organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[(4-Chlorophenyl)diazenyl]-3-methoxyaniline

Mohammad Kazem Rofouei,^a* Zahra Ghalami,^a Jafar Attar Gharamaleki,^a Giuseppe Bruno^b and Hadi Amiri Rudbari^b

^aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, and ^bDipartimento di Chimica Inorganica, Universita di Messina, Messina, Italy Correspondence e-mail: rofouei_mk@yahoo.com

Received 13 May 2011; accepted 23 June 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.118; data-to-parameter ratio = 16.2.

The title compound, $C_{13}H_{12}ClN_3O$, exhibits a *trans* geometry about the N=N double bond in the solid state. The dihedral angle between the rings is 22.20 (8)°. Intermolecular N-H···O hydrogen bonds between the amine and methoxy groups lead to the formation of a chain-like polymer along the *c* axis with a *C*(6) graph set. There is also weak non-classical C-H···N hydrogen bonds involving an aromatic C-H group and a diazenyl N atom, which connect the chains into a twodimensional framework.

Related literature

For applications of diazonium compounds, see: Patai (1978); Hunger *et al.* (2005). For the synthesis and crystal structures of Hg(II) and Cd(II) complexes with [1,3-bis(2-methoxyphenyl)]triazene, see: Rofouei, Hematyar *et al.* (2009); Rofouei, Melardi *et al.* (2009).

Experimental

Crystal data C₁₃H₁₂ClN₃O

 $M_r = 261.71$

Monoclinic, $C2/c$	Z = 8
a = 15.398 (2) Å	Mo $K\alpha$ radiation
b = 12.132 (2) Å	$\mu = 0.29 \text{ mm}^{-1}$
c = 14.276 (2) Å	T = 293 K
$\beta = 107.65 \ (1)^{\circ}$	$0.30 \times 0.17 \times 0.11 \text{ mm}$
V = 2541.3 (7) Å ³	
Data collection	
Bruker APEXII CCD	42735 measured reflections
diffractometer	2778 independent reflections
Absorption correction: multi-scan	2481 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.019$
$T_{\min} = 0.698, \ T_{\max} = 0.746$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.118$	independent and constrained
S = 1.04	refinement
2778 reflections	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O^{i}$	0.85 (2)	2.47 (2)	3.222 (2)	147 (2)
$C12 - H12 \cdots N3^{ii}$	0.93	2.62	3.379 (2)	140

Symmetry codes: (i) $x, -y + 1, z + \frac{1}{2}$; (ii) $-x + 1, y, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2005); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2358).

References

- Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Hunger, K., Mischke, P., Rieper, W., Raue, R., Kunde, K. & Engel, A. (2005). Azo Dyes, in Ullmann Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
- Patai, S. (1978). Chemistry of the Diazonium and Diazo Groups, Part 1. New York: Wiley-Blackwell.
- Rofouei, M. K., Hematyar, M., Ghoulipour, V. & Gharamaleki, J. A. (2009). Inorg. Chim. Acta, 362, 3777–3784.
- Rofouei, M. K., Melardi, M. R., Khalili Ghaydari, H. R. & Barkhi, M. (2009). Acta Cryst. E65, m351.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o1852 [doi:10.1107/S160053681102472X]

4-[(4-Chlorophenyl)diazenyl]-3-methoxyaniline

Mohammad Kazem Rofouei, Zahra Ghalami, Jafar Attar Gharamaleki, Giuseppe Bruno and Hadi Amiri Rudbari

S1. Comment

Diazonium ions are present in solutions such as benzenediazonium chloride solution. They contain an -N₂⁺ group. For example in the case of benzenediazonium chloride, this is attached to a benzene ring. The most important application area of these compounds is organic synthesis of azo dyes (Patai, 1978; Hunger *et al.*, 2005). Diazenyl compounds characterized by having a diazo group (—N=N—) commonly adopt the *trans* configuration in the ground state. We have previously reported the synthesis of Hg(II) and Cd(II) complexes with [1,3-bis(2-methoxyphenyl)]triazene (Rofouei, Hematyar, Ghoulipour & Gharamaleki, 2009; Rofouei, Melardi, Khalili, Ghaydari & Barkhi, 2009).

