Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Potassium N-bromo-4-chlorobenzenesulfonamidate monohydrate

B. Thimme Gowda, ${ }^{\text {a* }}$ Sabine Foro ${ }^{\text {b }}$ and K. Shakuntala ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com

Received 2 June 2011; accepted 16 June 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.057 ; w R$ factor $=0.156$; data-to-parameter ratio $=16.0$.

In the structure of the title compound, $\mathrm{K}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrClNO}_{2} \mathrm{~S}^{-}$.$\mathrm{H}_{2} \mathrm{O}$, the K^{+}cation is heptacoordinated. It is connected to two water O atoms, four sulfonyl O atoms and one Br atom. Further, the sulfonyl and water O atoms in the structure are bridged in a bidentate fashion. The $\mathrm{S}-\mathrm{N}$ distance of 1.584 (6) \AA is consistent with an $\mathrm{S}-\mathrm{N}$ double bond, The crystal structure is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Related literature

For our study of the effect of substituents on the structures of N-haloarylsulfonamides, see: Gowda et al. (2007, 2011a,b); and on the oxidative strengths of N-halolarylsulfonamides, see: Usha \& Gowda (2006). For similar structures, see: George et al. (2000); Olmstead \& Power (1986). For the preparation of the title compound, see: Gowda \& Usha (2003).

Experimental

Crystal data

$\mathrm{K}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrClNO}_{2} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=326.64$
Monoclinic, $P 2_{\mathrm{g}} / c$
$a=15.596$ (1) A
$b=10.188$ (1) \AA
$c=6.7649(7) \AA$
$\beta=99.947(9)^{\circ}$

Data collection
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.156$
$S=1.19$
2147 reflections
134 parameters
2 restraints

Diffraction, 2009)
$T_{\text {min }}=0.298, T_{\text {max }}=0.333$
3796 measured reflections
2147 independent reflections 1984 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.035$ independent and constrained refinement
$\Delta \rho_{\text {max }}=1.22 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.95 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H31 $\cdots \mathrm{N}^{1}{ }^{\mathrm{i}}$	$0.82(2)$	$2.25(5)$	$3.005(8)$	$152(8)$
O3-H32 $\cdots \mathrm{N1}^{1 i}$	$0.82(2)$	2.16 (3)	$2.967(8)$	$166(9)$
Symmetry codes: (i) $-x+1,-y+1,-z-1$; (ii) $-x+1, y+\frac{1}{2},-z-\frac{1}{2}$				

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BTG thanks the University Grants Commission, Government of India, New Delhi, for a grant under the UGC-BSR one-time grant to Faculty/Professors.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2118).

References

George, E., Vivekanandan, S. \& Sivakumar, K. (2000). Acta Cryst. C56, 12081209.

Gowda, B. T., Foro, S. \& Shakuntala, K. (2011a). Acta Cryst. E67, m918.
Gowda, B. T., Foro, S. \& Shakuntala, K. (2011b). Acta Cryst. E67, m926.
Gowda, B. T., Kožíšek, J., Tokarčík, M. \& Fuess, H. (2007). Acta Cryst. E63, m1647-m1648.
Gowda, B. T. \& Usha, K. M. (2003). Z. Naturforsch. Teil A, 58, 351-356.
Olmstead, M. M. \& Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Usha, K. M. \& Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.

supporting information

Acta Cryst. (2011). E67, m962 [doi:10.1107/S1600536811023610]

