Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(1RS,2RS,3SR,5RS,7RS)-2,5-Dichloro-8-oxabicyclo[5.1.0]octan-3-ol

Yasin Çetinkaya, ${ }^{\text {a }}$ Abdullah Menzek ${ }^{\text {a }}$ and Tuncer Hökelek ${ }^{\text {b* }}$

${ }^{\text {a }}$ Department of Chemistry, Atatürk University, 25240 Erzurum, Turkey, and ${ }^{\mathbf{b}}$ Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 25 March 2011; accepted 8 April 2011
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$; R factor $=0.088 ; w R$ factor $=0.190$; data-to-parameter ratio $=15.7$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$, the seven-membered ring displays a chair conformation. In the crystal, the hydroxy H atom is equally disordered over two orientations, and links with an adjacent molecule via an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond in both cases. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is also a feature of the crystal structure.

Related literature

For background to syn-bis-epoxides, see: Balcı (1981); Akbulut et al. (1987); Menzek \& Balcı (1993); Saraçoğlu et al. (1999). For background to unsaturated bicyclic endopexide, see: Menzek et al. (2005). For background to epoxide and bisepoxide, see: Şengül et al. (2008).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$M_{r}=197.05$
Orthorhombic, Pbcn
$a=21.9202$ (5) \AA
$b=9.9343$ (3) \AA
$c=8.1005$ (2) \AA
$V=1763.98(8) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.68 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
$0.32 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID-S diffractometer
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.845, T_{\text {max }}=0.900$
32813 measured reflections 1801 independent reflections 1267 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.110$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.088$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.190$
$S=1.18$
1801 reflections
115 parameters
2 restraints
independent and constrained refinement
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.83(11)$	$1.96(11)$	$2.746(7)$	$159(12)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 2 B \cdots \mathrm{O} 2^{\text {ii }}$	0.85	1.84	$2.692(8)$	174
${\mathrm{C} 2-\mathrm{H} 21 \cdots \mathrm{O} 1^{i i i}}^{2}$	0.97	2.43	$3.398(7)$	172
Symmetry codes: $(\mathrm{i})-x+1,-y+2,-z \cdot$	(ii) $-x+1, y,-z+\frac{1}{2} \cdot$ (iii) $-x+\frac{3}{2}, y-\frac{1}{2}, z$.			

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5182).

References

Akbulut, N., Menzek, A. \& Balcı, M. (1987). Tetrahedron Lett. 28, 1689-1692. Balcı, M. (1981). Chem. Rev. 81, 91-108.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Menzek, A. \& Balcı, M. (1993). Aust. J. Chem. 46, 1613-1621.
Menzek, A., Şengül, M. E., Çetinkaya, Y. \& Ceylan, S. (2005). J. Chem. Res. pp. 209-214.
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.
Saraçoğlu, N., Menzek, A., Sayan, Ş., Salzner, U. \& Balcı, M. (1999). J. Org. Chem. 64, 6670-6676.
Şengül, M. E., Menzek, A., Şahin, E., Arık, M. \& Saracoğlu, N. (2008). Tetrahedron, 64, 7289-7294.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o1145 [doi:10.1107/S1600536811013304]