When attempting to prepare an asymmetric triazene compound using *p*-chloroaniline and *m*-anizidine, we instead obtained the title diazo compound, $C_{13}H_{12}CIN_3O$ (Fig. 1). The molecule adopts the *trans* configuration and the C1—N3—N2—C7 dihedral angle is 175.50 (10)°. The C10—N1, C7—N2 and C1—N3 bond lengths are 1.3657 (19), 1.3985 (16) and 1.4206 (17) Å, respectively, consistent with single and double bonds between related C and N atoms. In the crystal lattice of the title compound, the molecules are linked into chain-like polymers along the *c* crystallographic axis, with *C*(6) graph set, through N1—H1A···O hydrogen bonds with D···A separations of 3.222 (2) Å (Fig. 2). There is also C12—H12···N3 non-classic hydrogen bonds with D···A distance of 3.379 (2) Å. The unit cell packing diagram of the title compound is shown in Fig. 3.

S2. Experimental

To a 1000 ml flask in ice bath, was added 6.36 g (0.05 mol) of *p*-chloroaniline and 4.68 g (0.13 mol) of HCl (d = 1.18 g.ml⁻¹). To the obtained solution was added dropwise a solution of sodium nitrite (4.14 g in 25 ml H₂O). Then, a diluted solution of *m*-anizidine (6.15 g, 0.05 mol) in 10 ml of methanol was added to the solution. The pH of the solution was adjusted at about 7–8 by adding a solution of 14.76 g of sodium acetate (0.18 mol) in 45 ml H₂O as solvent. The solution was stirred for about 45 minutes, giving an orange precipitate. It was then filtered off and dried in vacuum. After dissolving in DMF and recrystallization, orange crystals of the title compound were obtained. M.p. 191–193 °C. Elemental Anal. calc. for C₁₃H₁₂ClN₃O: C 59.66, H 4.62, N 16.06 %; ound: C 59.79, H 4.24, N 15.85 %. ¹H-NMR (300 MHz, *d*₆-DMSO) δ , ppm: 3.85 (3*H*, CH₃), 6.19–7.69 (9*H*, aromatic and NH₂ groups). ¹³C-NMR 100 MHz, DMSO) δ , ppm: 55.4 (O—CH₃), 96.0–159.8 (C atoms of aromatic rings)

S3. Refinement

Methyl and aromatic H atoms were placed in idealized positions, with bond lengths fixed to 0.96 and 0.93 Å, respectively. Isotropic displacement parameters for these H atoms were calculated as $U_{iso}(H) = 1.5U_{eq}(\text{carrier C})$ in the case of the methyl group, and $U_{iso}(H) = 1.2U_{eq}(\text{carrier C})$ otherwise. Amine H atoms H1A and H1B were found in a difference map and refined isotropically, with free coordinates.

Figure 1

The molecular structure of the title compound, displacement ellipsoids are drawn at 50% probability level.

Figure 2

N1—H1A…O hydrogen bonds between molecules, to produce chain-like polymers along the c crystallographic axis.

reflections

Figure 3

The crystal packing diagram of the title compound.

