Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tris (η^{5}-cyclopentadienyl)hafnium (III)

Vladimir V. Burlakov, ${ }^{\text {a }}$ Perdita Arndt, ${ }^{\text {b }}$ Anke
Spannenberg ${ }^{\text {b }}$ and Uwe Rosenthal ${ }^{b_{*}}$

${ }^{\text {a }}$ A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation, and ${ }^{\text {b }}$ LeibnizInstitut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
Correspondence e-mail: uwe.rosenthal@catalysis.de
Received 11 April 2011; accepted 18 April 2011
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.034 ; w R$ factor $=0.076$; data-to-parameter ratio $=13.4$.

In the crystal structure of the title compound, $\left[\mathrm{Hf}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]$, three cyclopentadienyl ligands surround the $\mathrm{Hf}^{\mathrm{III}}$ atom in a trigonal-planar geometry. The molecule lies on a sixfold inversion axis.

Related literature

Isotypic $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Zr}$ was described by Lukens \& Andersen (1995). For $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} M, M=\mathrm{Y}$: see Adam et al. (1991); $M=$ Nd: see Eggers et al. (1992a); $M=$ Sm: see Wong et al. (1969), Bel'skii et al. (1991), Eggers et al. (1992b); $M=\mathrm{Er}$, Tm: see Eggers et al. (1986); $M=\mathrm{Yb}$: see Eggers et al. (1987); $M=\mathrm{Ce}$, Dy, Ho: see Baisch et al. (2006). Unit-cell dimensions of (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} M(M=\mathrm{Pr}, \mathrm{Pm}, \mathrm{Sm}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Tm}, \mathrm{Cm}, \mathrm{Bk}, \mathrm{Cf})$ were determined by Laubereau \& Burns (1970a,b).

Experimental

Crystal data

$\left[\mathrm{Hf}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]$
$M_{r}=373.76$
Hexagonal, $P 6_{3} / m$
$a=7.9772$ (4) A
$c=10.2975$ (6) A
$V=567.50(5) \AA^{3}$

$Z=2$

Mo $K \alpha$ radiation
$\mu=9.16 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection
Stoe IPDS II diffractometer Absorption correction: numerical (X-SHAPE and X-RED32; Stoe \& Cie, 2005)
$T_{\text {min }}=0.150, T_{\text {max }}=0.346$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
27 parameters
$w R\left(F^{2}\right)=0.076$
$S=1.22$
362 reflections

7314 measured reflections 362 independent reflections 333 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.097$

Data collection: X-AREA (Stoe \& Cie, 2005); cell refinement: X $A R E A$; data reduction: X - $A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank the technical staff, in particular Regina Jesse, for assistance. This work was supported by the Deutsche Forschungsgemeinschaft (GRK 1213), and the Russian Foundation for Basic Research (project No. 09-03-00503) is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5148).

References

Adam, M., Behrens, U. \& Fischer, R. D. (1991). Acta Cryst. C47, 968-971.
Baisch, U., Pagano, S., Zeuner, M., Schmedt auf der Günne, J., Oeckler, O. \& Schnick, W. (2006). Organometallics, 25, 3027-3033
Bel'skii, V. K., Gun'ko, Y. K., Soloveichik, G. D. \& Bulychev, B. M. (1991). Metalloorg. Khim. (Russ.), 4, 577.
Eggers, S., Hinrichs, W., Kopf, J., Fischer, R. D. \& Xing-Fu, L. (1992a). Private communication (refcode SOVYAD). CCDC, Cambridge, England.
Eggers, S., Hinrichs, W., Kopf, J., Fischer, R. D. \& Xing-Fu, L. (1992b). Private communication (refcode CYPESM02). CCDC, Cambridge, England.
Eggers, S. H., Hinrichs, W., Kopf, J., Jahn, W. \& Fischer, R. D. (1986). J. Organomet. Chem. 311, 313-323.
Eggers, S. H., Kopf, J. \& Fischer, R. D. (1987). Acta Cryst. C43, 2288-2290.
Laubereau, P. G. \& Burns, J. H. (1970a). Inorg. Chem. 9, 1091-1095.
Laubereau, P. G. \& Burns, J. H. (1970b). Inorg. Nucl. Chem. Lett. 6, 59-63.
Lukens, W. W. Jr \& Andersen, R. A. (1995). Organometallics, 14, 3435-3439.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe \& Cie, Darmstadt, Germany.
Wong, C.-H., Lee, T.-Y. \& Lee, Y.-T. (1969). Acta Cryst. B25, 2580-2587.

