Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

The herbicide triflusulfuron-methyl

Kurt Mereiter

Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria Correspondence e-mail: kurt.mereiter@tuwien.ac.at

Received 11 June 2011; accepted 14 June 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.102; data-to-parameter ratio = 20.6.

The molecule of the title compound [systematic name: methyl 2-({[4-dimethylamino-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl]carbamoyl}sulfamoyl)-3-methylbenzoate], $C_{17}H_{19}F_3N_6O_6S$, features a nearly planar (r.m.s. deviation = 0.098 Å) dimethyl-aminotriazinyl-urea group with a short intramolecular N-H···N hydrogen bond to a triazine N atom. An intramolecular dipole–dipole interaction between the sulfamide and carboxylate groups, with $O_s \cdots C_c = 2.800$ (1) Å and $N_s \cdots O_c = 2.835$ (1) Å, controls the orientation of the methylbenzoate group and the shape of the molecule. The crystal structure is stabilized by intermolecular N-H···N hydrogen bonding, $C-H \cdots X$ ($X = N_cO$) interactions and arene π - π stacking.

Related literature

For general information on the synthesis and herbicidal properties of the title compound, see: EFSA (2008); Moon (1989); Peeples *et al.* (1991); Wittenbach *et al.* (1994). For the inhibition mechanism of sulfonylurea herbicides on acetohydroxy acid syntheases, see: Duggleby *et al.* (2008); McCourt *et al.* (2005). For the crystal structures of related sulfonylurea compounds, see: Ma, Wang *et al.* (2003); Ma, Li *et al.* (2003); Wang *et al.* (2004); Sorokin *et al.* (1993); Liu *et al.* (2008). For a description of the Cambridge Structural Database, see: Allen (2002). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} C_{17}H_{19}F_{3}N_{6}O_{6}S\\ M_{r}=492.44\\ Monoclinic, C2/c\\ a=16.7107\ (11)\ \text{\AA}\\ b=15.6406\ (11)\ \text{\AA}\\ c=17.1875\ (12)\ \text{\AA}\\ \beta=107.035\ (1)^{\circ} \end{array}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\rm min} = 0.84, T_{\rm max} = 0.94$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.102$ S = 1.076217 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdot \cdot \cdot N5$	0.88	1.95	2.6410 (13)	135
$N2 - H2N \cdot \cdot \cdot N3^{i}$	0.88	2.03	2.8998 (12)	172
C9−H9A···O5	0.98	2.42	3.2253 (16)	139
$C14 - H14B \cdots O3$	0.98	2.59	3.4363 (16)	145
$C14-H14C\cdots O5^{ii}$	0.98	2.42	3.2637 (14)	143
$C16-H16A\cdots O2^{iii}$	0.99	2.55	3.4209 (14)	147
$C16-H16B\cdotsO1^{iv}$	0.99	2.32	3.2325 (14)	153
			1	

V = 4295.1 (5) Å³

Mo $K\alpha$ radiation

 $0.55 \times 0.35 \times 0.30$ mm

31010 measured reflections

6217 independent reflections

5708 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.23 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.024$

302 parameters

 $\Delta \rho_{\rm max} = 0.50 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$

Z = 8

Symmetry codes: (i) -x + 1, y, $-z + \frac{3}{2}$; (ii) x, -y + 1, $z - \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*, *SADABS* and *XPREP* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2384).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Duggleby, R. G., McCourt, J. A. & Guddat, L. W. (2008). Plant Phys. Biochem. 46, 309–324.
- EFSA (2008). European Food Safety Authority Scientific Report 2008, Vol. 195, pp. 1–115. Conclusion on the peer review of triflusulfuron. www.efsa.europa.eu/en/efsajournal/pub/195r.html.
- Liu, Q.-X., Wu, X.-M., Liu, S.-W., Song, H.-B., Wang, X.-G. & Guo, J.-H. (2008). J. Coord. Chem. 61, 2990–2998.
- Ma, N., Li, Z.-M., Wang, J.-G. & Song, H.-B. (2003). Acta Cryst. E59, o275-o276.

