Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Racemic methyl 3,10-dioxa-2-azatricyclo[6.2.1.0 ${ }^{2,6}$] undecane-4-carboxylate

Basem A. Moosa, ${ }^{\text {a }}$ Atif Fazal, ${ }^{\text {b }}$ Shaikh A. Ali $^{\mathrm{c}}$ and Mohammed Fettouhi ${ }^{\text {© }}$

${ }^{\text {a }}$ Controlled Release and Delivery Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, ${ }^{\mathbf{b}}$ Center of Research Excellence in Petroleum Refining, and Petrochemicals Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, and ${ }^{\text {c }}$ Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia Correspondence e-mail: fettouhi@kfupm.edu.sa

Received 13 April 2011; accepted 20 April 2011
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.057 ; w R$ factor $=0.155 ;$ data-to-parameter ratio $=13.9$.

The structure of the racemic title compound, $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}$, consists of a tricyclic skeleton comprising a six-membered piperidine ring and five-membered isoxazolidine and tetrahydrofuran rings. The piperidine ring adopts a distorted chair conformation, while the isoxazolidine and tetrahydrofuran rings have envelope conformations.

Related literature

For related piperidine geometry, see: Parkin et al. (2004). For bicyclic polyhydroisoxazolopyridines, see: Banerji et al. (2006); Carmona et al. (2009). For literature related to cycloaddition reactions of cyclic nitrones, see: Ali \& Wazeer (1988); Ali et al. (1988); Merino (2004); Chandrasekhar (2005); Moosa \& Ali (2009, 2010). For the natural product SB-219383 and its inhibitory activity against tyrosyl tRNA sythetase, see: HougeFrydrych et al. (2000); Stefanska et al. (2000).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}$
$M_{r}=213.23$

Monoclinic, $P 2_{1} / c$
$a=11.213$ (3) \AA
$b=7.1075(18) \AA$
$c=12.910$ (3) \AA
$\beta=91.546(5)^{\circ}$
$V=1028.4$ (4) A^{3}

Data collection

Bruker SMART APEX areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.979, T_{\text {max }}=0.995$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.155$
$S=1.03$
2563 reflections
185 parameters
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
$0.20 \times 0.10 \times 0.05 \mathrm{~mm}$

13498 measured reflections 2563 independent reflections 1567 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.052$

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors acknowledge King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2422).

References

Ali, S. A., Khan, J. H. \& Wazeer, M. I. M. (1988). Tetrahedron, 44, 5911-5920.
Ali, S. A. \& Wazeer, M. I. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 597605.

Banerji, A., Bandyopadhyay, D., Sengupta, P., Basak, B., Prange, T. \& Neuman, A. (2006). Tetrahedron Lett. 47, 3827-3830.
Bruker, (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Carmona, D., Lamata, M. P., Viguri, F., Rodriguez, R., Lahoz, F. J., Fabra, M. J. \& Oro, L. A. (2009). Tetrahedron Asymmetry, 20, 1197-1205.
Chandrasekhar, S. (2005). Arkivoc, xiii, 37-66.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Houge-Frydrych, C. S. V., Readshaw, S. A. \& Bell, D. J. (2000). J. Antibiot. 53, 351-356.
Merino, P. (2004). Science of Synthesis, Vol. 27, Heteroatom Analogues of Aldehydes and Ketones, edited by A. Padwa, pp. 511-580. Stuttgart: Thieme.
Moosa, B. A. \& Ali, S. A. (2009). Tetrahedron, 65, 8231-8243.
Moosa, B. A. \& Ali, S. A. (2010). Arkivoc, x, 132-148.
Parkin, A., Oswald, I. D. H. \& Parsons, S. (2004). Acta Cryst. B60, 219-227.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stefanska, A. L., Coates, N. J., Mensah, L. M., Pope, A. J., Ready, S. J. \& Warr, S. R. (2000). J. Antibiot. 53, 345-350.

supporting information

Acta Cryst. (2011). E67, o1245 [doi:10.1107/S160053681101484X]

Racemic methyl 3,10-dioxa-2-azatricyclo[6.2.1.0 ${ }^{2,6}$] undecane-4-carboxylate

