Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 3-[2-Hydroxy-3-(2,4,6-trimethylphenyl)propyl]-3-methyl-1-phenylthiourea

### Abel M. Maharramov,<sup>a</sup> Ali N. Khalilov,<sup>a</sup> Nurlana D. Sadikhova,<sup>a</sup> Atash V. Gurbanov<sup>a</sup> and Seik Weng Ng<sup>b\*</sup>

<sup>a</sup>Department of Organic Chemistry, Baku State University, Baku, Azerbaijan, and <sup>b</sup>Department of Chemistry, University of Malava, 50603 Kuala Lumpur, Malavsia Correspondence e-mail: seikweng@um.edu.my

Received 29 March 2011; accepted 6 April 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.112; data-to-parameter ratio = 18.2.

In the title compound, C<sub>20</sub>H<sub>26</sub>N<sub>2</sub>OS, four non-H atoms of the thiourea unit are approximately planar (r.m.s. deviation = 0.005 Å); the phenyl and benzene rings are twisted out of this plane by 28.55 (7) and  $60.00 (7)^{\circ}$ , respectively. An intramolecular  $N-H\cdots O$  hydrogen bond occurs. The hydroxy group is hydrogen bonded to the double-bond S atom of an inversion-related molecule, generating a hydrogen-bonded dimer in the crystal structure.

### **Related literature**

The title compund was prepared by a reaction of 1-methylamino-3-(2,4,6-trimethylphenyl)propan-2-ol and phenyl isothiocyanate; for the structure of the reactant 1-methylamino-3-(2,4,6-trimethylphenyl)propan-2-ol, see: Maharramov et al. (2011).



### **Experimental**

#### Crystal data

| C. H. N.OS                      | $V = 1855.6(2) Å^3$            |
|---------------------------------|--------------------------------|
| $M_r = 342.49$                  | V = 1055.0(2) R<br>Z = 4       |
| Monoclinic, $P2_1/c$            | Mo $K\alpha$ radiation         |
| a = 14.6313 (11)  Å             | $\mu = 0.18 \text{ mm}^{-1}$   |
| b = 8.1579 (6) Å                | $T = 100 { m K}$               |
| c = 16.4455 (12) Å              | $0.30 \times 0.20 \times 0.20$ |
| $\beta = 109.040 \ (1)^{\circ}$ |                                |
|                                 |                                |

### Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.947, \ T_{\max} = 0.964$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.039$ |  |
|---------------------------------|--|
| $wR(F^2) = 0.112$               |  |
| S = 1.04                        |  |
| 4160 reflections                |  |
| 229 parameters                  |  |
| 2 restraints                    |  |

mm

10052 measured reflections 4160 independent reflections 3542 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.028$ 

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$ 

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                    | D-H                  | $H \cdots A$         | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------------------|----------------------|----------------------|------------------------|--------------------------------------|
| $O1 - H1 \cdots S1^{i}$<br>$N2 - H2 \cdots O1$ | 0.83 (1)<br>0.88 (1) | 2.50 (1)<br>1.89 (1) | 3.219 (1)<br>2.739 (2) | 146 (2)<br>165 (2)                   |
| C                                              | . 4 . 4              | 1.4                  |                        |                                      |

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Baku State University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5185).

### References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, 0784.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

Acta Cryst. (2011). E67, o1087 [doi:10.1107/S1600536811012736]

# 3-[2-Hydroxy-3-(2,4,6-trimethylphenyl)propyl]-3-methyl-1-phenylthiourea

# Abel M. Maharramov, Ali N. Khalilov, Nurlana D. Sadikhova, Atash V. Gurbanov and Seik Weng Ng

## S1. Comment

We have recently reported the synthesis and crystal structure of 1-methylamino-3-(2,4,6-trimethylphenyl)propan-2-ol (Maharramov *et al.*, 2011). This secondary amine behaves like a conventional secondary amine in its reaction with phenyl isothiocyanate to furnish a thiourea (Scheme I). The four-atoms N–C(=S)–N unit of  $C_{20}H_{26}N_2OS$  is planar [r.m.s. deviation 0.005 Å]; the phenyl ring connected to one of the two flanking N atoms is twisted out of this plane 28.6 (1)° (Fig. 1). The propyl chain connected to the other N atom bears a hydroxy substituent; this serves as hydrogen-bond donor acceptor to the double-bond S atom of an inversion-related molecule to generate a hydrogen-bonded dimer.