Potassium N -bromo-4-chlorobenzenesulfonamidate monohydrate

B. Thimme Gowda, Sabine Foro and K. Shakuntala

S1. Comment

To explore the effect of substitution and replacing sodium ion by potassium ion in the solid state structures of N-chloroarylsulfonamides (Gowda et al., 2007; 2011a,b; Usha \& Gowda, 2006), in the present work, the structure of potassium N -bromo-4-chloro- benzenesulfonamidate monohydrate (I) has been determined (Fig. 1). The structure of (I) resembles those of potassium N-bromo-2-chloro- benzenesulfonamidate sesquihydrate(II)(Gowda et al., 2011b), potassium N,4-di-chloro-benzenesulfonamidate monohydrate (III) (Gowda et al., 2011a), sodium N-bromo-4-chloro- benzenesulfonamidate sesquihydrate (IV)(Gowda et al., 2007) and other sodium N-chloro-arylsulfonamdes (George et al., 2000; Olmstead \& Power, 1986). In particular, there is no interaction between the nitrogen and potassium atom in the molecule. Further, K^{+} is hepta co-ordinated in contrast to hexa co-ordination with Na^{+}
K^{+}hepta coordination involves two O atoms from water molecules, four sulfonyl O atoms of N -bromo-4-chlorobenzenesulfonamide anions and one Br , in contrast to octahedral coordination of Na^{+}in (IV) by three O atoms of water molecules and by three sulfonyl O atoms of N -bromo-4-chloro- benzenesulfonamide anions (Gowda et al., 2007).
The S—N distance of $\mathrm{N} 1 — \mathrm{~S} 1,1.584$ (6) \AA is consistent with an $\mathrm{S}-\mathrm{N}$ double bond and is in agreement with the observed values of 1.582 (4) \AA in (II), 1.588 (2) \AA in (III), and N1—S1, 1.574 (5) \AA and N2—S2 1.579 (4) \AA in (IV).
K^{+}ion coordination in the structure gives rise to several hydrogen bonding between coordinated water molecules and nitrogen atoms. The packing diagram consists of a two-dimensional polymeric layer running parallel to the b-axis (Fig. 2). The molecular packing is stabilized by $\mathrm{O} 3-\mathrm{H} 31 \cdots \mathrm{~N} 1$ and $\mathrm{O} 3-\mathrm{H} 32 \cdots \mathrm{~N} 1$ hydrogen bonds (Table 1).

S2. Experimental

The title compound was prepared similar to the literature method (Gowda \& Usha, 2003). The purity of the compound was checked by determining its melting point $\left(184^{\circ} \mathrm{C}\right)$. It was characterized by recording its infrared and NMR spectra.
Yellow prisms of the title compound used in X-ray diffraction studies were obtained from its aqueous solution at room temperature.

S3. Refinement

The O bound H atoms were located in difference map and later restrained to $\mathrm{O}-\mathrm{H}=0.82$ (2) \AA The other H atoms were positioned with idealized geometry using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the $U_{\text {eq }}$ of the parent atom).
The residual electron-density features are located in the region of Br 1 . The highest peak and the deepest hole are 1.70 and $0.93 \AA$ from Br1, respectivily.

Figure 1
Molecular structure of the title compound, showing the atom labelling scheme for the asymmetric unit and extended to show the coordination geometry for the K^{+}. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Figure 2
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
Potassium N-bromo-4-chlorobenzenesulfonamidate monohydrate
Crystal data
$\mathrm{K}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrClNO}_{2} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=326.64$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=15.596$ (1) Å
$b=10.188$ (1) \AA
$c=6.7649$ (7) \AA
$\beta=99.947$ (9) ${ }^{\circ}$
$V=1058.73$ (17) \AA^{3}
$Z=4$
$F(000)=640$
$D_{\mathrm{x}}=2.049 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2989 reflections
$\theta=3.0-27.8^{\circ}$
$\mu=4.70 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, yellow
$0.34 \times 0.34 \times 0.30 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\min }=0.298, T_{\text {max }}=0.333$

> 3796 measured reflections
> 2147 independent reflections
> 1984 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.035$
> $\theta_{\max }=26.4^{\circ}, \theta_{\min }=3.7^{\circ}$
> $h=-19 \rightarrow 17$
> $k=-5 \rightarrow 12$
> $l=-8 \rightarrow 6$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.156$
$S=1.19$
2147 reflections
134 parameters
2 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$0.25575(4)$	$0.43815(7)$	$-0.31985(10)$	$0.0299(3)$
K1	$0.44027(9)$	$0.61960(15)$	$-0.3785(2)$	$0.0252(4)$
C11	$-0.02963(13)$	$0.5964(3)$	$0.2758(3)$	$0.0534(6)$
S1	$0.34113(9)$	$0.53777(15)$	$0.0566(2)$	$0.0190(4)$
O1	$0.3587(3)$	$0.6607(5)$	$-0.0369(7)$	$0.0310(11)$
O2	$0.4024(3)$	$0.5053(6)$	$0.2355(7)$	$0.0329(11)$
O3	$0.5513(3)$	$0.7034(5)$	$-0.6370(8)$	$0.0318(11)$
H31	$0.572(5)$	$0.692(9)$	$-0.739(8)$	0.038^{*}
H32	$0.589(4)$	$0.753(7)$	$-0.578(12)$	0.038^{*}
N1	$0.3390(4)$	$0.4126(6)$	$-0.0831(8)$	$0.0258(12)$
C1	$0.2367(4)$	$0.5577(6)$	$0.1250(9)$	$0.0197(12)$
C2	$0.1965(4)$	$0.4475(7)$	$0.1854(11)$	$0.0278(14)$
H2	0.2239	0.3662	0.1914	0.033^{*}