Basem A. Moosa, Atif Fazal, Shaikh A. Ali and Mohammed Fettouhi

S1. Comment

1,3-Dipolar cycloaddition reaction of cyclic nitrones with alkenes shows greater stereoselectivity and reactivity compared to their acyclic counterparts for applications in the synthesis of natural products (Merino, 2004; Moosa \& Ali, 2009, 2010; Ali et al., 1988; Ali \& Wazeer, 1988). Our interest in developing a synthetic methodology to construct the ring skeleton present in a natural product called SB-219383 (Houge-Frydrych et al., 2000), first member of a new class of compounds having inhibitory activity against tyrosyl tRNA sythetase (Stefanska et al., 2000), led to explore the synthesis and cycloaddition of the bicyclic nitrone 1-oxa-5,6-dehydro-6-aza-bicyclo[3,2,1]heptane 6-oxide with methyl acrylate. The structure of a recemic sample of the cycloadduct is reported here. It consists of a tricyclic skeleton corresponding to a cis-invertomer with the nitrogen lone pair in axial position. The two $\mathrm{C}-\mathrm{N}$ bond lengths of the piperidine ring are $\mathrm{N} 1-$ C9: 1.453 (2) \AA and N1—C5: 1.473 (2) \AA. The former bond is shorter presumably as a result of anomeric effect (Chandrasekhar, 2005), inducing a partial double bond character. The bond distances are consistent with those reported for piperidine (Parkin et al., 2004) and bicyclic polyhydroisoxazolopyridines (Banerji et al., 2006; Carmona et al., 2009). The piperidine ring adopts a distorted chair conformation likely due to the strain of the 5-membered rings. Angular constraints imposed by the five-membered tetrahydrofuran ring skeleton led to the squeezing of the C7-C8-C9 angle to $97.8(2)^{\circ}$; the corresponding bond angle in piperidine, the parent six-membered heterocyclic, is $110.21(7)^{\circ}$. The angles C5-N1-C9, N1-C5-C6 and C5-C6-C7 on the other end of the six-membered ring were expanded to 114.1 (2) ${ }^{\circ}$, $112.3(2)^{\circ}$ and $113.7(2)^{\circ}$, respectively, while the corresponding angles in piperidine are $111.04(7)^{\circ}, 109.84(7)^{\circ}$ and $110.70(7)^{\circ}$ (Parkin et al., 2004). The destabilizing diaxial interactions among the three axially oriented substituents in the piperidine ring is somewhat relieved by moving outward from their ideal axial positions. This leads to a flattening of the chair at $\mathrm{N} 1, \mathrm{C} 5$ and C 6 . The isoxazolidine ring adopts an envelope conformation with $\mathrm{N} 1, \mathrm{O} 3, \mathrm{C} 3$ and C 4 essentially in the plane while C 5 is 0.482 (3) \AA out of the plane. The dihedral angle between the previous plane and the plane $\mathrm{N} 1-\mathrm{C} 5$ -C 4 is $31.9(2)^{\circ}$. The tetrahydrofuran ring has also an envelope conformation with C 8 at 0.733 (3) \AA out of the plane C 9 $-\mathrm{O} 4-\mathrm{C} 10-\mathrm{C} 7$ which has a dihedral angle of $47.0(2)^{\circ}$ with the plane $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$.

S2. Experimental

To a stirred solution of N -hydroxy-4-piperidinemethanol $(0.39 \mathrm{~g}, 3.0 \mathrm{mmol})$ in chloroform $(20 \mathrm{ml})$ was added mercuric oxide ($0.65 \mathrm{~g}, 12 \mathrm{mmol}$) and anhydrous magnesium sulfate $(150 \mathrm{mg})$ in 10 min . The reaction mixture was then stirred at room temperature for 6 h . The mixture was filtered over a bed of magnesium sulfate to obtain a solution of the bicyclic nitrone 1-oxa-5,6-dehydro-6-aza-bicyclo[3,2,1]heptane 6 -oxide which was used without isolation. The solution of the nitrone and methyl acrylate (2 ml) was stirred at room temperature for 4 h . After removal of the solvent and excess methyl acrylate, the reaction mixture was concentrated and the residual liquid was chromatographed over silica using 9:1 ether/methanol mixture as an eluant to give the cycloadduct as a solid ($0.28 \mathrm{~g}, 44 \%$). Colorless blocks were obtained after crystallization at $0^{\circ} \mathrm{C}$ from ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 / 1)$ mixture.

S3. Refinement

Methyl H atoms were included as a rigid group and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$. All other H atoms were located in a difference Fourier map and refined isotropically.