(1 RS,2RS,3SR,5RS,7 RS)-2,5-Dichloro-8-oxabicyclo[5.1.0]octan-3-ol

Yasin Çetinkaya, Abdullah Menzek and Tuncer Hökelek

S1. Comment

Unsaturated bicyclic endopexides are important compounds for versatile chemical transformations in organic chemistry. In these endoperoxides, diradicals formed by thermal cleavage of the weak O-O bonds react to give the syn-bis-epoxides (Balcı, 1981; Akbulut et al., 1987; Menzek \& Balcı, 1993; Saraçoğlu et al., 1999).
Unsaturated bicyclic endopexide, (1), (Scheme 1) was synthesized by the literature method (Menzek et al., 2005). Reaction of endoperoxide, (1), by heating at 453 (5) K gave a mixture of products (Scheme 1). The title compound, (2), was isolated from these mixtures. The other products were not identified. According to the NMR data of dichloride, (2), it was not easy to establish the exact configuration of the molecule. Therefore, the exact structure of dichloride, (2), was determined by X-ray single crystal analysis.
To rationalize the formation of dichloride, (2), we propose the following reaction mechanism as favourable mechanism (Scheme 1). Bis-epoxide, (3), is produced via diradicals formed by thermal cleavage of the weak O-O bonds. HCl formed by elimination from reaction products such as (3) can attack bis-epoxide, (3), to give intermediate (4). Cl^{-}can attack intermediate (4) to give dichloride, (2), as a nucleophile. An epoxide or bis-epoxide ring (Şengül et al., 2008) may be opened by as a nucleophile.
In the title compound, the seven-membered ring $\mathrm{A}(\mathrm{C} 1-\mathrm{C} 7)$ is, of course, not planar. The planar moieties $\mathrm{B}(\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 7)$, $\mathrm{C}(\mathrm{C} 3-\mathrm{C} 5), \mathrm{D}(\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 5 / \mathrm{C} 6)$ and $\mathrm{E}(\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 6 / \mathrm{C} 7)$ are oriented at dihedral angles of $\mathrm{B} / \mathrm{C}=68.75(46)^{\circ}, \mathrm{B} / \mathrm{D}=$ $13.84(28)^{\circ}, \mathrm{B} / \mathrm{E}=74.48(32)^{\circ}, \mathrm{C} / \mathrm{D}=54.91(42)^{\circ}, \mathrm{C} / \mathrm{E}=6.00(42)^{\circ}$ and $\mathrm{D} / \mathrm{E}=60.65(30)^{\circ}$.
In the crystal, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into a three-dimensional network (Table 1 and Fig. 2).

S2. Experimental

For the preparation of the title compound, a mixture of endoproxide ($0.5 \mathrm{~g}, 2.6 \mathrm{mmol}$) and benzene (5 ml) was placed into a test tube, sealed under vacuum and heated at 453 (5) K for 3 d . After cooling to room temperature, the solvent was evaporated. The residue was submitted to column chromatography (silica gel, 90 g) with $\mathrm{AcOEt} / \mathrm{hexane}(1: 6)$ as eluant. Dichloride (yield: $0.056 \mathrm{~g}, 9 \%$, m. p. 366-368 K) and a mixture of unidentified products were obtained. Dichloride was crystallized from ethyl acetate/hexane (1:1) as colorless block crystals.

S3. Refinement

$\mathrm{H} 1, \mathrm{H} 7, \mathrm{H} 21, \mathrm{H} 22$ and $\mathrm{H} 41, \mathrm{H} 42$ atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.98$ and $0.97 \AA$, respectively, and constrained to ride on their parent atoms, with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The remaining H -atoms were located in a difference Fourier map and refined isotropically. The H atom of the OH group was disordered over two orientations. During the refinement process, the disordered H 2 A and H 2 B atoms were refined with equal occupancies.

Figure 1
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40\% probability level.

Figure 2

A view of the crystal packing of the title compound. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines.
(1 RS,2RS,3SR,5RS,7RS)-2,5-Dichloro-8-oxabicyclo[5.1.0]octan-3-ol
Crystal data
$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$M_{r}=197.05$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=21.9202(5) \AA$

$$
\begin{aligned}
& b=9.9343(3) \AA \\
& c=8.1005(2) \AA \\
& V=1763.98(8) \AA^{3} \\
& Z=8 \\
& F(000)=816
\end{aligned}
$$

$D_{\mathrm{x}}=1.484 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4978 reflections
$\theta=2.3-26.4^{\circ}$

Data collection

Rigaku R-AXIS RAPID-S
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.845, T_{\text {max }}=0.900$

