $1.346(2)$ | $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 0.9300 |
| $\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~B}$ | 0.8600 | $\mathrm{C} 4-\mathrm{C} 5$ | $1.380(3)$ |
| $\mathrm{N} 2-\mathrm{C} 8$ | $1.321(2)$ | $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 0.9300 |
| $\mathrm{~N} 3-\mathrm{C} 7$ | $1.330(2)$ | $\mathrm{C} 5-\mathrm{C} 6$ | $1.388(2)$ |
| $\mathrm{N} 3-\mathrm{C} 8$ | $1.355(2)$ | $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$ | 0.9300 |
| $\mathrm{C} 1-\mathrm{C} 6$ | $1.381(2)$ | $\mathrm{C} 6-\mathrm{C} 7$ | $1.466(2)$ |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.386(3)$ | $\mathrm{O} 1-\mathrm{H} 1 \mathrm{D}$ | 0.8434 |
| $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 0.9300 | $\mathrm{O} 1-\mathrm{H} 1 \mathrm{C}$ | 0.9007 |


| $\mathrm{C} 8-\mathrm{S} 1-\mathrm{S} 1^{\mathrm{i}}$ | $101.08(6)$ |
| :--- | :--- |
| $\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$ | $110.73(14)$ |
| $\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$ | 124.6 |
| $\mathrm{~N} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$ | 124.6 |
| $\mathrm{C} 8-\mathrm{N} 2-\mathrm{N} 1$ | $102.31(13)$ |
| $\mathrm{C} 7-\mathrm{N} 3-\mathrm{C} 8$ | $103.16(14)$ |
| $\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$ | $120.15(19)$ |
| $\mathrm{C} 6-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 119.9 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 119.9 |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$ | $120.2(2)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 119.9 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 119.9 |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ | $119.78(19)$ |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 120.1 |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 120.1 |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $120.5(2)$ |


| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 119.7 |
| :--- | :--- |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 119.7 |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $120.28(19)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$ | 119.9 |
| $\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$ | 119.9 |
| $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$ | $119.04(17)$ |
| $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$ | $119.78(16)$ |
| $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | $121.14(16)$ |
| $\mathrm{N} 3-\mathrm{C} 7-\mathrm{N} 1$ | $109.05(14)$ |
| $\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 6$ | $126.37(15)$ |
| $\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$ | $124.58(15)$ |
| $\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 3$ | $114.73(15)$ |
| $\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$ | $121.06(13)$ |
| $\mathrm{N} 3-\mathrm{C} 8-\mathrm{S} 1$ | $124.19(13)$ |
| $\mathrm{H} 1 \mathrm{D}-\mathrm{O} 1-\mathrm{H} 1 \mathrm{C}$ | 104.4 |

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1 — \mathrm{H} 1 C \cdots \mathrm{~N} 3$ | 0.90 | 2.02 | $2.9210(19)$ | 178 |
| $\mathrm{~N} 1 — \mathrm{H} 1 B \cdots \mathrm{O} 1^{\text {ii }}$ | 0.86 | 1.90 | $2.7077(19)$ | 156 |
| $\mathrm{O} 1 — \mathrm{H} 1 D \cdots \mathrm{~N} 2^{\mathrm{iii}}$ | 0.84 | 2.07 | $2.909(2)$ | 171 |

Symmetry codes: (ii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (iii) $x,-y+1, z+1 / 2$.

