Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Chloropyridin-2-amine

Zhi-Nan Hu, ${ }^{\text {a }}$ Hui-Bin Yang, ${ }^{\text {b }}$ Huan Luo ${ }^{\text {b }}$ and Bin Li ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China, and ${ }^{\mathbf{b}}$ Agrochemicals Division, Shenyang Research Institute of Chemical Industry, Shenyang 110021, People's Republic of China
Correspondence e-mail: libin1@sinochem.com

Received 2 April 2011; accepted 11 April 2011
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.059 ; w R$ factor $=0.182 ;$ data-to-parameter ratio $=14.5$.

In the title compound, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ClN}_{2}$, a by-product in the synthesis of ethyl 2-(3-chloropyridin-2-yl)-5-oxopyrazolidine-3-carboxylate, the amine groups form intermolecular hydrogen-bonding associations with pyridine N -atom acceptors, giving centrosymmetric cyclic dimers. Short intermolecular $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions [3.278 (3) \AA] also occur.

Related literature

The title compound was isolated as a by-product in the preparation of ethyl 2-(3-chloropyridin-2-yl)-5-oxopyr-azolidine-3-carboxylate, an intermediate in the synthesis of the insecticide chlorantraniliprole (systematic name 3-bromoN -[4-chloro-2-methyl-6-[(methylamino)carbonyl]phenyl]-1-(3-chloro-2-pyridinyl)-1 H-pyrazole-5-carboxamide), see: Lahm et al. (2005). For related structures, see: Chao et al. (1975); Anagnostis \& Turnbull (1998); Hemamalini \& Fun (2010).

Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ClN}_{2}$
$V=598.5(7) \AA^{3}$
$M_{r}=128.56$
$Z=4$
Monoclinic, $P 2_{\mathrm{b}} / \mathrm{c}$
Mo $K \alpha$ radiation
$a=11.149$ (8) A
$\mu=0.52 \mathrm{~mm}^{-1}$
$b=5.453$ (4) \AA
$T=296 \mathrm{~K}$
$c=9.844$ (7) \AA
$0.38 \times 0.32 \times 0.22 \mathrm{~mm}$
$\beta=90.581$ (12) ${ }^{\circ}$

Data collection

Bruker SMART CCD area-detector 2778 measured reflections diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001) 1057 independent reflections 867 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.048$
$T_{\text {min }}=0.827, T_{\text {max }}=0.894$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059 \quad 73$ parameters
$w R\left(F^{2}\right)=0.182$
$S=1.05$
1057 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.57 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.31 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.86	2.22	$3.051(5)$	162

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2107).

References

Anagnostis, J. \& Turnbull, M. M. (1998). Acta Cryst. C54, 681-683.
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chao, M., Schemp, E. \& Rosenstein, R. D. (1975). Acta Cryst. B31, 2922-2924.
Hemamalini, M. \& Fun, H.-K. (2010). Acta Cryst. E66, o1416-o1417.
Lahm, G. P., Selby, T. P. \& Freudenberger, J. H. (2005). Bioorg. Med. Chem. Lett. 15, 4898-4906.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o1138 [doi:10.1107/S1600536811013432]