$$
\mu=0.68 \mathrm{~mm}^{-1}
$$

$T=294 \mathrm{~K}$
Block, colorless
$0.32 \times 0.20 \times 0.15 \mathrm{~mm}$

32813 measured reflections
1801 independent reflections
1267 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.110$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-27 \rightarrow 27$
$k=-12 \rightarrow 12$
$l=-9 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.088$
$w R\left(F^{2}\right)=0.190$
$S=1.18$
1801 reflections
115 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.020 P)^{2}+5.1831 P\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\text {max }}<0.001$
> $\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{-3}$
> $\Delta \rho_{\text {min }}=-0.34 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
C11	$0.59049(9)$	$0.41547(16)$	$0.1157(2)$	$0.0883(6)$	
C12	$0.62620(9)$	$1.07361(16)$	$0.1076(2)$	$0.0841(6)$	
O1	$0.7389(2)$	$0.8227(5)$	$0.1601(7)$	$0.1017(17)$	
O2	$0.5199(2)$	$0.8930(5)$	$0.0928(7)$	$0.0941(16)$	
H2A	$0.511(7)$	$0.945(11)$	$0.017(12)$	0.090^{*}	0.50
H2B	0.5050	0.8950	0.1900	0.090^{*}	0.50
C1	$0.7119(3)$	$0.7145(7)$	$0.0682(10)$	$0.084(2)$	
H1	0.7361	0.6806	-0.0247	0.101^{*}	
C2	$0.6766(2)$	$0.6091(6)$	$0.1650(9)$	$0.0732(18)$	
H21	0.7003	0.5271	0.1751	0.088^{*}	
H22	0.6672	0.6421	0.2748	0.088^{*}	

C3	$0.6182(3)$	$0.5825(6)$	$0.0692(8)$	$0.0604(15)$
H3	$0.628(3)$	$0.578(7)$	$-0.042(9)$	$0.10(2)^{*}$
C4	$0.5669(2)$	$0.6810(5)$	$0.1042(8)$	$0.0610(14)$
H41	0.5303	0.6467	0.0516	0.073^{*}
H42	0.5595	0.6806	0.2223	0.073^{*}
C5	$0.5748(2)$	$0.8269(6)$	$0.0507(8)$	$0.0582(14)$
H5	$0.580(2)$	$0.832(5)$	$-0.066(7)$	$0.057(16)^{*}$
C6	$0.6294(3)$	$0.8926(5)$	$0.1265(7)$	$0.0558(13)$
H6	$0.636(2)$	$0.873(5)$	$0.231(7)$	$0.066(18)^{*}$
C7	$0.6885(2)$	$0.8499(6)$	$0.0502(8)$	$0.0703(17)$
H7	0.6993	0.8954	-0.0531	0.084^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.1032(13)$	$0.0592(9)$	$0.1024(14)$	$-0.0091(8)$	$-0.0189(11)$	$0.0044(9)$
C12	$0.1150(14)$	$0.0573(9)$	$0.0799(11)$	$-0.0025(9)$	$0.0052(10)$	$-0.0046(8)$
O1	$0.067(3)$	$0.095(4)$	$0.143(5)$	$-0.021(3)$	$-0.030(3)$	$0.028(3)$
O2	$0.067(3)$	$0.084(3)$	$0.132(5)$	$0.024(2)$	$0.023(3)$	$0.012(3)$
C1	$0.049(3)$	$0.097(5)$	$0.107(6)$	$0.011(3)$	$0.009(4)$	$0.011(5)$
C2	$0.055(3)$	$0.069(4)$	$0.096(5)$	$0.014(3)$	$-0.016(3)$	$0.010(3)$
C3	$0.066(4)$	$0.052(3)$	$0.063(4)$	$0.001(3)$	$0.001(3)$	$-0.005(3)$
C4	$0.049(3)$	$0.058(3)$	$0.075(4)$	$0.001(2)$	$-0.009(3)$	$-0.004(3)$
C5	$0.050(3)$	$0.064(3)$	$0.061(4)$	$0.008(3)$	$-0.001(3)$	$0.004(3)$
C6	$0.066(3)$	$0.049(3)$	$0.052(3)$	$0.001(2)$	$-0.009(3)$	$0.000(3)$
C7	$0.052(3)$	$0.075(4)$	$0.084(4)$	$-0.006(3)$	$0.009(3)$	$0.014(3)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{C} 11-\mathrm{C} 3$	$1.806(6)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.520(8)$
$\mathrm{C} 2-\mathrm{C} 6$	$1.806(6)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.518(7)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.434(8)$	$\mathrm{C} 3-\mathrm{H} 3$	$0.93(7)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.443(7)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.522(8)$
$\mathrm{O} 2-\mathrm{C} 5$	$1.413(7)$	$\mathrm{C} 4-\mathrm{H} 41$	0.9700
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B}$	$0.853(5)$	$\mathrm{C} 4-\mathrm{H} 42$	0.9700
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	$0.82(2)$	$\mathrm{C} 5-\mathrm{H} 5$	$0.95(5)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.447(9)$	$\mathrm{C} 6-\mathrm{C} 5$	$1.497(8)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9800	$\mathrm{C} 6-\mathrm{C} 7$	$1.497(8)$
$\mathrm{C} 2-\mathrm{C} 1$	$1.521(8)$	$\mathrm{C} 6-\mathrm{H} 6$	$0.88(6)$
$\mathrm{C} 2-\mathrm{H} 21$	0.9700	$\mathrm{C} 7-\mathrm{H} 7$	0.9800
$\mathrm{C} 2-\mathrm{H} 22$	0.9700		107.7
		107.7	
$\mathrm{C} 5-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B}$	$124.0(5)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 41$	107.7
$\mathrm{C} 5-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	$109(10)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 42$	107.7
$\mathrm{H} 2 \mathrm{~B}-\mathrm{O} 2-\mathrm{H} 2 \mathrm{C} 4-\mathrm{H} 41$	107.1		
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7$	$125(10)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 42$	$106.1(5)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$60.4(4)$	$\mathrm{H} 42-\mathrm{C} 4-\mathrm{H} 41$	
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 7$	$117.3(6)$	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	