### S2. Experimental

1-Methylamino-3-(2,4,6-trimethylphenyl)propan-2-ol was synthesized as reported (Maharramov *et al.*, 2011). The compound (10 mmol) and phenyl isothiocyanate (10 mmol) were heated in benzene (50 mol) for 10 h. The solvent was removed and the product recrystallized from ethanol to yield colorless crystals, m.p. 413–414 K; yield 90%.

### S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 1.00 Å; U(H) 1.2 to 1.5U(C)] and were included in the refinement in the riding model approximation.

The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined with distance restraints of  $O-H 0.84\pm0.01$  and  $N-H 0.88\pm0.01$  Å; their temperature factors were refined.



### Figure 1

Thermal ellipsoid plot (Barbour, 2001) of  $C_{20}H_{26}N_2OS$  at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

### 3-[2-Hydroxy-3-(2,4,6-trimethylphenyl)propyl]-3-methyl-1-phenylthiourea

Crystal data

C<sub>20</sub>H<sub>26</sub>N<sub>2</sub>OS  $M_r = 342.49$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 14.6313 (11) Å b = 8.1579 (6) Å c = 16.4455 (12) Å  $\beta = 109.040 (1)^{\circ}$   $V = 1855.6 (2) \text{ Å}^3$ Z = 4

### Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\min} = 0.947, T_{\max} = 0.964$ 

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.039$  $wR(F^2) = 0.112$ S = 1.04 F(000) = 736  $D_x = 1.226 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4968 reflections  $\theta = 2.6-29.2^{\circ}$   $\mu = 0.18 \text{ mm}^{-1}$  T = 100 KPrism, colorless  $0.30 \times 0.20 \times 0.20 \text{ mm}$ 

10052 measured reflections 4160 independent reflections 3542 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.028$  $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.6^{\circ}$  $h = -18 \rightarrow 18$  $k = -10 \rightarrow 10$  $l = -20 \rightarrow 20$ 

4160 reflections229 parameters2 restraintsPrimary atom site location: structure-invariant direct methods

| Secondary atom site location: difference Fourier | $w = 1/[\sigma^2(F_o^2) + (0.0617P)^2 + 0.4837P]$        |
|--------------------------------------------------|----------------------------------------------------------|
| map                                              | where $P = (F_0^2 + 2F_c^2)/3$                           |
| Hydrogen site location: inferred from            | $(\Delta/\sigma)_{\rm max} = 0.001$                      |
| neighbouring sites                               | $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$  |
| H atoms treated by a mixture of independent      | $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$ |
| and constrained refinement                       |                                                          |

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(\mathring{A}^2)$ |  |
|----------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                |  |

