Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 Redetermination of (E)-N, N^{\prime}-bis(4bromophenyl)formamidine

L.-J. Han

Department of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
Correspondence e-mail: 08hanlij@tongji.edu.cn

Received 1 April 2011; accepted 10 April 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.048 ; w R$ factor $=0.114 ;$ data-to-parameter ratio $=16.8$.

In comprison with the previous structural study [Anulewicz et al. (1991). Pol. J. Chem. 65, 465-471], for which only the coordinates of all non- H atoms and of some H atoms were reported, the current redetermination of the title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}$, additionally reports anisotropic displacement parameters for all non- H atoms and the coordinates of all H atoms, accompanied by higher accuracy of the geometric parameters. Two independent half-molecules are present in the asymmetric unit, which are completed by a twofold rotation axis as symmetry element. In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules into dimers. Linear chains parallel to [102] are formed by intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ interactions of 3.4328 (7) \AA between two Br atoms of adjacent molecules. The dihedral angles between the benzene rings are 50.05 (15) and 75.61 (11) ${ }^{\circ}$ in the two independent molecules. Owing to the twofold symmetry of the molecules, H atoms attached to the N atoms are only half-occupied, leading to them being disordered over two positions of equal occupancy.

Related literature

For the previous structure determination, see: Anulewicz et al. (1991). For $\mathrm{Br} \cdots \mathrm{Br}$ interactions, see: Fujiwara et al. (2006); Reddy et al. (1996). For N-H • •N hydrogen bonds, see: Del Bene \& Elguero (2006); Grotjahn et al. (2000); Thar \& Kirchner (2006).

Experimental

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}$
$M_{r}=354.05$
Monoclinic, $C 2 / c$
$a=11.563$ (2) A
$b=23.447$ (5) \AA
$c=9.881$ (2) \AA
$\beta=95.43(3)^{\circ}$

$$
V=2666.9(9) \AA^{3}
$$

$Z=8$
Mo $K \alpha$ radiation
$\mu=6.06 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.15 \times 0.07 \times 0.06 \mathrm{~mm}$

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.403, T_{\text {max }}=0.695$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048 \quad 155$ parameters
$w R\left(F^{2}\right)=0.114 \quad \mathrm{H}$-atom parameters constrained
$S=1.00$
2611 reflections
$\Delta \rho_{\text {max }}=0.48 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.91 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 2 A \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.85	2.12	$2.964(4)$	180
$\mathrm{~N} 2-\mathrm{H} 3 A \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.88	2.12	$2.964(4)$	161

Symmetry codes: (i) $x,-y+1, z-\frac{1}{2}$; (ii) $x,-y+1, z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Scientific Foundation of China (No.20741004/B010303).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2476).

References

Anulewicz, R., Krygowski, T. M., Jaroszewska-Manaj, J. \& Pniewska, B. (1991). Pol. J. Chem. 65, 465-471.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR. Bonn, Germany. Bruker. (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker. (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Del Bene, J. E. \& Elguero, J. (2006). J. Phys. Chem. A, 110, 7496-7502.
Fujiwara, H., Hayashi, T., Sugimoto, T., Nakazumi, H., Noguchi, S., Li, L., Yokogawa, K., Yasuzuka, S., Murata, K. \& Mori, T. (2006). Inorg. Chem. 45, 5712-5714.
Grotjahn, D. B., Combs, D., Van, S., Aguirre, G. \& Ortega, F. (2000). Inorg. Chem. 39, 2080-2086.
Reddy, D. S., Craig, D. C. \& Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090-4093.
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Thar, J. \& Kirchner, B. (2006). J. Phys. Chem. A, 110, 4229-4237.

supporting information

Acta Cryst. (2011). E67, o1159 [doi:10.1107/S1600536811013419]

Redetermination of (E)- $\mathrm{N}, \mathrm{N}^{\prime}$-bis(4-bromophenyl)formamidine