$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1$	115.7	O2-C5-C6	112.3 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	115.7	O2-C5-H5	109 (3)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2$	120.7 (5)	C4-C5-H5	110 (3)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{H} 1$	115.7	C6-C5-C4	112.9 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 21$	110.4	C6-C5-H5	107 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 22$	110.4	C12-C6-H6	108 (4)
C3-C2-C1	106.6 (5)	C5-C6- ${ }^{\text {Cl2 }}$	111.6 (4)
C3-C2-H21	110.4	C5-C6-C7	113.6 (5)
C3-C2-H22	110.4	C5-C6-H6	116 (4)
$\mathrm{H} 21-\mathrm{C} 2-\mathrm{H} 22$	108.6	C7-C6- ${ }^{\text {Cl2 }}$	106.3 (4)
$\mathrm{Cl1}-\mathrm{C} 3-\mathrm{H} 3$	104 (4)	C7-C6-H6	101 (4)
C2-C3-Cl1	109.6 (4)	O1-C7-C1	59.5 (4)
C2-C3-H3	108 (4)	O1-C7-C6	117.4 (6)
C4-C3-Cl1	107.7 (4)	O1-C7-H7	115.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	114.6 (5)	C1-C7-C6	122.0 (5)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	113 (4)	C1-C7-H7	115.4
C3-C4-C5	118.4 (5)	C6-C7-H7	115.4
C7-O1-C1-C2	-111.5 (6)	C3-C4-C5-O2	177.8 (5)
C1-O1-C7-C6	112.7 (6)	C3-C4-C5-C6	-58.7 (7)
O1-C1-C7-C6	-105.2 (7)	C12-C6-C5-O2	-44.3 (6)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	105.9 (8)	$\mathrm{Cl} 2-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	-164.2 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 6$	0.7 (10)	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5-\mathrm{O} 2$	-164.5 (5)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	135.8 (5)	C7-C6-C5-C4	75.6 (7)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	66.0 (8)	C12-C6-C7-C1	168.9 (6)
C11-C3-C2-C1	154.6 (5)	C12-C6-C7-O1	99.4 (5)
C4-C3-C2-C1	-84.1 (7)	C5-C6- $7-\mathrm{O} 1$	-137.5 (5)
C11-C3-C4-C5	-170.8 (4)	C5-C6-C7-C1	-68.0 (8)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	66.8 (7)		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.83(11)$	$1.96(11)$	$2.746(7)$	$159(12)$
$\mathrm{O} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.85	1.84	$2.692(8)$	174
$\mathrm{C} 2 — \mathrm{H} 21 \cdots 1^{\mathrm{iii}}$	0.97	2.43	$3.398(7)$	172

Symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $-x+1, y,-z+1 / 2$; (iii) $-x+3 / 2, y-1 / 2, z$.