4-[(4-Chlorophenyl)diazenyl]-3-methoxyaniline

Crystal data	
$C_{13}H_{12}CIN_{3}O$ $M_{r} = 261.71$ Monoclinic, C2/c Hall symbol: -C 2yc a = 15.398 (2) Å b = 12.132 (2) Å c = 14.276 (2) Å $\beta = 107.65$ (1)° V = 2541.3 (7) Å ³ Z = 8	F(000) = 1088 $D_x = 1.368 \text{ Mg m}^{-3}$ Melting point: 464 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9801 reflect $\theta = 2.4-31.8^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 293 K Irregular, red $0.30 \times 0.17 \times 0.11 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\min} = 0.698, T_{\max} = 0.746$	42735 measured reflections 2778 independent reflections 2481 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 27.0^\circ, \ \theta_{min} = 2.2^\circ$ $h = -19 \rightarrow 19$ $k = -15 \rightarrow 15$ $l = -18 \rightarrow 18$

Refinement

Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.063P)^2 + 1.2073P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Extinction coefficient: 0.0021 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl	0.38256 (4)	0.12838 (5)	0.25280(3)	0.0899 (2)	
N2	0.61207 (7)	0.40377 (9)	0.64610 (8)	0.0428 (3)	
0	0.72867 (7)	0.56731 (8)	0.66289(7)	0.0538 (3)	
N3	0.56583 (8)	0.31792 (9)	0.64438 (8)	0.0450 (3)	
C8	0.70965 (9)	0.53992 (11)	0.74685 (9)	0.0425 (3)	
C1	0.52338 (9)	0.27653 (11)	0.54826 (9)	0.0435 (3)	
C7	0.64918 (9)	0.45106 (10)	0.73903 (9)	0.0401 (3)	
C9	0.74743 (10)	0.59254 (12)	0.83601 (10)	0.0478 (3)	
H9	0.7869	0.6517	0.8403	0.057*	
C11	0.66611 (10)	0.46804 (12)	0.91223 (10)	0.0485 (3)	
H11	0.6520	0.4436	0.9676	0.058*	
C10	0.72618 (10)	0.55670 (12)	0.91959 (10)	0.0484 (3)	
C12	0.62817 (9)	0.41745 (11)	0.82355 (10)	0.0437 (3)	
H12	0.5876	0.3595	0.8193	0.052*	
C6	0.51547 (11)	0.33586 (13)	0.46265 (11)	0.0543 (4)	
H6	0.5398	0.4065	0.4665	0.065*	
N1	0.76334 (13)	0.60746 (16)	1.00811 (11)	0.0723 (5)	
C2	0.48455 (12)	0.17279 (13)	0.54185 (12)	0.0590 (4)	
H2	0.4879	0.1338	0.5989	0.071*	
C3	0.44078 (12)	0.12672 (14)	0.45107 (13)	0.0658 (4)	
H3	0.4150	0.0569	0.4467	0.079*	
C4	0.43604 (11)	0.18557 (15)	0.36754 (12)	0.0589 (4)	
C5	0.47166 (12)	0.29024 (15)	0.37226 (11)	0.0619 (4)	
H5	0.4662	0.3298	0.3150	0.074*	
C13	0.78626 (14)	0.65978 (16)	0.66487 (13)	0.0711 (5)	
H13A	0.7942	0.6693	0.6012	0.107*	
H13B	0.8445	0.6475	0.7128	0.107*	
H13C	0.7589	0.7248	0.6820	0.107*	
H1A	0.7476 (16)	0.5869 (19)	1.0576 (17)	0.085 (7)*	
H1B	0.8002 (15)	0.6559 (18)	1.0126 (16)	0.075 (6)*	