|      | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| S1   | 0.35275 (3)  | 0.49063 (4)  | 0.61941 (2)  | 0.02172 (11)                |  |
| 01   | 0.61082 (7)  | 0.26588 (12) | 0.52099 (7)  | 0.0223 (2)                  |  |
| H1   | 0.6434 (13)  | 0.330 (2)    | 0.5027 (12)  | 0.041 (6)*                  |  |
| N1   | 0.51088 (8)  | 0.30365 (14) | 0.65553 (7)  | 0.0197 (3)                  |  |
| N2   | 0.42327 (8)  | 0.31882 (14) | 0.51317 (8)  | 0.0196 (2)                  |  |
| H2   | 0.4785 (9)   | 0.292 (2)    | 0.5069 (12)  | 0.032 (5)*                  |  |
| C1   | 0.81508 (10) | 0.13935 (16) | 0.59751 (10) | 0.0216 (3)                  |  |
| C2   | 0.89199 (11) | 0.21843 (18) | 0.65953 (10) | 0.0260 (3)                  |  |
| C3   | 0.97052 (11) | 0.2735 (2)   | 0.63719 (12) | 0.0320 (4)                  |  |
| H3   | 1.0215       | 0.3293       | 0.6790       | 0.038*                      |  |
| C4   | 0.97654 (12) | 0.2495 (2)   | 0.55560 (12) | 0.0340 (4)                  |  |
| C5   | 0.90094 (12) | 0.1692 (2)   | 0.49568 (11) | 0.0319 (4)                  |  |
| Н5   | 0.9043       | 0.1508       | 0.4397       | 0.038*                      |  |
| C6   | 0.82014 (11) | 0.11434 (18) | 0.51461 (10) | 0.0254 (3)                  |  |
| C7   | 0.89290 (13) | 0.2418 (2)   | 0.75097 (11) | 0.0364 (4)                  |  |
| H7A  | 0.9484       | 0.3098       | 0.7824       | 0.055*                      |  |
| H7B  | 0.8979       | 0.1348       | 0.7792       | 0.055*                      |  |
| H7C  | 0.8330       | 0.2961       | 0.7506       | 0.055*                      |  |
| C8   | 1.06343 (14) | 0.3063 (2)   | 0.53256 (16) | 0.0496 (5)                  |  |
| H8A  | 1.0423       | 0.3813       | 0.4834       | 0.074*                      |  |
| H8B  | 1.0956       | 0.2112       | 0.5174       | 0.074*                      |  |
| H8C  | 1.1087       | 0.3630       | 0.5819       | 0.074*                      |  |
| C9   | 0.74118 (12) | 0.0268 (2)   | 0.44548 (11) | 0.0327 (4)                  |  |
| H9A  | 0.7578       | 0.0233       | 0.3924       | 0.049*                      |  |
| H9B  | 0.6800       | 0.0856       | 0.4348       | 0.049*                      |  |
| H9C  | 0.7345       | -0.0852      | 0.4643       | 0.049*                      |  |
| C10  | 0.72773 (10) | 0.08517 (17) | 0.62059 (10) | 0.0223 (3)                  |  |
| H10A | 0.7491       | 0.0465       | 0.6810       | 0.027*                      |  |
| H10B | 0.6964       | -0.0080      | 0.5834       | 0.027*                      |  |
| C11  | 0.65378 (10) | 0.22347 (17) | 0.61007 (9)  | 0.0195 (3)                  |  |
| H11  | 0.6861       | 0.3218       | 0.6435       | 0.023*                      |  |
| C12  | 0.57030 (10) | 0.16888 (16) | 0.64028 (9)  | 0.0195 (3)                  |  |
| H12A | 0.5280       | 0.0943       | 0.5965       | 0.023*                      |  |
| H12B | 0.5971       | 0.1057       | 0.6942       | 0.023*                      |  |
| C13  | 0.54069 (11) | 0.36552 (19) | 0.74324 (9)  | 0.0253 (3)                  |  |
| H13A | 0.5239       | 0.4819       | 0.7427       | 0.038*                      |  |
| H13B | 0.6107       | 0.3523       | 0.7697       | 0.038*                      |  |
| H13C | 0.5075       | 0.3040       | 0.7765       | 0.038*                      |  |