Figure 1

The molecular structure with atom labels and 30% probability displacement ellipsoids for non- H atoms.

methyl 3,10-dioxa-2-azatricyclo[6.2.1.0 ${ }^{2,6}$] undecane-4-carboxylate

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}$
$M_{r}=213.23$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=11.213$ (3) \AA
$b=7.1075$ (18) \AA
$c=12.910(3) \AA$
$\beta=91.546(5)^{\circ}$
$V=1028.4$ (4) \AA^{3}
$Z=4$

Data collection

Bruker SMART APEX area-detector diffractometer
Radiation source: normal-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.979, T_{\text {max }}=0.995$
$F(000)=456$
$D_{\mathrm{x}}=1.377 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 13498 reflections
$\theta=1.8-28.4^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Block, colourless
$0.20 \times 0.10 \times 0.05 \mathrm{~mm}$

13498 measured reflections
2563 independent reflections
1567 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=28.4^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-14 \rightarrow 14$
$k=-9 \rightarrow 9$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.155$
$S=1.03$
2563 reflections
185 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0701 P)^{2}+0.2128 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }=0.002\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	0.14231 (14)	0.9997 (2)	0.39231 (12)	0.0433 (4)
O1	0.43183 (15)	0.7626 (3)	0.60910 (14)	0.0821 (6)
O2	0.24093 (17)	0.6880 (3)	0.59172 (15)	0.0838 (6)
O3	0.23751 (14)	0.86158 (19)	0.40074 (11)	0.0559 (4)
O4	0.26276 (13)	1.22561 (19)	0.29897 (11)	0.0516 (4)
C1	0.4428 (3)	0.6375 (5)	0.6972 (2)	0.0950 (11)
H1A	0.3834	0.6687	0.7465	0.142*
H1B	0.5207	0.6507	0.7290	0.142*
H1C	0.4316	0.5099	0.6745	0.142*
C2	0.3263 (2)	0.7726 (3)	0.56322 (17)	0.0514 (5)
C3	0.3243 (2)	0.9186 (3)	0.47749 (16)	0.0484 (5)
C4	0.2854 (2)	1.1087 (3)	0.51816 (18)	0.0508 (5)
C5	0.15285 (19)	1.1108 (3)	0.48841 (15)	0.0458 (5)
C6	0.0935 (2)	1.3043 (3)	0.47755 (17)	0.0515 (5)
C7	0.1024 (2)	1.3900 (3)	0.36965 (17)	0.0535 (6)
C8	0.0548 (2)	1.2468 (3)	0.29092 (19)	0.0542 (6)
C9	0.15798 (18)	1.1088 (3)	0.29848 (15)	0.0441 (5)
C10	0.2287 (2)	1.4113 (3)	0.3337 (2)	0.0565 (6)
H4	0.400 (2)	0.929 (3)	0.4479 (16)	0.056 (6)*
H5	0.3284 (19)	1.202 (3)	0.4850 (17)	0.050 (6)*
H6	0.301 (2)	1.116 (3)	0.590 (2)	0.069 (7)*
H7	0.1119 (18)	1.042 (3)	0.5399 (16)	0.049 (6)*
H8	0.011 (2)	1.290 (3)	0.4920 (18)	0.053 (6)*
H9	0.1310 (19)	1.383 (3)	0.5271 (17)	0.051 (6)*
H10	0.061 (2)	1.508 (4)	0.3653 (17)	0.061 (6)*
H11	-0.020 (2)	1.189 (3)	0.3108 (17)	0.060 (7)*
H12	0.050 (2)	1.304 (4)	0.220 (2)	0.073 (7)*
H13	0.1645 (16)	1.018 (3)	0.2423 (15)	0.041 (5)*
H14	0.235 (2)	1.501 (4)	0.2774 (19)	0.072 (7)*
H15	0.284 (2)	1.451 (3)	0.3903 (18)	0.056 (6)*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0489(10)$	$0.0403(9)$	$0.0410(9)$	$-0.0017(7)$	$0.0035(7)$	$-0.0061(7)$
O1	$0.0499(10)$	$0.1099(15)$	$0.0864(13)$	$-0.0060(9)$	$-0.0012(9)$	$0.0487(11)$
O2	$0.0686(12)$	$0.0947(14)$	$0.0873(13)$	$-0.0279(11)$	$-0.0100(10)$	$0.0354(11)$
O3	$0.0732(11)$	$0.0427(8)$	$0.0513(9)$	$0.0081(7)$	$-0.0086(7)$	$-0.0092(7)$
O4	$0.0545(9)$	$0.0480(8)$	$0.0532(9)$	$-0.0020(7)$	$0.0173(7)$	$-0.0050(7)$
C1	$0.0693(18)$	$0.124(3)$	$0.091(2)$	$0.0066(17)$	$-0.0051(15)$	$0.058(2)$
C2	$0.0501(13)$	$0.0510(12)$	$0.0534(13)$	$-0.0031(10)$	$0.0046(10)$	$0.0037(10)$
C3	$0.0473(12)$	$0.0519(12)$	$0.0462(12)$	$-0.0021(10)$	$0.0027(9)$	$0.0016(9)$
C4	$0.0619(14)$	$0.0484(12)$	$0.0420(12)$	$-0.0078(11)$	$-0.0028(10)$	$-0.0022(10)$
C5	$0.0555(13)$	$0.0459(11)$	$0.0363(10)$	$-0.0072(9)$	$0.0093(9)$	$-0.0032(9)$
C6	$0.0563(14)$	$0.0519(12)$	$0.0470(12)$	$0.0013(11)$	$0.0122(10)$	$-0.0102(10)$
C7	$0.0668(15)$	$0.0436(11)$	$0.0505(12)$	$0.0114(11)$	$0.0099(10)$	$-0.0018(10)$
C8	$0.0569(14)$	$0.0598(14)$	$0.0460(13)$	$0.0079(11)$	$0.0021(11)$	$-0.0017(10)$
C9	$0.0495(12)$	$0.0448(11)$	$0.0382(11)$	$0.0015(9)$	$0.0059(9)$	$-0.0069(9)$
C10	$0.0726(16)$	$0.0437(12)$	$0.0539(14)$	$-0.0049(11)$	$0.0158(12)$	$0.0010(10)$