supporting information

Acta Cryst. (2011). E67, m629 [doi:10.1107/S1600536811014516]

$\operatorname{Tris}\left(\boldsymbol{\eta}^{5}\right.$-cyclopentadienyl)hafnium (III)

Vladimir V. Burlakov, Perdita Arndt, Anke Spannenberg and Uwe Rosenthal

S1. Comment

In the reaction of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Hf}\left[-\mathrm{C}\left(\mathrm{SiMe}_{3}\right)=\mathrm{C}\left(\mathrm{C} \equiv \mathrm{CSiMe}_{3}\right)-\mathrm{C}\left(\mathrm{SiMe}_{3}\right)=\mathrm{C}\left(\mathrm{C} \equiv \mathrm{CSiMe}_{3}\right)-\right]$ with $(i-\mathrm{Bu})_{2} \mathrm{AlH}$ single crystals of the title compound as lone product in very low yield were isolated. Isostructural compounds are known for M $=\mathrm{Zr}$ (Lukens et al., 1995), $M=\mathrm{Y}$ (Adam et al., 1991), $M=\mathrm{Nd}$ (Eggers et al., 1992a), $M=\mathrm{Sm}$ (Wong et al., 1969; Bel'skii et al., 1991; Eggers et al., 1992b), $M=\mathrm{Er}$, Tm (Eggers et al., 1986), $M=\mathrm{Yb}$ (Eggers et al., 1987), $M=\mathrm{Ce}$, Dy, Ho (Baisch et al., 2006). $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Hf}$ crystallizes in the hexagonal space group P_{3} / m with unit-cell dimensions isomorphous with the Zr analogue (Lukens et al., 1995). The $\mathrm{Hf}(\mathrm{III})$ center is surrounded by three η^{5}-coordinated cyclopentadienyl ligands in a trigonal planar geometry. The Hf—C distances are with 2.547 (6) and 2.575 (6) \AA in the expected range.

S2. Experimental

An amount of $0.460 \mathrm{~g}(0.66 \mathrm{mmol})$ of the five membered metallacycle $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Hf}\left[-\mathrm{C}\left(\mathrm{SiMe}_{3}\right)=\mathrm{C}\left(\mathrm{C} \equiv \mathrm{CSiMe}_{3}\right)-\right.$ $\left.\mathrm{C}\left(\mathrm{SiMe}_{3}\right)=\mathrm{C}\left(\mathrm{C} \equiv \mathrm{CSiMe}_{3}\right)-\right]$ was dissolved in 20 ml of n-hexane under Ar , and $2.6 \mathrm{ml}(2.6 \mathrm{mmol})$ of a 1.0 M solution of $(i-\mathrm{Bu})_{2} \mathrm{AlH}$ in cyclohexane was added to the obtained yellow solution. After one day the obtained red-brown solution was filtered and allowed to stand in argon atmosphere at $-40^{\circ} \mathrm{C}$. After 6 month the light-yellow crystals had formed which were separated from the mother liquor by decanting, washed with cooled n-hexane, and dried in vacuum to give (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Hf}$. Yield 9.3\% (23 mg). M.p. $261-263{ }^{\circ} \mathrm{C}$ (dec. under Ar). MS (70 eV, m/z): $375\left(M^{+}\right), 310\left(M^{+}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$.

S3. Refinement

H atoms were placed in idealized positions with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.95 \AA$ and refined using a riding model with $U_{\text {iso }}(\mathrm{H})$ fixed at $1.2 U_{\mathrm{eq}}(\mathrm{C})$.
A numerical absorption correction was performed. Hence the largest peak of $0.95(1.57 \AA$ from Hf1) and the deepest hole of -3.40 e \AA^{-3} ($0.98 \AA$ from Hf1) in the final difference Fourier map were obtained.