- Ma, N., Wang, B., Wang, J., Song, H., Wang, S. & Li, Z. (2003). Acta Cryst. E59, 0438–0440.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.
- McCourt, J. A., Pang, S. S., Guddat, L. W. & Duggleby, R. G. (2005). Biochemistry, 44, 2330–2338.
- Moon, M. P. (1989). WO Patent 8909214 A1.
- Peeples, K. A., Moon, M. P., Lichtner, F. T., Wittenbach, V. A., Carski, T. H., Woodward, M. D., Graham, K. & Reinke, H. (1991). Weeds, 2, 25–30.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sorokin, V. I., Golosov, S. N., Kornilov, A. N., Yufit, D. S., Struchkov, Yu. T. & Drozd, V. N. (1993). *Khim. Get. Soedin. SSSR (Russ.) (Chem. Heterocycl. Compd)*, pp. 1670–1675.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, B.-L., Ma, N., Wang, J.-G., Ma, Y., Li, Z.-M. & Leng, X.-B. (2004). *Jiegou Huaxue*, 23, 783–787.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wittenbach, V. A., Koeppe, M. K., Lichtner, F. T., Zimmerman, W. T. & Reiser, R. W. (1994). *Pestic. Biochem. Physiol.* **49**, 72–81.

supporting information

Acta Cryst. (2011). E67, o1778-o1779 [doi:10.1107/S1600536811023166]

The herbicide triflusulfuron-methyl

Kurt Mereiter

S1. Comment

Triflusulfuron-methyl, methyl 2-[[4-(dimethylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl]carbamoylsulfamoyl]-3methylbenzoate, (I), is the methyl ester of Triflusulfuron. Both substances are triazinylsulfonylurea herbicides, a subclass of sulfonylurea herbicides. These substances are efficient inhibitors of acetohydroxyacid synthase (AHAS), which impairs the synthesis of the branched-chain amino acids valine, leucine and isoleucine in plants leading to the cessation of cell division and subsequent growth processes (EFSA, 2008). Triflusulfuron-methyl is in use as a post-emergence herbicide in crop protection of sugar and fodder beet in order to control various annual grasses and broad–leaved weeds like fools parsley, mayweeds, brassica species, or small nettle (Moon, 1989; Peeples *et al.*, 1991; Wittenbach *et al.*, 1994). Trade names of the originator DuPont[™] (Moon, 1989) for formulations of (I) are UpBeet in the USA and Canada, and Debut or Safari in Europe. For mammalians, the toxicity of Triflusulfuron-methyl is comparatively low whereas it is high for aquatic organisms (EFSA, 2008). In view of the actual importance of this substance a crystal structure determination was carried out and is presented here.

A view of the asymmetric unit of the structure is presented in Fig. 1. Bond lengths and angles in the molecule exhibit normal values (Allen et al., 1987) and are in good agreement with the few related crystal structures, which have been determined so far with comparable accuracy [refcodes RACCOO (Ma, Wang et al., 2003), XUYTUG (Ma, Li et al., 2003), NAFWAT (Wang et al., 2004) and YUZHUW (Sorokin et al., 1993); Cambridge Structural Database, Version 5.31, with Aug. 2010 updates; Allen, 2002]. The molecule of the title compound can be divided into three approximately planar parts: (i) the triazinylsulfonylurea group including the triazine substituents $N(CH_3)_2$ and OCH_2CF_3 comprising the 18 atoms S1, O2, O5, O6, N1 to N6, and C10 to C17 with a r.m.s. deviation from planarity of 0.098 Å; (ii) the methylphenyl group with a r.m.s. deviation from planarity of 0.011 Å; and (iii) the methylcarboxylate group with a r.m.s. deviation from planarity of 0.002 Å. The interplanar angle is 75.26 (2)° between (i) and (ii), and 48.07 (6)° between (ii) and (iii). The mutual orienations of these three parts and the shape of the entire molecule are controlled by two remarkable intramolecular interactions. Firstly, by a short and strong internal hydrogen bond N1-H1n···N5 with N1···N5 = 2.641 (1) Å, where H1n is the most acidic hydrogen atom of the compound and N5 is a triazine nitrogen as the acceptor (Fig. 1). Secondly, by an intramolecular dipole-dipole interaction between the sulfamoyl and the carboxylate group with the very short contact distances $O2 \cdot C7 = 2.800$ (1) Å and $O3 \cdot N1 = 2.835$ (1) Å (Fig. 1). These interactions are characteristic also for other triazinyl- and pyrimidinyl-sulfonylurea compounds, e.g. for RACCOO (Ma, Wang et al., 2003) where the corresponding distances are N(H)···N = 2.690 Å, O···C = 2.823 Å, and O···N = 3.198 Å, respectively. As the result the stereochemistry and shape of the molecule cores of all these compounds is in crystalline state remarkably uniform. Interestingly this stereochemistry changes drastically when the molecules enter the herbicide binding site of acetohydroxyacid synthases (AHAS): There molecules like (I) convert by $\sim 180^{\circ}$ -rotations about the bonds C11—N2 and N2—C10, which opens the intramolecular hydrogen bond N1—H1n···N5, makes both NH groups to be approximately parallel and exo-oriented toward hydrogen bond acceptors like H₂O, and brings O5, N3, and O6 closely together for

hydrogen bond interactions with the guanidine terminus of an arginine in the herbicide pocket of AHAS enzymes (McCourt *et al.*, 2005; Duggleby *et al.*, 2008). Such conversion also takes place under concomitant deprotonation of N1 when a triazinyl- or pyrimidinyl-sulfonylurea compound chelates a metal atom with the urea oxygen (O becomes formally anionic by NH-deprotonation) and a triazine/pyrimidine nitrogen, *e.g.* in the Cu complex MOGTIM (Liu *et al.*, 2008).