supporting information

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0833 (4)	0.1190 (5)	0.0584 (3)	-0.0405 (3)	0.0080 (2)	-0.0312 (3)
0.0442 (6)	0.0463 (6)	0.0377 (5)	-0.0031 (5)	0.0120 (4)	-0.0040 (4)
0.0662 (6)	0.0603 (6)	0.0355 (5)	-0.0191 (5)	0.0165 (4)	-0.0016 (4)
0.0482 (6)	0.0454 (6)	0.0411 (6)	-0.0018 (5)	0.0130 (5)	-0.0032 (5)
0.0470 (7)	0.0462 (7)	0.0343 (6)	-0.0015 (5)	0.0124 (5)	0.0004 (5)
0.0411 (6)	0.0464 (7)	0.0425 (7)	-0.0017 (5)	0.0119 (5)	-0.0056 (5)
0.0422 (6)	0.0428 (6)	0.0349 (6)	0.0011 (5)	0.0111 (5)	-0.0018 (5)
0.0527 (7)	0.0489 (7)	0.0398 (7)	-0.0073 (6)	0.0111 (6)	-0.0038 (5)
0.0585 (8)	0.0537 (7)	0.0369 (6)	0.0023 (6)	0.0197 (6)	0.0009 (5)
0.0554 (8)	0.0524 (7)	0.0353 (6)	0.0022 (6)	0.0108 (6)	-0.0056 (5)
0.0474 (7)	0.0444 (6)	0.0416 (6)	0.0002 (5)	0.0170 (5)	-0.0001 (5)
0.0602 (8)	0.0547 (8)	0.0457 (7)	-0.0124 (7)	0.0126 (6)	-0.0032 (6)
0.0930 (12)	0.0832 (11)	0.0395 (7)	-0.0252 (9)	0.0184 (7)	-0.0162 (7)
0.0676 (9)	0.0545 (8)	0.0511 (8)	-0.0128 (7)	0.0121 (7)	0.0002 (6)
0.0695 (10)	0.0576 (9)	0.0639 (10)	-0.0212 (8)	0.0105 (8)	-0.0104 (8)
0.0496 (8)	0.0745 (10)	0.0481 (8)	-0.0131 (7)	0.0082 (6)	-0.0157 (7)
0.0649 (9)	0.0738 (10)	0.0433 (7)	-0.0153 (8)	0.0110 (7)	-0.0027 (7)
0.0866 (12)	0.0760 (11)	0.0548 (9)	-0.0334(10)	0.0275 (9)	-0.0008(8)
	U ¹¹ 0.0833 (4) 0.0442 (6) 0.0662 (6) 0.0482 (6) 0.0470 (7) 0.0411 (6) 0.0422 (6) 0.0527 (7) 0.0585 (8) 0.0554 (8) 0.0474 (7) 0.0602 (8) 0.0930 (12) 0.0676 (9) 0.0695 (10) 0.0496 (8) 0.0649 (9) 0.0866 (12)	U^{11} U^{22} 0.0833 (4)0.1190 (5)0.0442 (6)0.0463 (6)0.0662 (6)0.0603 (6)0.0482 (6)0.0454 (6)0.0470 (7)0.0462 (7)0.0411 (6)0.0464 (7)0.0422 (6)0.0428 (6)0.0527 (7)0.0489 (7)0.0585 (8)0.0527 (7)0.0554 (8)0.0524 (7)0.0474 (7)0.0444 (6)0.0602 (8)0.0547 (8)0.0545 (8)0.0547 (8)0.0695 (10)0.0545 (8)0.0695 (10)0.0576 (9)0.0496 (8)0.0745 (10)0.0866 (12)0.0760 (11)	U^{11} U^{22} U^{33} 0.0833 (4)0.1190 (5)0.0584 (3)0.0442 (6)0.0463 (6)0.0377 (5)0.0662 (6)0.0603 (6)0.0355 (5)0.0482 (6)0.0454 (6)0.0411 (6)0.0470 (7)0.0462 (7)0.0343 (6)0.0411 (6)0.0464 (7)0.0425 (7)0.0422 (6)0.0428 (6)0.0349 (6)0.0527 (7)0.0489 (7)0.0398 (7)0.0585 (8)0.0537 (7)0.0369 (6)0.0554 (8)0.0524 (7)0.0353 (6)0.0602 (8)0.0547 (8)0.0457 (7)0.0676 (9)0.0545 (8)0.0511 (8)0.0695 (10)0.0576 (9)0.0639 (10)0.0496 (8)0.0745 (10)0.0433 (7)0.0866 (12)0.0760 (11)0.0548 (9)	U^{11} U^{22} U^{33} U^{12} 