organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-{(1S*,2S*)-2-[(E)-(2,4-Dihydroxybenzylidene)amino]cyclohexyl}isoindoline-1,3-dione

Zhi-Jian Liu, Xiang-Kai Fu,* Zhong-Kai Hu, Xiao-Ju Wu and Liu Wu

College of Chemistry and Chemical Engineering, Research Institute of Applied Chemistry, Southwest University, The Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing 400715, People's Republic of China Correspondence e-mail: fxk@swu.edu.cn

Received 17 May 2011; accepted 25 May 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.132; data-to-parameter ratio = 18.8.

In the title molecule, $C_{21}H_{20}N_2O_4$, the dihedral angle between the phenol ring and the isoindole-1,3-dione mean plane is 69.79 (6)°. The cyclohexane ring adopts a chair conformation. Weak intermolecular $O-H \cdots O$ and $O-H \cdots N$ interactions feature as part of the crystal packing.

Related literature

For details of the synthesis, see: Berkessel et al. (2006); Ren & Fu (2009). For background to the synthesis of salen-type Schiff base ligands, see: Campbell & Nguyen (2001).

Experimental

Crystal data

C21H20N2O4 $M_r = 364.39$ Orthorhombic, $P2_12_12_1$ a = 9.0247 (3) Å b = 11.7748 (4) Å c = 17.8585 (6) Å

Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.982, T_{\max} = 0.982$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of
$wR(F^2) = 0.132$	independent and constrained
S = 1.10	refinement
4727 reflections	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
251 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
1 restraint	

 $V = 1897.72 (11) \text{ Å}^3$

 $0.20 \times 0.20 \times 0.20$ mm

34622 measured reflections

4727 independent reflections

4317 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^-$

Z = 4

T = 296 K

 $R_{\rm int} = 0.023$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O3 - H3A \cdots N2 \\ O4 - H4B \cdots O3^{i} \end{array}$	0.93 (1) 0.90 (2)	1.69 (1) 1.66 (2)	2.5656 (16) 2.5478 (15)	157 (2) 170 (2)
Summerstan and (i) u	1 1			

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful to Southwest University of China for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2012).

References

Berkessel, A., Mukherjee, S., Müller, T. N., Cleemann, F., Roland, K., Brandenburg, Neudörfl, J. & Lex, J. (2006). Org. Biomol. Chem. 4, 4319-4330

Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Campbell, J. E. & Nguyen, S. T. (2001). Tetrahedron Lett. 42, 1221-1225.

Ren, W. & Fu, X. (2009). J. Mol. Catal. A, 312, 40-47.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o1562 [doi:10.1107/S1600536811019787]

2-{(1*S**,2*S**)-2-[(*E*)-(2,4-Dihydroxybenzylidene)amino]cyclohexyl}isoindoline-1,3-dione

Zhi-Jian Liu, Xiang-Kai Fu, Zhong-Kai Hu, Xiao-Ju Wu and Liu Wu

S1. Comment

Salen-type Schiff base ligands incorporating two different benzylidene moieties and a diamine backbone were synthesized in high yield under mild conditions *via* a stepwise approach. In the synthesis of salen-type Schiff base ligands (Campbell *et al.*, 2001), the compound (I) was a significant intermediate product. Here we report its crystal structure.

S2. Experimental

Compound (I) was synthesized according to the procedure of Berkessel *et al.* (2006); Ren *et al.* (2009). A crystal of (I) suitable for X-ray analysis was grown from a mixture solution of ethanol and acetonitrile (1:1) by slow evaporation at room temperature.

S3. Refinement

All the hydrogen atoms were placed at the geometrical positions with C—H = 0.93 Å(CH), 0.97Å (CH), 0.97Å (CH₂), and refined as riding, with $U_{iso}(H) = 1.2 U_{eq}(C)$ and $U_{iso}(H) = 1 \sim 1.4 U_{eq}(O)$. A restrained refinement comment "*DFIX*" is used to restrain the distance of O3 and H3a.

Figure 1

Molecular structure showing 30% probability displacement ellipsoids.