L.-J. Han

S1. Comment

With the determination of reliable intermolecular distances, $\mathrm{Br} \cdots$ Br interactions (Fujiwara et al., 2006; Reddy et al., 1996) and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding (Del Bene \& Elguero, 2006; Grotjahn et al. 2000; Thar \& Kirchner, 2006) became important criteria in the description of supramolecular chemistry and in applied crystal engineering. The title compound $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}$, (I), has been determined previously by Anulewicz et al. (1991). However, in that study only coordinates of all non- H atoms and of some H atoms were given. The present re-determination additionally reports anisotropic displacement parameters for all non- H atoms and the coordinates of all H atoms, accompanied by higher accuracy of all geometric parameters.
In (I) two independent half-molecules are present in the asymmetric unit which are completed by a twofold rotation axis as symmetry element that runs to the central $\mathrm{C}-\mathrm{H}$ groups $(\mathrm{C} 1-\mathrm{H} 1$ and $\mathrm{C} 2-\mathrm{H} 2$, respectively). One molecule is displayed in Fig. 1. The dihedral angles between the two benzene rings in the individual molecules are 50.05 (15) ${ }^{\circ}$ for the first and and $75.61(11)^{\circ}$ for the second molecule.
In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the individual molecules into dimers (Fig. 2). Linear chains parallel to [102] are formed by intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ interactions of 3.4328 (7) \AA between two bromine atoms of adjacent molecules (Fig. 3). This interaction is significantly less than the van der Waals contact of $3.90 \AA$ (Reddy et al., 1996; Fujiwara et al., 2006), hence making this interaction important for consolidation of the crystal packing.

S2. Experimental

The title compound was synthesized by the following reaction. $17.202 \mathrm{~g}(0.1 \mathrm{~mol})$ of 4-bromobenzenamine and 8.33 ml $(0.05 \mathrm{~mol})$ of triethyl orthoformate were combined in a round-bottom flask equipped with a distillation tube and heated at 160 until the distillation of ethanol creased. The retained solid was washed with ether, and dried under a dynamic vacuum to yield 16.10 g of white solid, $(91 \%) .0 .04 \mathrm{~g}$ of the white solid was dissolved in THF (3 ml) and the solution was layered with hexane. Colourless needle-shaped crystals formed after several days. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): 8.08(s, $1 \mathrm{H},-$ $\mathrm{NCHN}-$), $7.43(\mathrm{~d}, 2 \mathrm{H}$, aromatic), $7.40(\mathrm{~d}, 2 \mathrm{H}$, aromatic), $6.93(\mathrm{~d}, 2 \mathrm{H}$, aromatic), $6.91(\mathrm{~d}, 2 \mathrm{H}$, aromatic). Anal. Calcd. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}$: C, 44.10; H, 2.85; N, 7.91; Found: C, 43.83; H, 2.69; N, 8.02.

S3. Refinement

H atoms attached to C atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93(\mathrm{CH})$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. H atoms attached to N atoms were found from difference Fourier maps and were fixed. They were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. Owing to the 2 symmetry of the molecules, the H atoms attached to the N atoms are only half-occupied, leading to being disordered over two positions of equal occupancy.

Figure 1
Molecular structure of one of the two molecules of (I) drawn with displacement ellipsoids at the 30% probability level.
[Symmetry code A) $-\mathrm{x}+1$, y. $-\mathrm{z}+1 / 2$.]

Figure 2
A dimer formed by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Figure 3

Part of an one-dimensional linear chain of the title compound, viewed along [010]. $\mathrm{Br} \cdots \mathrm{Br}$ interactions are drawn with blue dashed lines.

(E)-N, N^{\prime}-bis(4-bromophenyl)formamidine

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}$
$M_{r}=354.05$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=11.563$ (2) \AA
$b=23.447$ (5) \AA
$c=9.881$ (2) \AA
$\beta=95.43$ (3) ${ }^{\circ}$
$V=2666.9(9) \AA^{3}$
$Z=8$
$F(000)=1376$
$D_{\mathrm{x}}=1.764 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4303 reflections
$\theta=2.5-26.7^{\circ}$
$\mu=6.06 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, colourless
$0.15 \times 0.07 \times 0.06 \mathrm{~mm}$

Data collection

Bruker SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\min }=0.403, T_{\text {max }}=0.695$

> 5954 measured reflections
> 2611 independent reflections
> 1715 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.061$
> $\theta_{\max }=26.0^{\circ}, \theta_{\min }=1.7^{\circ}$
> $h=-12 \rightarrow 14$
> $k=-26 \rightarrow 28$
> $l=-12 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.114$
$S=1.00$
2611 reflections
155 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Br1	$0.24399(5)$	$0.73912(2)$	$0.82770(5)$	$0.0708(2)$	
N1	$0.4449(3)$	$0.63281(13)$	$0.3396(3)$	$0.0429(8)$	
H2A	0.4352	0.5975	0.3271	0.052^{*}	0.50
C1	0.5000	$0.6600(2)$	0.2500	$0.0428(13)$	
H1	0.5000	0.6997	0.2500	0.051^{*}	
C11	$0.3994(4)$	$0.65996(16)$	$0.4505(4)$	$0.0404(9)$	
C12	$0.4347(4)$	$0.71277(17)$	$0.4995(4)$	$0.0525(11)$	
H12A	0.4903	0.7329	0.4570	0.063^{*}	$0.0569(11)$
C13	$0.3885(4)$	$0.73617(18)$	$0.6108(5)$	0.068^{*}	
H13A	0.4131	0.7719	0.6428	$0.0459(10)$	
C14	$0.3065(4)$	$0.70681(17)$	$0.6738(4)$	$0.0560(11)$	
C15	$0.2716(4)$	$0.65412(19)$	$0.6293(4)$	0.067^{*}	
H15A	0.2171	0.6340	0.6737	$0.0546(11)$	
C16	$0.3177(4)$	$0.63066(17)$	$0.5178(4)$	0.066^{*}	
H16A	0.2935	0.5947	0.4873	$0.1036(3)$	
Br2	$0.02928(6)$	$0.61567(3)$	$1.05388(8)$		