| C14 | 0.43142 (10) | 0.36483 (16) | 0.59459 (9)  | 0.0175 (3) |
|-----|--------------|--------------|--------------|------------|
| C15 | 0.34745 (10) | 0.33743 (15) | 0.43473 (9)  | 0.0177 (3) |
| C16 | 0.25039 (10) | 0.36157 (17) | 0.42568 (10) | 0.0228 (3) |
| H16 | 0.2307       | 0.3745       | 0.4749       | 0.027*     |
| C17 | 0.18274 (11) | 0.36650 (18) | 0.34365 (10) | 0.0274 (3) |
| H17 | 0.1166       | 0.3841       | 0.3374       | 0.033*     |
| C18 | 0.20929 (11) | 0.34643 (19) | 0.27106 (10) | 0.0280 (3) |
| H18 | 0.1619       | 0.3497       | 0.2155       | 0.034*     |
| C19 | 0.30580 (11) | 0.32148 (18) | 0.28011 (9)  | 0.0251 (3) |
| H19 | 0.3249       | 0.3065       | 0.2307       | 0.030*     |
| C20 | 0.37432 (10) | 0.31839 (16) | 0.36127 (9)  | 0.0212 (3) |
| H20 | 0.4405       | 0.3031       | 0.3671       | 0.025*     |
|     |              |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$    | $U^{22}$     | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------------|-------------|--------------|-----------------|--------------|--------------|--------------|
| <b>S</b> 1 | 0.0242 (2)  | 0.02255 (18) | 0.0209 (2)      | 0.00347 (13) | 0.01083 (14) | 0.00010 (13) |
| 01         | 0.0211 (5)  | 0.0255 (5)   | 0.0227 (5)      | 0.0022 (4)   | 0.0102 (4)   | 0.0086 (4)   |
| N1         | 0.0209 (6)  | 0.0219 (6)   | 0.0169 (6)      | 0.0021 (4)   | 0.0072 (5)   | 0.0012 (4)   |
| N2         | 0.0176 (6)  | 0.0247 (6)   | 0.0176 (6)      | 0.0025 (5)   | 0.0074 (5)   | 0.0004 (5)   |
| C1         | 0.0210 (7)  | 0.0185 (6)   | 0.0264 (7)      | 0.0061 (5)   | 0.0092 (6)   | 0.0057 (5)   |
| C2         | 0.0215 (7)  | 0.0253 (7)   | 0.0294 (8)      | 0.0078 (6)   | 0.0056 (6)   | 0.0039 (6)   |
| C3         | 0.0195 (7)  | 0.0279 (8)   | 0.0450 (10)     | 0.0049 (6)   | 0.0057 (7)   | 0.0036 (7)   |
| C4         | 0.0255 (8)  | 0.0285 (8)   | 0.0531 (11)     | 0.0098 (6)   | 0.0196 (7)   | 0.0149 (7)   |
| C5         | 0.0342 (9)  | 0.0333 (8)   | 0.0348 (9)      | 0.0116 (7)   | 0.0203 (7)   | 0.0108 (7)   |
| C6         | 0.0267 (8)  | 0.0221 (7)   | 0.0285 (8)      | 0.0090 (6)   | 0.0105 (6)   | 0.0062 (6)   |
| C7         | 0.0317 (9)  | 0.0433 (10)  | 0.0289 (9)      | 0.0076 (7)   | 0.0029 (7)   | -0.0013 (7)  |
| C8         | 0.0328 (10) | 0.0438 (11)  | 0.0815 (16)     | 0.0091 (8)   | 0.0315 (10)  | 0.0224 (10)  |
| C9         | 0.0361 (9)  | 0.0370 (9)   | 0.0247 (8)      | 0.0071 (7)   | 0.0096 (7)   | -0.0018 (7)  |
| C10        | 0.0236 (7)  | 0.0190 (6)   | 0.0257 (7)      | 0.0040 (5)   | 0.0101 (6)   | 0.0064 (5)   |
| C11        | 0.0198 (7)  | 0.0193 (6)   | 0.0201 (7)      | 0.0017 (5)   | 0.0074 (5)   | 0.0045 (5)   |
| C12        | 0.0197 (7)  | 0.0186 (6)   | 0.0211 (7)      | 0.0013 (5)   | 0.0080 (5)   | 0.0039 (5)   |
| C13        | 0.0280 (8)  | 0.0306 (8)   | 0.0167 (7)      | -0.0006 (6)  | 0.0064 (6)   | -0.0002 (6)  |
| C14        | 0.0192 (7)  | 0.0162 (6)   | 0.0188 (7)      | -0.0029 (5)  | 0.0086 (5)   | 0.0009 (5)   |
| C15        | 0.0200 (7)  | 0.0148 (6)   | 0.0183 (7)      | -0.0014 (5)  | 0.0061 (5)   | -0.0005 (5)  |
| C16        | 0.0215 (7)  | 0.0233 (7)   | 0.0246 (7)      | -0.0015 (5)  | 0.0089 (6)   | -0.0005 (6)  |
| C17        | 0.0185 (7)  | 0.0290 (8)   | 0.0315 (8)      | -0.0016 (6)  | 0.0039 (6)   | 0.0005 (6)   |
| C18        | 0.0272 (8)  | 0.0293 (8)   | 0.0218 (8)      | -0.0048 (6)  | 0.0000 (6)   | 0.0012 (6)   |
| C19        | 0.0311 (8)  | 0.0259 (7)   | 0.0177 (7)      | -0.0043 (6)  | 0.0070 (6)   | -0.0006 (6)  |
| C20        | 0.0220 (7)  | 0.0207 (6)   | 0.0220 (7)      | -0.0019 (5)  | 0.0086 (6)   | -0.0011 (5)  |

Geometric parameters (Å, °)

| S1-C14 | 1.6885 (14) | C8—H8C  | 0.9800      |
|--------|-------------|---------|-------------|
| 01—C11 | 1.4353 (17) | С9—Н9А  | 0.9800      |
| 01—H1  | 0.826 (9)   | С9—Н9В  | 0.9800      |
| N1-C14 | 1.3583 (17) | С9—Н9С  | 0.9800      |
| N1—C13 | 1.4544 (18) | C10-C11 | 1.5333 (19) |
|        |             |         |             |