2-{(1*S**,2*S**)-2-[(*E*)-(2,4- Dihydroxybenzylidene)amino]cyclohexyl}isoindoline-1,3-dione

Crystal data	
$C_{21}H_{20}N_{2}O_{4}$ $M_{r} = 364.39$ Orthorhombic, $P2_{1}2_{1}2_{1}$ $a = 9.0247 (3) Å$ $b = 11.7748 (4) Å$ $c = 17.8585 (6) Å$ $V = 1897.72 (11) Å^{3}$ $Z = 4$ $F(000) = 768$	$D_x = 1.275 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 34622 reflections $\theta = 2.1-28.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.20 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Bruker APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.982$, $T_{max} = 0.982$ 34622 measured reflections 4727 independent reflections 4317 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.023$	$k = -15 \rightarrow 15$
$\theta_{\rm max} = 28.3^{\circ}, \theta_{\rm min} = 2.1^{\circ}$	$l = -23 \rightarrow 23$
$h = -12 \rightarrow 12$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.132$	neighbouring sites
S = 1.10	H atoms treated by a mixture of independent
4727 reflections	and constrained refinement
251 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{ m max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
	$\Delta ho_{ m min} = -0.32$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.30161 (15)	0.36416 (11)	0.06573 (7)	0.0377 (3)	
C2	0.42917 (15)	0.34393 (11)	0.02192 (7)	0.0388 (3)	
H2B	0.4445	0.2721	0.0017	0.047*	
C3	0.53102 (15)	0.42835 (11)	0.00866 (7)	0.0405 (3)	
C4	0.5076 (2)	0.53951 (12)	0.03634 (11)	0.0576 (4)	
H4A	0.5759	0.5967	0.0262	0.069*	
C5	0.3856 (2)	0.56221 (12)	0.07755 (10)	0.0551 (4)	
H5A	0.3702	0.6358	0.0948	0.066*	
C6	0.28074 (16)	0.47702 (11)	0.09522 (7)	0.0400 (3)	
C7	0.15624 (16)	0.50289 (12)	0.13977 (7)	0.0442 (3)	
H7A	0.1438	0.5774	0.1559	0.053*	
C8	-0.07381 (16)	0.45130 (14)	0.20425 (7)	0.0452 (3)	
H8A	-0.0812	0.5330	0.2141	0.054*	
C9	-0.21031 (18)	0.4117 (2)	0.16090 (8)	0.0604 (4)	
H9A	-0.2190	0.4554	0.1151	0.072*	
H9B	-0.1986	0.3324	0.1474	0.072*	
C10	-0.3512 (2)	0.4259 (3)	0.20717 (11)	0.0762 (6)	
H10A	-0.4352	0.3973	0.1790	0.091*	
H10B	-0.3678	0.5060	0.2169	0.091*	
C11	-0.3396 (2)	0.3625 (3)	0.28091 (10)	0.0809 (7)	
H11A	-0.4287	0.3751	0.3102	0.097*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H11B	-0.3311	0.2817	0.2713	0.097*
C12	-0.2046 (2)	0.4032 (2)	0.32491 (9)	0.0683 (5)
H12A	-0.1969	0.3608	0.3713	0.082*
H12B	-0.2160	0.4829	0.3372	0.082*
C13	-0.06454 (17)	0.38642 (13)	0.27883 (7)	0.0458 (3)
H13A	-0.0588	0.3054	0.2665	0.055*
C14	0.1428 (2)	0.33206 (13)	0.36431 (9)	0.0524 (4)
C15	0.27356 (18)	0.38879 (13)	0.39836 (8)	0.0480 (3)
C16	0.3843 (2)	0.34711 (16)	0.44396 (10)	0.0667 (5)
H16A	0.3845	0.2716	0.4592	0.080*
C17	0.4951 (2)	0.4208 (2)	0.46639 (11)	0.0683 (5)
H17A	0.5710	0.3945	0.4971	0.082*
C18	0.4943 (2)	0.53120 (17)	0.44398 (10)	0.0631 (5)
H18A	0.5714	0.5787	0.4585	0.076*
C19	0.38096 (18)	0.57462 (14)	0.39993 (10)	0.0549 (4)
H19A	0.3792	0.6507	0.3861	0.066*
C20	0.27078 (16)	0.50062 (12)	0.37739 (7)	0.0432 (3)
C21	0.13765 (16)	0.52076 (11)	0.33052 (7)	0.0420 (3)
N1	0.06951 (15)	0.41440 (10)	0.32197 (6)	0.0446 (3)
N2	0.05849 (14)	0.42829 (11)	0.15940 (6)	0.0445 (3)
01	0.1041 (2)	0.23425 (11)	0.36929 (9)	0.0804 (5)
O2	0.09328 (16)	0.60904 (9)	0.30445 (7)	0.0612 (3)
03	0.20554 (13)	0.28623 (9)	0.07975 (7)	0.0560 (3)
H3A	0.141 (2)	0.3207 (16)	0.1129 (9)	0.065*
O4	0.65643 (13)	0.41288 (9)	-0.02971 (7)	0.0526 (3)
H4B	0.665 (3)	0.340 (2)	-0.0447 (12)	0.070 (6)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0332 (6)	0.0376 (6)	0.0423 (5)	-0.0025 (5)	-0.0030 (5)	-0.0034 (4)
C2	0.0352 (6)	0.0353 (5)	0.0459 (5)	-0.0004 (5)	-0.0008(5)	-0.0045 (5)
C3	0.0371 (6)	0.0386 (6)	0.0459 (6)	0.0001 (5)	0.0037 (5)	-0.0001 (5)
C4	0.0567 (9)	0.0350 (6)	0.0812 (10)	-0.0097 (6)	0.0230 (8)	-0.0054 (6)
C5	0.0574 (9)	0.0341 (6)	0.0737 (9)	-0.0044 (6)	0.0188 (8)	-0.0091 (6)
C6	0.0361 (6)	0.0399 (6)	0.0439 (5)	-0.0015 (5)	0.0010 (5)	-0.0044 (5)
C7	0.0423 (7)	0.0450 (6)	0.0452 (6)	0.0012 (6)	0.0027 (5)	-0.0045 (5)
C8	0.0337 (6)	0.0610 (8)	0.0408 (5)	-0.0011 (6)	0.0023 (5)	-0.0061 (5)
C9	0.0374 (7)	0.0999 (13)	0.0439 (6)	-0.0054 (9)	-0.0031 (6)	-0.0076 (7)
C10	0.0341 (8)	0.130 (2)	0.0648 (9)	-0.0055 (11)	-0.0019 (7)	-0.0189 (11)
C11	0.0448 (9)	0.141 (2)	0.0570 (9)	-0.0316 (12)	0.0100 (7)	-0.0177 (10)
C12	0.0469 (9)	0.1134 (16)	0.0445 (7)	-0.0239 (10)	0.0069 (7)	-0.0135 (8)
C13	0.0407 (7)	0.0544 (7)	0.0423 (6)	-0.0122 (6)	-0.0009(5)	-0.0059 (5)
C14	0.0586 (9)	0.0461 (7)	0.0524 (7)	-0.0066 (7)	-0.0056 (7)	0.0016 (6)
C15	0.0469 (8)	0.0470 (7)	0.0502 (6)	0.0010 (6)	-0.0045 (6)	-0.0030 (5)
C16	0.0713 (12)	0.0577 (9)	0.0712 (10)	0.0147 (9)	-0.0154 (9)	0.0034 (8)
C17	0.0510 (9)	0.0877 (13)	0.0661 (9)	0.0242 (9)	-0.0171 (8)	-0.0182 (9)
C18	0.0387 (8)	0.0766 (11)	0.0741 (10)	0.0040 (8)	-0.0097 (7)	-0.0236 (9)