Figure 1
The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Tris ($\boldsymbol{\eta}^{5}$-cyclopentadienyl)hafnium(III)

Crystal data

$\left[\mathrm{Hf}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]$
$M_{r}=373.76$
Hexagonal, $P 6_{3} / m$
Hall symbol: -P 6c
$a=7.9772$ (4) \AA
$c=10.2975(6) \AA$
$V=567.50(5) \AA^{3}$
$Z=2$
$F(000)=354$

Data collection

Stoe IPDS II
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
$D_{\mathrm{x}}=2.187 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4609 reflections
$\theta=1.9-28.4^{\circ}$
$\mu=9.16 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Prism, yellow
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe \& Cie, 2005)
$T_{\min }=0.150, T_{\text {max }}=0.346$
7314 measured reflections
362 independent reflections
333 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.097$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.076$
$S=1.22$
362 reflections
27 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$k=-9 \rightarrow 9$
$l=-12 \rightarrow 12$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0163 P)^{2}+5.6136 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.95$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-3.40$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Hf1	0.3333	0.6667	0.2500	$0.0342(3)$
C1	$0.4331(9)$	$0.4179(9)$	$0.1824(6)$	$0.0236(13)$
H1	0.5434	0.4592	0.1283	0.028^{*}
C2	$0.2408(10)$	$0.3460(10)$	$0.1393(7)$	$0.0300(15)$
H2	0.1992	0.3347	0.0517	0.036^{*}
C3	$0.1229(14)$	$0.2944(13)$	0.2500	$0.026(2)$
H3	-0.0143	0.2344	0.2500	0.032^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hf1	$0.0126(3)$	$0.0126(3)$	$0.0772(6)$	$0.00632(15)$	0.000	0.000
C1	$0.022(3)$	$0.019(3)$	$0.031(3)$	$0.011(3)$	$0.003(3)$	$-0.002(3)$
C2	$0.024(3)$	$0.027(4)$	$0.035(4)$	$0.010(3)$	$-0.004(3)$	$-0.001(3)$
C3	$0.017(4)$	$0.014(4)$	$0.048(6)$	$0.008(4)$	0.000	0.000

Geometric parameters ($\left\{{ }^{(},{ }^{\circ}\right.$)

Hf1-C2 2^{i}	$2.549(7)$	$\mathrm{Hf} 1-\mathrm{C} 1$	$2.576(6)$
$\mathrm{Hf} 1-\mathrm{C} 2^{\mathrm{ii}}$	$2.549(7)$	$\mathrm{Hf} 1-\mathrm{C} 1^{\mathrm{ii}}$	$2.576(6)$
$\mathrm{Hf} 1-\mathrm{C} 2^{\mathrm{iii}}$	$2.549(7)$	$\mathrm{C} 1-\mathrm{C} 1^{1 i}$	$1.392(12)$
$\mathrm{Hf} 1-\mathrm{C} 2^{\mathrm{iv}}$	$2.549(7)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.414(9)$