0.0833 (4)0.1190 (5)0.0584 (3)-0.0405 (3)0.0442 (6)0.0463 (6)0.0377 (5)-0.0031 (5)0.0662 (6)0.0603 (6)0.0355 (5)-0.0191 (5)0.0482 (6)0.0454 (6)0.0411 (6)-0.0018 (5)0.0470 (7)0.0462 (7)0.0343 (6)-0.0015 (5)0.0411 (6)0.0464 (7)0.0425 (7)-0.0017 (5)0.0422 (6)0.0428 (6)0.0349 (6)0.0011 (5)0.0527 (7)0.0489 (7)0.0398 (7)-0.0073 (6)0.0585 (8)0.0527 (7)0.0369 (6)0.0022 (6)0.0474 (7)0.0444 (6)0.0416 (6)0.0022 (6)0.0672 (8)0.0547 (8)0.0457 (7)-0.0124 (7)0.0693 (12)0.0832 (11)0.0395 (7)-0.0252 (9)0.0676 (9)0.0545 (8)0.0511 (8)-0.0128 (7)0.0695 (10)0.0576 (9)0.0639 (10)-0.0212 (8)0.0496 (8)0.0745 (10)0.0433 (7)-0.0153 (8)0.0866 (12)0.0760 (11)0.0548 (9)-0.0334 (10)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0833 (4)0.1190 (5)0.0584 (3) -0.0405 (3)0.0080 (2)0.0442 (6)0.0463 (6)0.0377 (5) -0.0031 (5)0.0120 (4)0.0662 (6)0.0603 (6)0.0355 (5) -0.0191 (5)0.0165 (4)0.0482 (6)0.0454 (6)0.0411 (6) -0.0018 (5)0.0130 (5)0.0470 (7)0.0462 (7)0.0343 (6) -0.0015 (5)0.0124 (5)0.0411 (6)0.0464 (7)0.0425 (7) -0.0017 (5)0.0119 (5)0.0422 (6)0.0428 (6)0.0349 (6)0.0011 (5)0.0111 (5)0.0527 (7)0.0489 (7)0.0398 (7) -0.0073 (6)0.0111 (6)0.0554 (8)0.0537 (7)0.0369 (6)0.0022 (6)0.0197 (6)0.0554 (8)0.0524 (7)0.0395 (7) -0.0124 (7)0.0126 (6)0.0602 (8)0.0547 (8)0.0457 (7) -0.0124 (7)0.0126 (6)0.0930 (12)0.0832 (11)0.0395 (7) -0.0252 (9)0.0184 (7)0.0676 (9)0.0545 (8)0.0511 (8) -0.0128 (7)0.0121 (7)0.0695 (10)0.0576 (9)0.0639 (10) -0.0212 (8)0.0105 (8)0.0496 (8)0.0745 (10)0.0433 (7) -0.0133 (10)0.0275 (9)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl—C4	1.7391 (16)	C10—N1	1.3657 (19)	
N2—N3	1.2578 (16)	C12—H12	0.9300	
N2—C7	1.3985 (16)	C6—C5	1.378 (2)	
O—C8	1.3586 (16)	С6—Н6	0.9300	
O-C13	1.4250 (18)	N1—H1B	0.81 (2)	
N3—C1	1.4206 (17)	N1—H1A	0.85 (2)	
C8—C9	1.3846 (18)	C2—C3	1.384 (2)	
C8—C7	1.4065 (18)	С2—Н2	0.9300	
C1—C2	1.384 (2)	C3—C4	1.373 (2)	
C1—C6	1.392 (2)	С3—Н3	0.9300	
C7—C12	1.4014 (18)	C4—C5	1.377 (2)	
C9—C10	1.3987 (19)	С5—Н5	0.9300	
С9—Н9	0.9300	C13—H13A	0.9600	
C11—C12	1.3683 (19)	C13—H13B	0.9600	
C11—C10	1.402 (2)	C13—H13C	0.9600	
C11—H11	0.9300			
N3—N2—C7	115.10(11)	C5—C6—C1	120.16 (14)	
C8—O—C13	118.32 (11)	С5—С6—Н6	119.9	
N2—N3—C1	113.79 (11)	C1—C6—H6	119.9	
О—С8—С9	123.74 (12)	C10—N1—H1B	119.4 (16)	
O—C8—C7	115.59 (11)	C10—N1—H1A	119.5 (16)	
C9—C8—C7	120.65 (12)	H1B—N1—H1A	121 (2)	
C2—C1—C6	119.42 (13)	C3—C2—C1	120.45 (15)	