N2	$0.4121(3)$	$0.49146(13)$	$0.7963(3)$	$0.0507(8)$	0.50
H3A	0.4085	0.4541	0.7936	0.061^{*}	$0.0520(15)$
C2	0.5000	$0.5180(2)$	0.7500	0.062^{*}	
H2B	0.5000	0.5577	0.7500	$0.0455(10)$	
C21	$0.3242(4)$	$0.52137(16)$	$0.8556(4)$	$0.0588(12)$	
C22	$0.2110(4)$	$0.50352(19)$	$0.8320(5)$	0.071^{*}	
H32A	0.1933	0.4723	0.7758	$0.0635(12)$	
C23	$0.1229(4)$	$0.53143(19)$	$0.8908(5)$	0.076^{*}	
H33A	0.0466	0.5189	0.8746	$0.0561(11)$	
C24	$0.1488(4)$	$0.57764(18)$	$0.9729(5)$	$0.0584(12)$	
C25	$0.2603(4)$	$0.59524(19)$	$0.9991(4)$	0.070^{*}	
H35A	0.2774	0.6264	1.0557	$0.0561(11)$	
C26	$0.3483(4)$	$0.56719(17)$	$0.9422(4)$	0.067^{*}	
H36A	0.4247	0.5791	0.9621		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.0872(4)$	$0.0873(4)$	$0.0409(3)$	$0.0246(3)$	$0.0215(2)$	$-0.0074(2)$
N 1	$0.046(2)$	$0.0446(17)$	$0.0413(18)$	$0.0019(15)$	$0.0199(15)$	$-0.0018(14)$
C 1	$0.040(3)$	$0.042(3)$	$0.047(3)$	0.000	$0.006(3)$	0.000
C 11	$0.044(2)$	$0.046(2)$	$0.033(2)$	$0.0046(18)$	$0.0111(17)$	$0.0051(17)$
C 12	$0.059(3)$	$0.056(2)$	$0.045(2)$	$-0.014(2)$	$0.017(2)$	$-0.001(2)$
C 13	$0.070(3)$	$0.056(2)$	$0.046(3)$	$-0.009(2)$	$0.012(2)$	$-0.007(2)$
C 14	$0.056(3)$	$0.055(2)$	$0.028(2)$	$0.010(2)$	$0.0129(18)$	$-0.0038(18)$
C 15	$0.053(3)$	$0.073(3)$	$0.047(2)$	$-0.005(2)$	$0.029(2)$	$0.000(2)$
C 16	$0.064(3)$	$0.051(2)$	$0.053(3)$	$-0.009(2)$	$0.025(2)$	$-0.003(2)$
Br 2	$0.0764(5)$	$0.0940(5)$	$0.1485(7)$	$0.0149(3)$	$0.0538(4)$	$-0.0264(4)$
N 2	$0.046(2)$	$0.0459(18)$	$0.063(2)$	$0.0002(16)$	$0.0217(17)$	$-0.0012(17)$
C 2	$0.055(4)$	$0.043(3)$	$0.059(4)$	0.000	$0.011(3)$	0.000
C 21	$0.047(3)$	$0.044(2)$	$0.047(2)$	$0.0014(18)$	$0.0127(19)$	$0.0011(18)$
C 22	$0.049(3)$	$0.061(3)$	$0.067(3)$	$-0.010(2)$	$0.014(2)$	$-0.019(2)$
C 23	$0.035(3)$	$0.078(3)$	$0.079(3)$	$-0.006(2)$	$0.014(2)$	$-0.016(3)$
C 24	$0.052(3)$	$0.057(3)$	$0.062(3)$	$0.011(2)$	$0.019(2)$	$0.000(2)$
C 25	$0.057(3)$	$0.053(3)$	$0.067(3)$	$0.000(2)$	$0.017(2)$	$-0.014(2)$
C 26	$0.047(3)$	$0.059(3)$	$0.061(3)$	$-0.007(2)$	$0.005(2)$	$-0.010(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 14$	$1.901(4)$	$\mathrm{Br} 2-\mathrm{C} 24$	$1.886(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.305(4)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.311(4)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.412(5)$	$\mathrm{N} 2-\mathrm{C} 21$	$1.407(5)$
$\mathrm{N} 1-\mathrm{H} 2 \mathrm{~A}$	0.8422	$\mathrm{~N} 2-\mathrm{H} 3 \mathrm{~A}$	0.8763
$\mathrm{C} 1-\mathrm{N} 1 \mathrm{i}$	$1.305(4)$	$\mathrm{C} 2-\mathrm{N} 2 \mathrm{ii}$	$1.311(4)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9300
$\mathrm{C} 11-\mathrm{C} 12$	$1.377(5)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.373(6)$
$\mathrm{C} 11-\mathrm{C} 16$	$1.388(6)$	$\mathrm{C} 21-\mathrm{C} 26$	$1.385(5)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.381(6)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.383(6)$