C3	$0.1148(5)$	$0.4602(8)$	$0.2370(11)$	$0.0341(16)$
H3	0.0867	0.3879	0.2806	0.041^{*}
C4	$0.0755(4)$	$0.5829(8)$	$0.2223(10)$	$0.0306(15)$
C5	$0.1156(5)$	$0.6906(8)$	$0.1639(11)$	$0.0371(17)$
H5	0.0885	0.7721	0.1573	0.044^{*}
C6	$0.1977(5)$	$0.6771(7)$	$0.1141(10)$	$0.0286(14)$
H6	0.2260	0.7499	0.0733	0.034^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0227(4)$	$0.0383(5)$	$0.0267(4)$	$-0.0011(3)$	$-0.0019(3)$	$-0.0082(3)$
K1	$0.0199(7)$	$0.0332(8)$	$0.0234(7)$	$0.0037(5)$	$0.0062(5)$	$0.0010(6)$
C11	$0.0198(9)$	$0.0954(18)$	$0.0479(11)$	$0.0083(10)$	$0.0137(8)$	$0.0025(11)$
S1	$0.0136(7)$	$0.0251(8)$	$0.0178(7)$	$-0.0009(5)$	$0.0013(5)$	$-0.0026(5)$
O1	$0.032(3)$	$0.029(2)$	$0.034(3)$	$-0.009(2)$	$0.014(2)$	$-0.005(2)$
O2	$0.019(2)$	$0.052(3)$	$0.024(2)$	$0.006(2)$	$-0.0043(18)$	$-0.003(2)$
O3	$0.023(2)$	$0.042(3)$	$0.032(3)$	$-0.005(2)$	$0.008(2)$	$0.000(2)$
N1	$0.021(3)$	$0.032(3)$	$0.024(3)$	$0.005(2)$	$0.002(2)$	$-0.003(2)$
C1	$0.018(3)$	$0.025(3)$	$0.016(3)$	$0.000(2)$	$0.001(2)$	$-0.002(2)$
C2	$0.020(3)$	$0.027(3)$	$0.037(4)$	$0.002(2)$	$0.007(3)$	$0.002(3)$
C3	$0.028(4)$	$0.040(4)$	$0.036(4)$	$-0.010(3)$	$0.009(3)$	$0.002(3)$
C4	$0.016(3)$	$0.056(5)$	$0.020(3)$	$0.003(3)$	$0.003(2)$	$0.000(3)$
C5	$0.036(4)$	$0.040(4)$	$0.036(4)$	$0.015(3)$	$0.010(3)$	$0.002(3)$
C6	$0.029(3)$	$0.026(3)$	$0.033(3)$	$0.002(3)$	$0.012(3)$	$0.006(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Br1-N1	1.897 (5)	$\mathrm{O} 2-\mathrm{K} 1^{\text {ii }}$	2.784 (5)
$\mathrm{Br} 1-\mathrm{K} 1$	3.5001 (16)	$\mathrm{O} 2-\mathrm{K} 1^{\text {vi }}$	2.827 (5)
$\mathrm{K} 1-\mathrm{Ol}^{\mathrm{i}}$	2.704 (5)	O3-K1 ${ }^{\text {i }}$	2.818 (6)
$\mathrm{K} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.784 (5)	O3-K1 ${ }^{\text {v }}$	3.295 (6)
$\mathrm{K} 1-\mathrm{O} 3$	2.799 (5)	O3-H31	0.82 (2)
$\mathrm{K} 1-\mathrm{O}{ }^{\text {iii }}$	2.818 (6)	O3-H32	0.82 (2)
$\mathrm{K} 1-\mathrm{O} 2^{\text {iv }}$	2.827 (5)	C1-C6	1.356 (9)
$\mathrm{K} 1-\mathrm{O} 1$	2.855 (5)	C1-C2	1.382 (9)
$\mathrm{K} 1-\mathrm{O}^{\text {v }}$	3.295 (6)	C2-C3	1.384 (10)
K1-N1	3.468 (6)	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 11-\mathrm{C} 4$	1.745 (7)	C3-C4	1.388 (11)
S1-O2	1.446 (5)	C3-H3	0.9300
S1-O1	1.450 (5)	C4-C5	1.355 (11)
S1-N1	1.584 (6)	C5-C6	1.386 (10)
S1-C1	1.780 (6)	C5-H5	0.9300
$\mathrm{O} 1-\mathrm{K} 1^{\text {iii }}$	2.704 (5)	C6-H6	0.9300
N1-Br1-K1	73.28 (18)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	108.1 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{ii}}$	147.39 (17)	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	105.3 (3)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 3$	78.43 (15)	N1-S1-C1	108.7 (3)