Further hydrogen bond-like interactions in (I) are listed in Table 1. The most important of them, apart from N1—H1n···N5, is the intermolecular bond N2—H2n···N3ⁱ, two of which link a pair of molecules related by a twofold symmetry axis (Fig. 1). In the crystal lattice these hydrogen bonded pairs interact then by π - π -stacking between pairs of inversion related and mutually slipped dimethylamino-triazine groups with a C13—C13(1 - x,1 - y,1 - z) distance of 3.460 (2) Å (ring-ring perpendicular distance 3.420 Å, ring-ring slippage 2.743 Å) and by weaker π - π -stacking between inversion related pairs of benzene rings (perpendicular distance 3.587 Å, ring-ring slippage 1.002 Å). Fig. 2 exemplifies a part of the crystal lattice with N—H···N hydrogen bonds and triazine π - π - interactions. A packing diagram of the structure is depicted in Fig. 3.

S2. Experimental

A sample of (I) was obtained from Sigma-Aldrich. It was recrystallized from methanol by room temperature evaporation to furnish colourless prisms suitable for X-ray diffraction.

S3. Refinement

H atoms were located in a difference Fourier map, placed in calculated positions and thereafter treated as riding. A torsional parameter was refined for each methyl group. $U_{iso}(H) = 1.2U_{eq}(C,N)$ for CH, CH₂ and NH groups; $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃ groups.

Figure 1

The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Hydrogen bonds are drawn as dashed red lines. Symmetry code i: -x + 1, y, -z + 3/2. Intramolecular interactions are N1…N5 = 2.641 (1) Å, O2…C7 = 2.800 (1) Å, and O3…N1 = 2.835 (1) Å.

Figure 2

View of the crystal structure of (I) showing N—H···N hydrogen bonds as dashed red lines and π - π stacking interactions between dimethylamino-triazine groups as orange lines. C-bonded H-atoms omitted for clarity.

Figure 3

Packing diagram of (I) in a view down the *c*-axis, *i.e.* approximately along the intermolecular hydrogen bonds N2—H2n···N3. H-atoms omitted for clarity.

Methyl 2-({[4-dimethylamino-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2- yl]carbamoyl}sulfamoyl)-3-methylbenzoate

F(000) = 2032

 $\theta = 2.6 - 30.5^{\circ}$

 $\mu = 0.23 \text{ mm}^{-1}$

Block, colourless

 $0.55 \times 0.35 \times 0.30$ mm

T = 100 K

 $D_{\rm x} = 1.523 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9962 reflections

Crystal data

 $C_{17}H_{19}F_{3}N_{6}O_{6}S$ $M_{r} = 492.44$ Monoclinic, C2/c a = 16.7107 (11) Å b = 15.6406 (11) Å c = 17.1875 (12) Å $\beta = 107.035 (1)^{\circ}$ $V = 4295.1 (5) \text{ Å}^{3}$ Z = 8

Data collection

Bruker Kappa APEXII CCD	31010 measured reflections
diffractometer	6217 independent reflections
Radiation source: fine-focus sealed tube	5708 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
φ and ω scans	$\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 2.9^\circ$
Absorption correction: multi-scan	$h = -23 \rightarrow 23$
(SADABS; Bruker, 2008)	$k = -22 \rightarrow 22$
$T_{\min} = 0.84, T_{\max} = 0.94$	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.102$	neighbouring sites
S = 1.07	H-atom parameters constrained
6217 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0559P)^2 + 3.028P]$
302 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.49 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

(Fractional ator	nic coordinates	and isotropic	or equivalent	t isotropic a	lisplacement	parameters	$(Å^2)$
---	-----------------	-----------------	---------------	---------------	---------------	--------------	------------	---------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S 1	0.196829 (15)	0.535633 (16)	0.521723 (15)	0.01859 (7)
01	0.19376 (6)	0.62050 (5)	0.55125 (6)	0.02835 (18)
O2	0.18217 (5)	0.52321 (5)	0.43604 (5)	0.02233 (16)
03	0.22779 (6)	0.34464 (6)	0.47823 (6)	0.02816 (18)