supporting information

$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9300
$\mathrm{C} 13-\mathrm{C} 14$	$1.369(6)$
$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	0.9300
$\mathrm{C} 14-\mathrm{C} 15$	$1.360(6)$
$\mathrm{C} 15-\mathrm{C} 16$	$1.383(6)$
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	0.9300
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	0.9300
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11$	$123.2(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~A}$	116.6
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~A}$	120.1
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{N} 1$	$121.4(5)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	119.3
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1$	119.3
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16$	$118.0(4)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{N} 1$	$123.9(4)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{N} 1$	$118.0(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$120.9(4)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	119.6
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	119.6
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$120.0(4)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	120.0
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	120.0
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$120.5(4)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{Br} 1$	$119.8(3)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{Br} 1$	$119.7(3)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$119.6(4)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	120.2
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	120.2
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11$	$121.1(4)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	119.5
$\mathrm{C} 11-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	

$\mathrm{C} 22-\mathrm{H} 32 \mathrm{~A}$	0.9300
$\mathrm{C} 23-\mathrm{C} 24$	$1.369(6)$
$\mathrm{C} 23-\mathrm{H} 33 \mathrm{~A}$	0.9300
$\mathrm{C} 24-\mathrm{C} 25$	$1.355(6)$
$\mathrm{C} 25-\mathrm{C} 26$	$1.375(6)$
$\mathrm{C} 25-\mathrm{H} 35 \mathrm{~A}$	0.9300
$\mathrm{C} 26-\mathrm{H} 36 \mathrm{~A}$	0.9300
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 21$	
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~A}$	$121.5(3)$
$\mathrm{C} 21-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~A}$	120.0
$\mathrm{~N} 2 \mathrm{C} 2-\mathrm{C} 2-\mathrm{N} 2$	118.5
$\mathrm{~N} 2 \mathrm{C} 2-\mathrm{C} 2 \mathrm{~B}$	$123.3(5)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	118.4
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 26$	118.4
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{N} 2$	$118.3(4)$
$\mathrm{C} 26-\mathrm{C} 21-\mathrm{N} 2$	$119.4(3)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$122.2(4)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 32 \mathrm{~A}$	$120.8(4)$
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 32 \mathrm{~A}$	119.6
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{C} 22$	119.6
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 33 \mathrm{~A}$	$119.6(4)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 33 \mathrm{~A}$	120.2
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{C} 23$	120.2
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{Br} 2$	$120.3(4)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{Br} 2$	$119.8(3)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$119.8(3)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{H} 35 \mathrm{~A}$	$120.2(4)$
$\mathrm{C} 26-\mathrm{C} 25-\mathrm{H} 35 \mathrm{~A}$	119.9
$\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 21$	119.9
$\mathrm{C} 25-\mathrm{C} 26-\mathrm{H} 36 \mathrm{~A}$	$120.7(4)$
$\mathrm{C} 21-\mathrm{C} 26-\mathrm{H} 36 \mathrm{~A}$	119.7

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 2 A \cdots \mathrm{~N} 2^{\mathrm{iii}}$	0.85	2.12	$2.964(4)$	180
$\mathrm{~N} 2 — \mathrm{H} 3 A \cdots \mathrm{~N} 1^{\text {iv }}$	0.88	2.12	$2.964(4)$	161

Symmetry codes: (iii) $x,-y+1, z-1 / 2$; (iv) $x,-y+1, z+1 / 2$.