$\mathrm{O} 2 \mathrm{ii}-\mathrm{K} 1-\mathrm{O} 3$	75.72 (16)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 3{ }^{\text {iii }}$	84.28 (16)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 3^{\text {iii }}$	71.01 (15)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 3{ }^{\text {iii }}$	77.42 (11)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{iv}}$	88.05 (16)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{iv}}$	99.40 (13)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 2^{\text {iv }}$	66.52 (15)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 2^{\text {iv }}$	143.94 (16)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 1$	87.38 (13)
$\mathrm{O} 2 \mathrm{ii}-\mathrm{K} 1-\mathrm{O} 1$	105.97 (15)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 1$	150.63 (16)
O3iii-K1-O1	75.66 (14)
$\mathrm{O} 2{ }^{\mathrm{iv}}-\mathrm{K} 1-\mathrm{O} 1$	139.19 (15)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O}^{\text {v }}$	148.56 (15)
$\mathrm{O} 2^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 3^{\mathrm{v}}$	60.31 (15)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 3^{\text {v }}$	107.41 (13)
$\mathrm{O} 3^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 3^{v}$	127.12 (10)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 3^{\text {v }}$	67.58 (15)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 3^{\text {v }}$	98.14 (14)
$\mathrm{O} 1{ }^{\text {i }}$-K1-N1	120.12 (14)
$\mathrm{O} 2 \mathrm{ii}-\mathrm{K} 1-\mathrm{N} 1$	89.06 (15)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{N} 1$	159.76 (16)
O3iii-K1-N1	110.52 (14)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{N} 1$	103.80 (15)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{N} 1$	46.50 (13)
$\mathrm{O3}^{\text {v }}$-K1-N1	52.68 (13)
O1-K1-Br1	98.17 (12)
$\mathrm{O} 2 \mathrm{ii}-\mathrm{K} 1-\mathrm{Br} 1$	114.30 (12)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{Br} 1$	147.31 (12)
O3 ${ }^{\text {iii }}-\mathrm{K} 1-\mathrm{Br} 1$	135.01 (11)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{Br} 1$	80.94 (11)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{Br} 1$	59.70 (10)
$\mathrm{O} 3{ }^{2}-\mathrm{K} 1-\mathrm{Br} 1$	59.85 (9)
N1-K1-Br1	31.60 (9)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	114.6 (3)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	105.0 (3)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	114.9 (3)
$\mathrm{N} 1-\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 1^{\mathrm{i}}$	-137.2 (2)
$\mathrm{N} 1-\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {ii }}$	39.8 (2)
$\mathrm{N} 1-\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 3$	141.5 (3)
$\mathrm{N} 1-\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 3{ }^{\text {iii }}$	-47.2 (2)
$\mathrm{N} 1-\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iv }}$	136.1 (2)
$\mathrm{N} 1-\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 1$	-55.1 (2)
$\mathrm{N} 1-\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 3^{\text {v }}$	66.8 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {iii }}$	-27.2 (5)
N1-S1-O1-K1 ${ }^{\text {iii }}$	-148.9 (3)
C1-S1-O1-K1 ${ }^{\text {iii }}$	91.5 (4)