| N1—C12     | 1.4730 (17) | C10—H10A      | 0.9900      |
|------------|-------------|---------------|-------------|
| N2—C14     | 1.3578 (18) | C10—H10B      | 0.9900      |
| N2—C15     | 1.4086 (17) | C11—C12       | 1.5275 (19) |
| N2—H2      | 0.875 (9)   | C11—H11       | 1.0000      |
| C1—C6      | 1.404 (2)   | C12—H12A      | 0.9900      |
| C1—C2      | 1.405 (2)   | C12—H12B      | 0.9900      |
| C1—C10     | 1.5130 (19) | С13—Н13А      | 0.9800      |
| C2—C3      | 1.390 (2)   | С13—Н13В      | 0.9800      |
| C2—C7      | 1.512 (2)   | С13—Н13С      | 0.9800      |
| C3—C4      | 1.387 (3)   | C15—C16       | 1.393 (2)   |
| С3—Н3      | 0.9500      | C15—C20       | 1.396 (2)   |
| C4—C5      | 1.383 (3)   | C16—C17       | 1.389 (2)   |
| C4—C8      | 1.513 (2)   | С16—Н16       | 0.9500      |
| C5—C6      | 1.391 (2)   | C17—C18       | 1.380 (2)   |
| С5—Н5      | 0.9500      | С17—Н17       | 0.9500      |
| C6—C9      | 1.510(2)    | C18—C19       | 1.386 (2)   |
| C7—H7A     | 0.9800      | C18—H18       | 0.9500      |
| C7—H7B     | 0.9800      | C19—C20       | 1.3835 (19) |
| C7—H7C     | 0.9800      | C19—H19       | 0.9500      |
| C8—H8A     | 0.9800      | C20—H20       | 0.9500      |
| C8—H8B     | 0.9800      |               |             |
|            |             |               |             |
| C11—O1—H1  | 114.3 (14)  | C1-C10-H10A   | 109.1       |
| C14—N1—C13 | 120.79 (12) | C11—C10—H10A  | 109.1       |
| C14—N1—C12 | 124.00 (12) | C1-C10-H10B   | 109.1       |
| C13—N1—C12 | 115.16 (11) | C11—C10—H10B  | 109.1       |
| C14—N2—C15 | 131.51 (12) | H10A—C10—H10B | 107.9       |
| C14—N2—H2  | 113.4 (12)  | O1—C11—C12    | 105.77 (11) |
| C15—N2—H2  | 113.7 (12)  | O1—C11—C10    | 110.52 (11) |
| C6—C1—C2   | 119.22 (14) | C12—C11—C10   | 111.01 (11) |
| C6—C1—C10  | 121.17 (13) | O1—C11—H11    | 109.8       |
| C2—C1—C10  | 119.61 (13) | C12—C11—H11   | 109.8       |
| C3—C2—C1   | 119.47 (15) | C10—C11—H11   | 109.8       |
| C3—C2—C7   | 118.83 (15) | N1—C12—C11    | 114.64 (11) |
| C1—C2—C7   | 121.68 (14) | N1—C12—H12A   | 108.6       |
| C4—C3—C2   | 121.91 (16) | C11—C12—H12A  | 108.6       |
| С4—С3—Н3   | 119.0       | N1—C12—H12B   | 108.6       |
| С2—С3—Н3   | 119.0       | C11—C12—H12B  | 108.6       |
| C5—C4—C3   | 117.90 (15) | H12A—C12—H12B | 107.6       |
| C5—C4—C8   | 120.58 (17) | N1—C13—H13A   | 109.5       |
| C3—C4—C8   | 121.51 (18) | N1—C13—H13B   | 109.5       |
| C4—C5—C6   | 122.24 (16) | H13A—C13—H13B | 109.5       |
| C4—C5—H5   | 118.9       | N1—C13—H13C   | 109.5       |
| С6—С5—Н5   | 118.9       | H13A—C13—H13C | 109.5       |
| C5—C6—C1   | 119.24 (15) | H13B—C13—H13C | 109.5       |
| C5—C6—C9   | 118.75 (15) | N2—C14—N1     | 113.87 (12) |
| C1—C6—C9   | 122.01 (14) | N2—C14—S1     | 123.98 (10) |
| С2—С7—Н7А  | 109.5       | N1—C14—S1     | 122.12 (10) |
|            |             |               |             |