C2-C1-N3	116.62 (13)	С3—С2—Н2	119.8
C6-C1-N3	123.89 (12)	C1—C2—H2	119.8
N2-C7-C12	124.25 (12)	C4—C3—C2	119.06 (15)
N2—C7—C8	117.38 (11)	С4—С3—Н3	120.5
C12—C7—C8	118.34 (11)	С2—С3—Н3	120.5
C8—C9—C10	119.94 (13)	C3—C4—C5	121.45 (14)
С8—С9—Н9	120.0	C3—C4—C1	119.73 (13)
С10—С9—Н9	120.0	C5—C4—C1	118.81 (13)
C12—C11—C10	120.03 (12)	C4—C5—C6	119.40 (15)
C12—C11—H11	120.0	C4—C5—H5	120.3
C10-C11-H11	120.0	С6—С5—Н5	120.3
N1—C10—C9	120.56 (15)	O-C13-H13A	109.5
N1-C10-C11	119.81 (14)	O-C13-H13B	109.5
C9—C10—C11	119.63 (12)	H13A—C13—H13B	109.5
C11—C12—C7	121.39 (13)	O—C13—H13C	109.5
C11—C12—H12	119.3	H13A—C13—H13C	109.5
С7—С12—Н12	119.3	H13B—C13—H13C	109.5
C7—N2—N3—C1	175.50 (10)	C12-C11-C10-N1	179.51 (15)
C13—O—C8—C9	-4.1 (2)	C12—C11—C10—C9	-0.4 (2)
C13—O—C8—C7	177.23 (14)	C10-C11-C12-C7	1.1 (2)
N2—N3—C1—C2	169.37 (13)	N2-C7-C12-C11	-179.24 (12)
N2—N3—C1—C6	-13.7 (2)	C8—C7—C12—C11	-1.0 (2)
N3—N2—C7—C12	-8.56 (19)	C2-C1-C6-C5	-1.9 (2)
N3—N2—C7—C8	173.14 (11)	N3—C1—C6—C5	-178.75 (14)
O-C8-C7-N2	-2.78 (18)	C6—C1—C2—C3	2.1 (2)
C9—C8—C7—N2	178.49 (12)	N3—C1—C2—C3	179.20 (15)
O—C8—C7—C12	178.82 (12)	C1—C2—C3—C4	-0.3 (3)
C9—C8—C7—C12	0.1 (2)	C2—C3—C4—C5	-1.7 (3)
O-C8-C9-C10	-178.02 (13)	C2-C3-C4-Cl	179.22 (14)
C7—C8—C9—C10	0.6 (2)	C3—C4—C5—C6	2.0 (3)
C8—C9—C10—N1	179.64 (15)	ClC4C5C6	-178.99 (14)
C8—C9—C10—C11	-0.5 (2)	C1—C6—C5—C4	-0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	D—H···A
N1—H1A····Oi	0.85 (2)	2.47 (2)	3.222 (2)	147 (2)
C12—H12····N3 ⁿ	0.93	2.62	3.379 (2)	140

Symmetry codes: (i) *x*, -*y*+1, *z*+1/2; (ii) -*x*+1, *y*, -*z*+3/2.