supporting information

C19	0.0422 (8)	0.0529 (8)	0.0695 (9)	-0.0048 (7)	-0.0075 (7)	-0.0107 (7)
C20	0.0391 (7)	0.0449 (6)	0.0456 (6)	0.0002 (6)	-0.0024 (5)	-0.0063 (5)
C21	0.0405 (7)	0.0408 (6)	0.0445 (6)	-0.0048 (5)	-0.0035 (5)	-0.0025 (5)
N1	0.0430 (6)	0.0445 (6)	0.0462 (5)	-0.0079 (5)	-0.0059 (5)	-0.0017 (4)
N2	0.0368 (6)	0.0543 (6)	0.0425 (5)	-0.0017 (5)	0.0042 (4)	-0.0061 (4)
01	0.1011 (12)	0.0451 (6)	0.0951 (9)	-0.0188 (7)	-0.0246 (9)	0.0109 (6)
O2	0.0689 (8)	0.0429 (5)	0.0719 (6)	-0.0015 (5)	-0.0229 (6)	0.0039 (5)
O3	0.0460 (6)	0.0466 (5)	0.0756 (7)	-0.0154 (5)	0.0170 (5)	-0.0165 (5)
O4	0.0426 (6)	0.0449 (5)	0.0703 (6)	-0.0043 (4)	0.0187 (5)	-0.0051 (5)

Geometric parameters (Å, °)