| C2 C7 U7D       | 100 5        | C16 C15 C20     | 110.25(12)   |
|-----------------|--------------|-----------------|--------------|
|                 | 109.5        | C16 - C15 - C20 | 119.23 (13)  |
| H/A - C / - H/B | 109.5        | C16-C15-N2      | 125.74 (13)  |
| C2—C/—H/C       | 109.5        | C20—C15—N2      | 114.87 (12)  |
| H/A—C/—H/C      | 109.5        | C17—C16—C15     | 119.10 (14)  |
| H7B—C7—H7C      | 109.5        | C17—C16—H16     | 120.4        |
| C4—C8—H8A       | 109.5        | C15—C16—H16     | 120.4        |
| C4—C8—H8B       | 109.5        | C18—C17—C16     | 121.61 (14)  |
| H8A—C8—H8B      | 109.5        | C18—C17—H17     | 119.2        |
| C4—C8—H8C       | 109.5        | С16—С17—Н17     | 119.2        |
| H8A—C8—H8C      | 109.5        | C17—C18—C19     | 119.26 (14)  |
| H8B—C8—H8C      | 109.5        | C17—C18—H18     | 120.4        |
| С6—С9—Н9А       | 109.5        | C19—C18—H18     | 120.4        |
| С6—С9—Н9В       | 109.5        | C20-C19-C18     | 119.91 (14)  |
| H9A—C9—H9B      | 109.5        | С20—С19—Н19     | 120.0        |
| С6—С9—Н9С       | 109.5        | C18—C19—H19     | 120.0        |
| H9A—C9—H9C      | 109.5        | C19—C20—C15     | 120.85 (13)  |
| H9B—C9—H9C      | 109.5        | C19—C20—H20     | 119.6        |
| C1—C10—C11      | 112.30 (11)  | C15—C20—H20     | 119.6        |
|                 |              |                 |              |
| C6—C1—C2—C3     | 1.4 (2)      | C14—N1—C12—C11  | 90.19 (16)   |
| C10-C1-C2-C3    | -177.61 (13) | C13—N1—C12—C11  | -92.18 (14)  |
| C6-C1-C2-C7     | -177.09 (13) | O1-C11-C12-N1   | -76.40 (14)  |
| C10-C1-C2-C7    | 3.9 (2)      | C10-C11-C12-N1  | 163.70 (12)  |
| C1—C2—C3—C4     | -1.5 (2)     | C15—N2—C14—N1   | 170.80 (13)  |
| C7—C2—C3—C4     | 177.01 (14)  | C15—N2—C14—S1   | -10.8 (2)    |
| C2—C3—C4—C5     | 0.5 (2)      | C13—N1—C14—N2   | 167.94 (12)  |
| C2—C3—C4—C8     | -178.50 (15) | C12—N1—C14—N2   | -14.56 (18)  |
| C3—C4—C5—C6     | 0.6 (2)      | C13—N1—C14—S1   | -10.48 (18)  |
| C8—C4—C5—C6     | 179.65 (15)  | C12—N1—C14—S1   | 167.02 (10)  |
| C4C5C1          | -0.7 (2)     | C14—N2—C15—C16  | -22.3 (2)    |
| C4—C5—C6—C9     | -179.63 (14) | C14—N2—C15—C20  | 162.14 (13)  |
| C2-C1-C6-C5     | -0.3 (2)     | C20-C15-C16-C17 | -0.2 (2)     |
| C10—C1—C6—C5    | 178.68 (13)  | N2-C15-C16-C17  | -175.56 (13) |
| C2—C1—C6—C9     | 178.57 (13)  | C15—C16—C17—C18 | 0.7 (2)      |
| C10—C1—C6—C9    | -2.4(2)      | C16—C17—C18—C19 | -0.3(2)      |
| C6-C1-C10-C11   | -94.33 (16)  | C17—C18—C19—C20 | -0.6(2)      |
| C2-C1-C10-C11   | 84.66 (16)   | C18—C19—C20—C15 | 1.1 (2)      |
| C1—C10—C11—O1   | 67.26 (15)   | C16—C15—C20—C19 | -0.7 (2)     |
| C1—C10—C11—C12  | -175.70 (12) | N2-C15-C20-C19  | 175.19 (12)  |
| -               | × /          |                 | · · ·        |

# Hydrogen-bond geometry (Å, °)

| D—H···A               | <i>D</i> —Н | Н…А      | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|-----------------------|-------------|----------|--------------|-------------------------|
| O1—H1…S1 <sup>i</sup> | 0.83 (1)    | 2.50(1)  | 3.219(1)     | 146 (2)                 |
| N2—H2…O1              | 0.88 (1)    | 1.89 (1) | 2.739 (2)    | 165 (2)                 |

Symmetry code: (i) -x+1, -y+1, -z+1.