Hf1-C2	2.549 (7)	C1-H1	0.9500
Hf1- $\mathrm{C}^{\text {v }}$	2.549 (7)	C2-C3	1.402 (9)
Hfl- $\mathrm{Cl}^{\text {i }}$	2.576 (6)	C2-H2	0.9500
Hf1-C1 $1^{\text {iii }}$	2.576 (6)	$\mathrm{C} 3-\mathrm{C} 2{ }^{\text {ii }}$	1.402 (9)
$\mathrm{Hf} 1-\mathrm{C} 1^{\text {iv }}$	2.576 (6)	C3-H3	0.9500
Hf1-C1v	2.576 (6)		
C2 ${ }^{\text {i }}$ - $\mathrm{Hf} 1-\mathrm{C} 2{ }^{\text {ii }}$	101.55 (19)	C1 ${ }^{\text {i }}$ Hf1- $\mathrm{Cl}^{\text {v }}$	122.45 (4)
C 2 - $\mathrm{Hf} 1-\mathrm{C} 2^{\text {iii }}$	53.1 (3)	C1 ${ }^{\text {iii }}$ - $\mathrm{Hf} 1-\mathrm{Cl}^{v}$	112.98 (12)
$\mathrm{C} 2{ }^{\text {ii }}$ - $\mathrm{Hf} 1-\mathrm{C} 2^{\text {iii }}$	126.86 (8)	C1 ${ }^{\text {iv }}-\mathrm{Hf} 1-\mathrm{Cl}^{\text {v }}$	31.4 (3)
$\mathrm{C} 2-\mathrm{Hf} 1-\mathrm{C} 2{ }^{\text {iv }}$	101.55 (19)	C2 ${ }^{\text {i }}$ - $\mathrm{Hfl}-\mathrm{C} 1$	152.1 (2)
$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{Hfl}-\mathrm{C}^{2 \mathrm{iv}}$	101.55 (19)	C2ii-Hf1-C1	52.7 (2)
C2 ${ }^{\text {iii }}$-Hf1- $\mathrm{C}^{\text {iv }}$	126.86 (8)	C2 $2^{\text {iii- }} \mathrm{Hf} 1-\mathrm{C} 1$	130.0 (2)
C2 ${ }^{\text {i }}$ - $\mathrm{Hf} 1-\mathrm{C} 2$	126.86 (8)	C2 ${ }^{\text {iv }}-\mathrm{Hfl}-\mathrm{C} 1$	94.8 (2)
C2ii- $\mathrm{Hf} 1-\mathrm{C} 2$	53.1 (3)	C2-Hf1-C1	32.0 (2)
$\mathrm{C} 2 \mathrm{iii}-\mathrm{Hf} 1-\mathrm{C} 2$	101.55 (19)	C2 ${ }^{\text {v }}$ - $\mathrm{Hf} 1-\mathrm{C} 1$	81.0 (2)
C2 ${ }^{\text {iv }}-\mathrm{Hfl}$ - C 2	126.86 (8)	C1- ${ }^{\text {i }}$ fl- C 1	122.45 (4)
$\mathrm{C} 2-\mathrm{Hf} 1-\mathrm{C} 2{ }^{\text {v }}$	126.86 (8)	C1iii-Hf1-C1	112.98 (12)
$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{Hf} 1-\mathrm{C} 2^{\text {v }}$	126.86 (8)	C1 $1^{\text {iv }}-\mathrm{Hf} 1-\mathrm{C} 1$	122.45 (4)
C2 ${ }^{\text {iii }}$ - $\mathrm{Hf} 1-\mathrm{C} 2^{\text {v }}$	101.55 (19)	C1 ${ }^{2}$ - $\mathrm{Hf} 1-\mathrm{C} 1$	112.98 (12)
$\mathrm{C} 2{ }^{\text {iv}}-\mathrm{Hf} 1-\mathrm{C} 2{ }^{\text {v }}$	53.1 (3)	$\mathrm{C} 2{ }^{\text {i }}$ - $\mathrm{Hf} 1-\mathrm{Cl}^{\text {ii }}$	130.0 (2)
$\mathrm{C} 2-\mathrm{Hf} 1-\mathrm{C} 2{ }^{\text {v }}$	101.55 (19)	$\mathrm{C} 2{ }^{\text {ii- }} \mathrm{Hf} 1-\mathrm{Cl}^{\text {ii }}$	32.0 (2)
C2i-Hf1- $\mathrm{Cl}^{\text {i }}$	32.0 (2)	$\mathrm{C} 2{ }^{\text {iii }}$ - $\mathrm{Hfl}-\mathrm{C} 1^{\text {ii }}$	152.1 (2)
$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{Hf} 1-\mathrm{Cl}^{\text {i }}$	81.0 (2)	$\mathrm{C} 2{ }^{\text {iv }}-\mathrm{Hf} 1-\mathrm{C} 1^{\text {ii }}$	81.0 (2)
$\mathrm{C} 2{ }^{\text {iii }}-\mathrm{Hf} 1-\mathrm{Cl}^{\text {i }}$	52.7 (2)	C2-Hf1-C1 ${ }^{\text {ii }}$	52.7 (2)
C2 ${ }^{\text {iv }}-\mathrm{Hf} 1-\mathrm{Cl}^{\text {i }}$	130.0 (2)	C2 ${ }^{\text {v }}-\mathrm{Hf} 1-\mathrm{Cl}^{1 i}$	94.8 (2)