$\mathrm{S} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {iii }}$	130.8 (3)
S1-O1-K1	111.7 (3)
$\mathrm{K} 1 \mathrm{iii}-\mathrm{O} 1-\mathrm{K} 1$	101.36 (15)
$\mathrm{S} 1-\mathrm{O} 2-\mathrm{K} 1^{\text {ii }}$	144.2 (3)
$\mathrm{S} 1-\mathrm{O} 2-\mathrm{K} 1^{\text {vi }}$	133.0 (3)
$\mathrm{K} 1{ }^{\text {ii }}-\mathrm{O} 2-\mathrm{K} 1^{\text {vi }}$	80.60 (12)
$\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\mathrm{i}}$	99.95 (16)
$\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{v}$	72.59 (13)
$\mathrm{K} 1{ }^{\mathrm{i}}-\mathrm{O} 3-\mathrm{K} 1^{\text {v }}$	132.42 (18)
$\mathrm{K} 1-\mathrm{O} 3-\mathrm{H} 31$	149 (6)
$\mathrm{K} 1{ }^{\mathrm{i}}-\mathrm{O} 3-\mathrm{H} 31$	84 (6)
$\mathrm{K} 1{ }^{\text {v }}-\mathrm{O} 3-\mathrm{H} 31$	82 (6)
$\mathrm{K} 1-\mathrm{O} 3-\mathrm{H} 32$	110 (6)
$\mathrm{K} 1{ }^{\mathrm{i}}-\mathrm{O} 3-\mathrm{H} 32$	102 (6)
$\mathrm{K} 1{ }^{\mathrm{v}}-\mathrm{O} 3-\mathrm{H} 32$	125 (6)
H31-O3-H32	98 (9)
S1-N1-Br1	109.5 (3)
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{K} 1$	83.6 (2)
Br1-N1-K1	75.12 (18)
C6- $\mathrm{C} 1-\mathrm{C} 2$	121.5 (6)
C6- $\mathrm{C} 1-\mathrm{S} 1$	120.7 (5)
C2-C1-S1	117.8 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	118.9 (6)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.6
C3-C2-H2	120.6
C2-C3-C4	118.7 (7)
C2-C3-H3	120.7
C4-C3-H3	120.7
C5-C4-C3	122.0 (7)
C5-C4-Cl1	119.6 (6)
C3-C4-Cl1	118.4 (6)
C4-C5-C6	118.8 (7)
C4-C5-H5	120.6
C6-C5-H5	120.6
C1-C6-C5	120.1 (7)
C1-C6-H6	120.0
C5-C6-H6	120.0
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{v}$	125.32 (11)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{v}$	-55.11 (13)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {v }}$	149.3 (3)
O3v-K1-O3-K1 ${ }^{\text {v }}$	0.0
$\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {v }}$	9.7 (4)
$\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {v }}$	-60.9 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1-\mathrm{Br} 1$	177.0 (3)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{Br} 1$	-56.3 (4)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{Br} 1$	61.5 (4)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1-\mathrm{K} 1$	-111.3 (2)