3-Chloropyridin-2-amine

Zhi-Nan Hu, Hui-Bin Yang, Huan Luo and Bin Li

S1. Comment

The structures of salts of the halo-substituted aminopyridine, such as 2-amino-5-chloropyridine-fumaric acid (Hemamalini \& Fun, 2010), 2-amino-3,5-dichloropyridinium chloride monohydrate (Anagnostis \& Turnbull, 1998), are known but the the structure of 2-amino-3-chloropyridine is not known. This compound, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Cl}_{1} \mathrm{~N}_{2}$ (I) was isolated as a by-product in the preparation of ethyl 2-(3-chloropyridin-2-yl)-5-oxopyrazolidine-3-carboxylate, an important intermediate in the synthesis of the insecticide chlorantraniliprole (3-bromo-N-[4-chloro-2-methyl-6-[(methylamino) carbonyl]phenyl]-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxamide) (Lahm et al., 2005). In the structure of (I) (Fig. 1), intermolecular amine $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ hydrogen-bonding interactions (Table 1) give centrosymmetric cyclic dimers (Fig. 2), similar to those found in the structure of 2-aminopyridine (Chao et al., 1975). In (I) there is an intramolecular N $-\mathrm{H} \cdots \mathrm{Cl}$ interaction [3.001 (3) \AA] while in the crystal structure there are also short $\mathrm{Cl} \cdots \mathrm{Cl}{ }^{\mathrm{ii}}$ interactions [3.278 (3) \AA] [symmetry code: (ii) $-x+2,-y,-z+1$].

S2. Experimental

Sodium ethoxide $(3.48 \mathrm{~g}, 50.4 \mathrm{mmol})$ and 150 ml of absolute ethanol was heated to reflux, after wich $6.80 \mathrm{~g}(47.4 \mathrm{mmol})$ of 3-chloro-2-hydrazinylpyridine was added and the mixture was allowed to reflux for 5 minutes. The slurry was then treated dropwise with $9.79 \mathrm{~g}(56.9 \mathrm{mmol})$ of diethyl maleate over a period of 5 minutes and the resulting solution was held at reflux for 10 minutes. After cooling to 338 K , the reaction mixture was treated with $5.0 \mathrm{ml}(87.3 \mathrm{mmol})$ of glacial acetic acid. The mixture was diluted with 60 ml water and then cooled to room temperature, giving a precipitate which was isolated via filtration, and separated by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:5). The title compound was obtained as a yellow solid ($0.60 \mathrm{~g}, 8 \%$) and recyrstallized from dichloromethane to afford colorless single crystals suitable for X-ray diffraction. Anal.: Calc. for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Cl}_{1} \mathrm{~N}_{2}$: C, 46.47; H, 3.84; Cl, 27.96; N, 21.85%. Found: C, $46.71 ; \mathrm{H}, 3.99 ; \mathrm{Cl}, 27.58 ; \mathrm{N}, 21.79 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): 5.02\left(\mathrm{~s}, 2 H, \mathrm{NH}_{2}\right), 6.62(\mathrm{dd}, 1 H$, pyridine-H), $7.48(\mathrm{dd}, 1 H$, pyridine-H), $7.98(\mathrm{dd}, 1 H$, pyridine-H).

S3. Refinement

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions, with $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}=\mathrm{o} .86$ and $0.93 \AA$ respectively, and included in the final refinement in the riding model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of (I), showing atom numbering scheme and 30% probability displacement ellipsoids.

Figure 2
The packing of (I) in ther unit cell viewed down b, showing hydrogen-bonding interactions as dashed lines.

3-Chloropyridin-2-amine

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ClN}_{2}$
$M_{r}=128.56$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=11.149$ (8) \AA
$b=5.453$ (4) \AA
$c=9.844$ (7) \AA
$\beta=90.581(12)^{\circ}$
$V=598.5$ (7) \AA^{3}
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.827, T_{\text {max }}=0.894$

$$
\begin{aligned}
& F(000)=264 \\
& D_{\mathrm{x}}=1.427 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1473 \text { reflections } \\
& \theta=3.7-27.2^{\circ} \\
& \mu=0.52 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Block, yellow } \\
& 0.38 \times 0.32 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

2778 measured reflections
1057 independent reflections
867 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-13 \rightarrow 11$
$k=-6 \rightarrow 6$
$l=-8 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.182$
$S=1.05$
1057 reflections
73 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.89884(8)$	$0.20978(18)$	$0.46576(10)$	$0.0821(5)$
N1	$0.6085(2)$	$0.5920(5)$	$0.3676(2)$	$0.0597(7)$
N2	$0.6357(3)$	$0.2720(5)$	$0.5172(3)$	$0.0716(8)$
H2A	0.5613	0.2836	0.5385	0.086^{*}