C2-Hf1-C1 ${ }^{\text {i }}$	94.8 (2)	$\mathrm{C} 1{ }^{\text {i }}$ - $\mathrm{Hfl}-\mathrm{Cl}^{\text {ii }}$	112.98 (12)
$\mathrm{C} 2{ }^{\text {v }}-\mathrm{Hf} 1-\mathrm{Cl}^{\mathrm{i}}$	152.2 (2)	C1 ${ }^{\text {iii }}$ - $\mathrm{Hf} 1-\mathrm{C} 1{ }^{\text {ii }}$	122.45 (4)
C2 - Hfl-C1 $1^{\text {iii }}$	52.7 (2)	C1 ${ }^{\text {iv }}-\mathrm{Hf} 1-\mathrm{C} 1^{\text {ii }}$	112.98 (12)
$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{Hfl}-\mathrm{Cl}^{1 i i}$	94.8 (2)	C1 ${ }^{\text {v }}$ - $\mathrm{Hfl}-\mathrm{Cl}^{1 i}$	122.45 (4)
C2 ${ }^{\text {iii }}$ - $\mathrm{Hf} 1-\mathrm{C} 1^{\text {iii }}$	32.0 (2)	C1-Hfl- $\mathrm{Cl}^{\text {ii }}$	31.4 (3)
$\mathrm{C} 2{ }^{\text {iv }}-\mathrm{Hfl}-\mathrm{C} 1^{\text {iii }}$	152.2 (2)	$\mathrm{C} 1{ }^{\text {ii }}-\mathrm{C} 1-\mathrm{C} 2$	108.3 (4)
$\mathrm{C} 2-\mathrm{Hfl}-\mathrm{Cl}^{\text {iii }}$	81.0 (2)	C1i- ${ }^{\text {ii }} 1-\mathrm{Hfl}$	74.32 (14)
$\mathrm{C} 2{ }^{\mathrm{v}}$ - $\mathrm{Hfl}-\mathrm{Cl}^{\text {iii }}$	130.0 (2)	C2-C1-Hf1	72.9 (4)
C1 ${ }^{\text {i }}$ - $\mathrm{Hf} 1-\mathrm{C} 1^{\text {iii }}$	31.4 (3)	$\mathrm{C} 1{ }^{\text {ii }}-\mathrm{C} 1-\mathrm{H} 1$	125.9
C2 - ${ }^{\text {i }}$ ($1-\mathrm{Cl}^{\text {iv }}$	81.0 (2)	C2-C1-H1	125.9
C2 ${ }^{\text {ii }}$ - $\mathrm{Hfl}-\mathrm{Cl}^{\text {iv }}$	130.0 (2)	Hf1-C1-H1	118.7
C2 ${ }^{\text {iii }}$ - $\mathrm{Hf} 1-\mathrm{C}^{\text {iv }}$	94.8 (2)	C3-C2-C1	107.3 (6)
$\mathrm{C} 2{ }^{\text {iv }}-\mathrm{Hfl}-\mathrm{Cl}^{\text {iv }}$	32.0 (2)	C3-C2-Hf1	75.3 (5)
$\mathrm{C} 2-\mathrm{Hfl}-\mathrm{Cl}^{\text {iv }}$	152.2 (2)	C1-C2-Hf1	75.0 (4)
$\mathrm{C} 2{ }^{\mathrm{v}}-\mathrm{Hfl}-\mathrm{Cl}^{\text {iv }}$	52.7 (2)	C3-C2-H2	126.4
C1-Hfl-C1 ${ }^{\text {iv }}$	112.98 (12)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	126.4
C1 ${ }^{\text {iii }}$ - $\mathrm{Hfl} 1-\mathrm{C} 1^{\text {iv }}$	122.45 (4)	Hf1-C2-H2	115.6
$\mathrm{C} 2-\mathrm{Hf1}-\mathrm{Cl}^{\text {v }}$	94.8 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2{ }^{\text {ii }}$	108.7 (8)
$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{Hfl}-\mathrm{Cl}^{\text {v }}$	152.2 (2)	C2-C3-Hf1	73.0 (5)
C2 ${ }^{\text {iii }}$ - $\mathrm{Hf} 1-\mathrm{Cl}^{v}$	81.0 (2)	C2ii-C3-Hf1	73.0 (5)
C2 ${ }^{\text {iv- }}$ - $\mathrm{Hf1}-\mathrm{Cl}^{\text {v }}$	52.7 (2)	C2-C3-H3	125.6

supporting information

$\mathrm{C} 2-\mathrm{Hf} 1-\mathrm{C} 1^{\mathrm{v}}$	$130.0(2)$	$\mathrm{C} 2^{2 i}-\mathrm{C} 3-\mathrm{H} 3$	125.6
$\mathrm{C} 2{ }^{\mathrm{v}}-\mathrm{Hf} 1-\mathrm{C}^{\mathrm{v}}$	$32.0(2)$	$\mathrm{Hf} 1-\mathrm{C} 3-\mathrm{H} 3$	120.2

Symmetry codes: (i) $-x+y,-x+1,-z+1 / 2$; (ii) $x, y,-z+1 / 2$; (iii) $-x+y,-x+1, z$; (iv) $-y+1, x-y+1,-z+1 / 2$; (v) $-y+1, x-y+1, z$.