C1—O3	1.2869 (16)	C11—H11A	0.9700
C1—C2	1.4122 (18)	C11—H11B	0.9700
C1—C6	1.4418 (17)	C12—C13	1.521 (2)
C2—C3	1.3744 (19)	C12—H12A	0.9700
C2—H2B	0.9300	C12—H12B	0.9700
C3—O4	1.3355 (16)	C13—N1	1.4716 (17)
C3—C4	1.4150 (19)	C13—H13A	0.9800
C4—C5	1.351 (2)	C14—O1	1.207 (2)
C4—H4A	0.9300	C14—N1	1.396 (2)
C5—C6	1.415 (2)	C14—C15	1.486 (2)
C5—H5A	0.9300	C15—C20	1.369 (2)
C6—C7	1.4101 (19)	C15—C16	1.380 (2)
C7—N2	1.2933 (19)	C16—C17	1.383 (3)
C7—H7A	0.9300	C16—H16A	0.9300
C8—N2	1.4630 (17)	C17—C18	1.361 (3)
C8—C9	1.528 (2)	C17—H17A	0.9300
C8—C13	1.5377 (19)	C18—C19	1.388 (2)
C8—H8A	0.9800	C18—H18A	0.9300
C9—C10	1.525 (2)	C19—C20	1.382 (2)
С9—Н9А	0.9700	С19—Н19А	0.9300
С9—Н9В	0.9700	C20—C21	1.4833 (19)
C10—C11	1.518 (3)	C21—O2	1.2073 (18)
C10—H10A	0.9700	C21—N1	1.4036 (18)
C10—H10B	0.9700	O3—H3A	0.927 (9)
C11—C12	1.527 (2)	O4—H4B	0.90 (2)
O3—C1—C2	122.46 (11)	H11A—C11—H11B	108.1
O3—C1—C6	119.88 (12)	C11—C12—C13	110.13 (13)
C2—C1—C6	117.66 (11)	C11—C12—H12A	109.6
C3—C2—C1	121.25 (11)	C13—C12—H12A	109.6
C3—C2—H2B	119.4	C11—C12—H12B	109.6
C1—C2—H2B	119.4	C13—C12—H12B	109.6
O4—C3—C2	123.82 (12)	H12A—C12—H12B	108.1
O4—C3—C4	115.58 (12)	N1—C13—C12	111.77 (10)
C2—C3—C4	120.60 (12)	N1—C13—C8	112.77 (11)
C5—C4—C3	119.66 (13)	C12—C13—C8	111.04 (14)