H2B	0.6804	0.1628	0.5553	0.086^{*}
C1	$0.6825(2)$	$0.4252(5)$	$0.4237(3)$	$0.0505(7)$
C2	$0.8035(2)$	$0.4167(5)$	$0.3855(3)$	$0.0535(7)$
C3	$0.8465(3)$	$0.5728(6)$	$0.2897(3)$	$0.0635(8)$
H3	0.9266	0.5667	0.2645	0.076^{*}
C4	$0.7692(3)$	$0.7404(7)$	$0.2306(3)$	$0.0725(10)$
H4	0.7955	0.8481	0.1640	0.087^{*}
C5	$0.6520(3)$	$0.7431(6)$	$0.2735(4)$	$0.0698(9)$
H5	0.6000	0.8571	0.2345	0.084^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	$0.0717(7)$	$0.0833(7)$	$0.0913(8)$	$0.0322(4)$	$0.0101(5)$	$0.0145(4)$
N1	$0.0545(13)$	$0.0566(14)$	$0.0681(15)$	$0.0068(11)$	$0.0018(10)$	$0.0047(11)$
N2	$0.0674(16)$	$0.0602(16)$	$0.088(2)$	$0.0131(12)$	$0.0194(14)$	$0.0196(13)$
C1	$0.0572(14)$	$0.0411(13)$	$0.0533(15)$	$0.0036(11)$	$0.0026(11)$	$-0.0039(11)$
C2	$0.0558(15)$	$0.0510(15)$	$0.0537(15)$	$0.0099(11)$	$0.0019(11)$	$-0.0057(12)$
C3	$0.0561(15)$	$0.076(2)$	$0.0583(17)$	$-0.0019(14)$	$0.0070(13)$	$0.0002(14)$
C4	$0.077(2)$	$0.074(2)$	$0.067(2)$	$-0.0049(15)$	$0.0047(17)$	$0.0178(15)$
C5	$0.073(2)$	$0.0617(19)$	$0.074(2)$	$0.0057(14)$	$-0.0054(16)$	$0.0155(15)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C11-C2	1.735 (3)	C2-C3	1.361 (4)
N1-C5	1.334 (4)	C3-C4	1.380 (4)
N1-C1	1.344 (4)	C3-H3	0.9300
$\mathrm{N} 2-\mathrm{C} 1$	1.351 (4)	C4-C5	1.378 (5)
N 2 - H 2 A	0.8600	C4-H4	0.9300
N2-H2B	0.8600	C5-H5	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	1.405 (4)		
C5-N1-C1	118.5 (3)	C2-C3-C4	118.9 (3)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120.0	C2-C3-H3	120.6
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.6
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0	C5-C4-C3	117.9 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	117.3 (3)	C5-C4-H4	121.0
N1-C1-C2	120.0 (2)	C3-C4-H4	121.0
N2-C1-C2	122.7 (2)	N1-C5-C4	124.0 (3)
C3-C2-C1	120.7 (3)	N1-C5-H5	118.0
C3-C2-Cl1	120.2 (2)	C4-C5-H5	118.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	119.0 (2)		
C5-N1- $\mathrm{C} 1-\mathrm{N} 2$	-179.0 (3)	C1-C2-C3-C4	0.1 (5)
C5-N1-C1-C2	1.5 (4)	$\mathrm{Cl} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-178.0 (2)
N1-C1-C2-C3	-1.3 (4)	C2-C3-C4-C5	0.9 (5)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	179.2 (3)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	-0.6 (5)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	176.8 (2)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	-0.7 (5)

supporting information

$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1 \quad-2.6(4)$
Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.86	2.22	$3.051(5)$	162
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{Cl1}$	0.86	2.61	$3.001(4)$	109

Symmetry code: (i) $-x+1,-y+1,-z+1$.