Geometric parameters (\AA, ${ }^{\circ}$)

N1-O3	1.452 (2)	C4-H5	0.93 (2)
N1-C9	1.453 (2)	C4-H6	0.94 (3)
N1-C5	1.473 (2)	C5-C6	1.532 (3)
O1-C2	1.311 (3)	C5-H7	0.95 (2)
$\mathrm{O} 1-\mathrm{C} 1$	1.446 (3)	C6-C7	1.526 (3)
O2-C2	1.197 (3)	C6-H8	0.95 (2)
O3-C3	1.429 (3)	C6-H9	0.94 (2)
O4-C9	1.439 (2)	C7-C10	1.509 (3)
O4-C10	1.449 (3)	C7-C8	1.525 (3)
C1-H1A	0.9600	C7-H10	0.96 (2)
C1—H1B	0.9600	C8-C9	1.518 (3)
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9600	C8-H11	0.98 (2)
C2-C3	1.517 (3)	C8-H12	1.01 (3)
C3-C4	1.518 (3)	C9-H13	0.976 (19)
C3-H4	0.95 (2)	C10-H14	0.97 (3)
C4-C5	1.525 (3)	C10-H15	0.99 (2)
O3-N1-C9	108.55 (14)	C6-C5-H7	107.9 (12)
O3-N1-C5	104.91 (14)	C7-C6-C5	113.74 (17)
C9-N1-C5	114.04 (16)	C7-C6-H8	107.9 (14)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 1$	116.43 (19)	C5-C6-H8	108.0 (13)
C3-O3-N1	110.24 (14)	C7-C6-H9	110.1 (13)
C9-O4-C10	107.76 (15)	C5-C6-H9	106.8 (13)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	H8-C6-H9	110.3 (19)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C10-C7-C8	100.20 (18)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C10-C7-C6	113.9 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C8-C7-C6	108.17 (19)

$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1$	$123.6(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$124.9(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$111.22(19)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	$107.94(18)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$107.17(17)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$110.81(18)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{H} 4$	$110.3(13)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 4$	$110.7(13)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 4$	$109.9(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$102.07(17)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 5$	$108.5(13)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 5$	$113.0(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 6$	$110.0(15)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 6$	$113.8(15)$
$\mathrm{H} 5-\mathrm{C} 4-\mathrm{H} 6$	$109(2)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$105.22(16)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$112.30(17)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$116.70(19)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 7$	$106.4(12)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 7$	$107.7(13)$

$\mathrm{C} 10-\mathrm{C} 7-\mathrm{H} 10$	$110.8(13)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 10$	$112.4(14)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 10$	$110.9(13)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$97.78(18)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 11$	$111.8(14)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 11$	$113.3(13)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 12$	$110.2(14)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 12$	$110.5(15)$
$\mathrm{H} 11-\mathrm{C} 8-\mathrm{H} 12$	$112(2)$
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{N} 1$	$114.92(16)$
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 8$	$104.39(17)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$106.81(17)$
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{H} 13$	$108.0(11)$
N1-C9-H13	$106.1(11)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 13$	$117.0(11)$
$\mathrm{O} 4-\mathrm{C} 10-\mathrm{C} 7$	$105.13(18)$
O4-C10-H14	$110.0(15)$
C7-C10-H14	$112.6(15)$
O4-C10-H15	$108.9(13)$
C7-C10-H15	$112.1(13)$
H14-C10-H15	$108(2)$