CC C4 1144	100.0		1070
С5—С4—Н4А	120.2	NIC13H13A	107.0
C3—C4—H4A	120.2	C12—C13—H13A	107.0
C4—C5—C6	121.77 (13)	C8—C13—H13A	107.0
C4—C5—H5A	119.1	O1-C14-N1	124.41 (16)
С6—С5—Н5А	119.1	O1—C14—C15	128.97 (17)
C7—C6—C5	120.39 (12)	N1—C14—C15	106.61 (12)
C7—C6—C1	120.61 (12)	C20—C15—C16	121.12 (15)
C5—C6—C1	118.98 (12)	C20—C15—C14	107.81 (13)
N2-C7-C6	123 35 (13)	C16-C15-C14	131.07 (15)
N2-C7-H7A	118 3	C17 - C16 - C15	118 15 (17)
C6-C7-H7A	118.3	C17 - C16 - H16A	120.9
$N_2 = C_8 = C_9$	108.92 (11)	C_{15} C_{16} H_{16A}	120.9
$N_2 = C_8 = C_9$	108.92(11) 100.74(12)	$C_{13}^{19} = C_{10}^{17} = C_{16}^{16}$	120.9
$N_2 = C_3 = C_{13}$	109.74(12) 100.24(12)	$C_{18} = C_{17} = C_{10}$	120.08(17)
$C_9 = C_0 = C_{13}$	109.34 (13)	C16 - C17 - H17A	119.7
N2—C8—H8A	109.6	C16-C1/-H1/A	119.7
С9—С8—Н8А	109.6	C17 - C18 - C19	121.53 (17)
C13—C8—H8A	109.6	C17—C18—H18A	119.2
C10—C9—C8	111.36 (12)	C19—C18—H18A	119.2
С10—С9—Н9А	109.4	C20—C19—C18	117.58 (16)
С8—С9—Н9А	109.4	С20—С19—Н19А	121.2
С10—С9—Н9В	109.4	C18—C19—H19A	121.2
С8—С9—Н9В	109.4	C15—C20—C19	120.90 (14)
H9A—C9—H9B	108.0	C15—C20—C21	108.84 (13)
C9—C10—C11	111.02 (17)	C19—C20—C21	130.27 (14)
C9-C10-H10A	109.4	O2—C21—N1	125.52 (13)
C11—C10—H10A	109.4	02-C21-C20	128.60(13)
C9-C10-H10B	109.4	N1 - C21 - C20	105.88(11)
C_{11} C_{10} H_{10B}	109.4	C14 N1 $C21$	100.00(11) 110.67(11)
	109.4	C14 N1 $C13$	110.07(11) 121.18(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0	$C_{14} = N_{1} = C_{13}$	121.10(12)
	110.31 (18)	$C_2 = N_1 = C_1 S$	128.09 (12)
CI2—CII—HIIA	109.6	$C = N_2 = C_8$	125.40 (13)
CIO—CII—HIIA	109.6	CI—O3—H3A	103.8 (13)
C12—C11—H11B	109.6	C3—O4—H4B	110.7 (15)
C10—C11—H11B	109.6		
O3—C1—C2—C3	-179.12 (13)	C20—C15—C16—C17	-1.7 (3)
C6-C1-C2-C3	0.89 (18)	C14-C15-C16-C17	178 88 (18)
$C_1 - C_2 - C_3 - O_4$	177 16 (12)	C_{15} C_{16} C_{17} C_{18}	0.0(3)
C1 $C2$ $C3$ $C4$	-25(2)	C_{16} C_{17} C_{18} C_{19}	1.0(3)
$C_1 = C_2 = C_3 = C_4$	-178.20(16)	$C_{10} - C_{17} - C_{10} - C_{19}$	1.9(3)
04 - 03 - 04 - 05	-1/6.20(10)	C1/-C18-C19-C20	-2.1(3)
$C_2 - C_3 - C_4 - C_5$	1.5 (3)	C16-C15-C20-C19	1.5 (2)
C3-C4-C5-C6	1.1 (3)	C14—C15—C20—C19	-178.98 (14)
C4—C5—C6—C7	1/8.57 (16)	C16—C15—C20—C21	-1/8.48 (14)
C4—C5—C6—C1	-2.7 (3)	C14—C15—C20—C21	1.04 (17)
O3—C1—C6—C7	0.4 (2)	C18—C19—C20—C15	0.4 (2)
C2—C1—C6—C7	-179.62 (11)	C18—C19—C20—C21	-179.62 (14)
O3—C1—C6—C5	-178.38 (14)	C15—C20—C21—O2	176.27 (16)
C2—C1—C6—C5	1.6 (2)	C19—C20—C21—O2	-3.7 (3)

C5—C6—C7—N2	-178.23 (14)	C15—C20—C21—N1	-3.42 (16)
C1—C6—C7—N2	3.0 (2)	C19—C20—C21—N1	176.60 (15)
N2-C8-C9-C10	176.03 (17)	O1—C14—N1—C21	177.16 (18)
C13—C8—C9—C10	56.1 (2)	C15-C14-N1-C21	-4.00 (17)
C8—C9—C10—C11	-56.8 (2)	O1—C14—N1—C13	-0.2 (3)
C9—C10—C11—C12	57.0 (3)	C15-C14-N1-C13	178.65 (12)
C10-C11-C12-C13	-57.9 (3)	O2—C21—N1—C14	-175.12 (16)
C11—C12—C13—N1	-174.55 (17)	C20-C21-N1-C14	4.58 (16)
C11—C12—C13—C8	58.6 (2)	O2-C21-N1-C13	2.0 (2)
N2-C8-C13-N1	56.93 (16)	C20-C21-N1-C13	-178.30 (12)
C9—C8—C13—N1	176.34 (13)	C12-C13-N1-C14	89.91 (19)
N2-C8-C13-C12	-176.74 (13)	C8—C13—N1—C14	-144.14 (14)
C9—C8—C13—C12	-57.33 (18)	C12-C13-N1-C21	-86.94 (19)
O1-C14-C15-C20	-179.50 (19)	C8—C13—N1—C21	39.01 (19)
N1-C14-C15-C20	1.73 (18)	C6—C7—N2—C8	-178.75 (12)
O1-C14-C15-C16	0.0 (3)	C9—C8—N2—C7	124.08 (16)
N1-C14-C15-C16	-178.81 (17)	C13—C8—N2—C7	-116.25 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D^{\dots}A$	D—H···A
O3—H3 <i>A</i> …N2	0.93 (1)	1.69 (1)	2.5656 (16)	157 (2)
O4—H4 <i>B</i> ···O3 ⁱ	0.90 (2)	1.66 (2)	2.5478 (15)	170 (2)

Symmetry code: (i) x+1/2, -y+1/2, -z.