O2-S1-O1-K1	101.4 (3)
N1-S1-O1-K1	-20.3 (4)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1-\mathrm{K} 1$	-139.9 (3)
O1- ${ }^{\text {i }} 1-\mathrm{O} 1-\mathrm{S} 1$	148.80 (19)
$\mathrm{O} 2{ }^{\text {iii }} \mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	-61.4 (3)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	-150.6 (3)
O3ii- ${ }^{\text {iii }} 1-\mathrm{O} 1-\mathrm{S} 1$	-126.4 (3)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	64.8 (4)
O3 ${ }^{\text {v }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	-0.1 (3)
N1—K1-O1-S1	11.4 (2)
Br1-K1-O1-S1	47.7 (2)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {iii }}$	-68.3 (3)
$\mathrm{O} 2^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {iii }}$	81.47 (19)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {iii }}$	-7.7 (4)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {iii }}$	16.46 (16)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {iii }}$	-152.3 (2)
$\mathrm{O} 3^{\mathrm{v}}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {iii }}$	142.81 (15)
$\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {iii }}$	154.3 (3)
$\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {iii }}$	-169.3 (2)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2-\mathrm{K} 1^{\text {ii }}$	-88.7 (6)
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 2-\mathrm{K} 1^{\text {ii }}$	38.3 (6)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2-\mathrm{K} 1^{\text {ii }}$	154.2 (5)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2-\mathrm{K} 1^{\text {vi }}$	66.9 (5)
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 2-\mathrm{K} 1^{\text {vi }}$	-166.1 (4)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2-\mathrm{K} 1^{\text {vi }}$	-50.2 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\mathrm{i}}$	-16.53 (16)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K}^{1}{ }^{\text {i }}$	-176.5 (2)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {i }}$	-103.2 (2)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {i }}$	76.40 (17)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K}^{1}$	-79.2 (3)
$\mathrm{O} 3{ }^{\mathrm{v}}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {i }}$	131.51 (17)
$\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{1}$	141.2 (4)
$\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\mathrm{i}}$	70.6 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{v}$	-148.04 (15)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{v}$	52.01 (12)

O1-S1-N1-K1	15.5 (3)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{K} 1$	133.2 (2)
$\mathrm{K} 1-\mathrm{Br} 1-\mathrm{N} 1-\mathrm{S} 1$	77.5 (3)
O1- ${ }^{\text {i }}$ - $1-\mathrm{N} 1-\mathrm{S} 1$	-61.2 (3)
$\mathrm{O} 2 \mathrm{ii}-\mathrm{K} 1-\mathrm{N} 1-\mathrm{S} 1$	103.5 (2)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{N} 1-\mathrm{S} 1$	144.3 (4)
$\mathrm{O} 3{ }^{\text {iii }}$-K1-N1-S1	34.2 (2)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{N} 1-\mathrm{S} 1$	-157.0 (2)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{N} 1-\mathrm{S} 1$	-9.74 (19)
O3 ${ }^{v}-\mathrm{K} 1-\mathrm{N} 1-\mathrm{S} 1$	155.9 (3)
$\mathrm{Br} 1-\mathrm{K} 1-\mathrm{N} 1-\mathrm{S} 1$	-112.2 (3)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{N} 1-\mathrm{Br} 1$	51.0 (2)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{N} 1-\mathrm{Br} 1$	-144.32 (18)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{N} 1-\mathrm{Br} 1$	-103.5 (4)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{N} 1-\mathrm{Br} 1$	146.39 (17)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{N} 1-\mathrm{Br} 1$	-44.9 (2)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{N} 1-\mathrm{Br} 1$	102.4 (2)
$\mathrm{O}^{2}-\mathrm{K} 1-\mathrm{N} 1-\mathrm{Br} 1$	-91.9 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	112.9 (6)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	-10.0 (6)
N1-S1-C1-C6	-133.7 (6)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	-68.3 (6)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	168.8 (5)
N1-S1-C1-C2	45.1 (6)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.4 (10)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.2 (5)
C1-C2-C3-C4	1.2 (11)
C2-C3-C4-C5	-1.6 (11)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 1$	176.9 (6)
C3-C4-C5-C6	1.1 (11)
$\mathrm{C} 11-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	-177.4 (6)
C2-C1-C6-C5	-0.1 (10)
S1-C1-C6-C5	178.6 (5)
C4-C5-C6-C1	-0.2 (11)

Symmetry codes: (i) $x,-y+3 / 2, z-1 / 2$; (ii) $-x+1,-y+1,-z$; (iii) $x,-y+3 / 2, z+1 / 2$; (iv) $x, y, z-1$; (v) $-x+1,-y+1,-z-1$; (vi) $x, y, z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 31 \cdots \mathrm{~N} 1^{\mathrm{v}}$	$0.82(2)$	$2.25(5)$	$3.005(8)$	$152(8)$
O3—H32 $^{\text {vin }} \mathrm{N}^{\text {vii }}$	$0.82(2)$	$2.16(3)$	$2.967(8)$	$166(9)$

Symmetry codes: (v) $-x+1,-y+1,-z-1$; (vii) $-x+1, y+1 / 2,-z-1 / 2$.