O4	0.09973 (6)	0.31848 (6)	0.39337 (6)	0.03011 (19)
O5	0.29214 (5)	0.50520 (6)	0.69463 (5)	0.02743 (18)
O6	0.65207 (5)	0.33795 (5)	0.66348 (5)	0.02148 (16)
N1	0.29218 (5)	0.49756 (6)	0.56180 (5)	0.01930 (17)
H1N	0.3228	0.4857	0.5294	0.023*
N2	0.40259 (5)	0.44268 (6)	0.66704 (5)	0.01867 (17)
H2N	0.4227	0.4320	0.7194	0.022*
N3	0.52875 (5)	0.38975 (6)	0.66484 (5)	0.01831 (17)
N4	0.55747 (6)	0.36370 (6)	0.53872 (5)	0.01880 (17)
N5	0.42372 (5)	0.41857 (6)	0.54018 (5)	0.01753 (16)
N6	0.45192 (6)	0.39316 (6)	0.41973 (5)	0.02194 (18)
C1	0.12686 (6)	0.46904 (7)	0.55453 (7)	0.02002 (19)
C2	0.10617(7)	0.38937 (7)	0.51509 (7)	0.0220 (2)
C3	0.04287(8)	0.34016 (8)	0.52991 (8)	0.0295(2)
Н3	0.0281	0 2869	0.5030	0.035*
C4	0.00129 (8)	0.36899 (9)	0 58398 (9)	0.0323(3)
H4	-0.0426	0.3358	0.5934	0.039*
C5	0.0420 0.02355 (7)	0.3358 0.44542(9)	0.62381 (8)	0.039
е5 H5	-0.0049	0.44342 ())	0.6614	0.0305 (3)
115 C6	0.0049	0.40787 (8)	0.6014	0.037 0.0252(2)
C0 C7	0.08055(7) 0.15278(7)	0.49787(8) 0.35064(7)	0.01108(7)	0.0232(2)
C7	0.13278(7) 0.13086(0)	0.33004(7)	0.40110(7) 0.34038(0)	0.0229(2)
	0.13380 (3)	0.27302 (9)	0.34038 (9)	0.0349 (3)
	0.0972	0.2494	0.2949	0.052*
	0.1774	0.2512	0.3710	0.052*
H&C	0.1722	0.51/2	0.3193	0.052^{*}
(9	0.10498 (8)	0.57997 (10)	0.65897 (9)	0.0352 (3)
H9A	0.1656	0.5858	0.6835	0.053*
H9B	0.0773	0.5791	0.7020	0.053*
H9C	0.0841	0.6285	0.6226	0.053*
C10	0.32549 (6)	0.48361 (7)	0.64409 (6)	0.01966 (19)
C11	0.45251 (6)	0.41618 (6)	0.62069 (6)	0.01614 (18)
C12	0.57646 (6)	0.36447 (6)	0.61875 (6)	0.01739 (18)
C13	0.47864 (7)	0.39181 (6)	0.50082 (6)	0.01759 (18)
C14	0.36494 (8)	0.41607 (8)	0.37767 (7)	0.0259 (2)
H14A	0.3530	0.4731	0.3951	0.039*
H14B	0.3273	0.3743	0.3911	0.039*
H14C	0.3564	0.4161	0.3188	0.039*
C15	0.50356 (9)	0.36299 (8)	0.37022 (7)	0.0279 (2)
H15A	0.5611	0.3547	0.4048	0.042*
H15B	0.5030	0.4054	0.3281	0.042*
H15C	0.4813	0.3086	0.3445	0.042*
C16	0.71016 (7)	0.31386 (7)	0.62056 (7)	0.0224 (2)
H16A	0.7187	0.3614	0.5858	0.027*
H16B	0.6896	0.2633	0.5859	0.027*
C17	0.78997 (8)	0.29349 (10)	0.68535 (9)	0.0334 (3)
F1	0.84761 (5)	0.26665 (7)	0.65023 (7)	0.0484 (2)
F2	0.78026 (6)	0.23027 (8)	0.73382 (7)	0.0546 (3)
F3	0.82179 (6)	0.36048 (8)	0.73076 (7)	0.0570 (3)

supporting information

Atomic displacement parameters $(Å^2)$

	U ¹¹	U ²²	U ³³	U^{12}	U^{13}	U ²³
S1	0.01670 (12)	0.01668 (12)	0.02069 (13)	0.00019 (8)	0.00281 (9)	0.00071 (8)
01	0.0256 (4)	0.0188 (4)	0.0389 (5)	0.0006 (3)	0.0068 (3)	-0.0046 (3)
O2	0.0207 (4)	0.0242 (4)	0.0199 (4)	0.0001 (3)	0.0026 (3)	0.0051 (3)
O3	0.0252 (4)	0.0237 (4)	0.0338 (5)	0.0012 (3)	0.0060 (3)	-0.0034 (3)
O4	0.0294 (4)	0.0285 (4)	0.0293 (4)	-0.0035 (3)	0.0038 (3)	-0.0060 (3)
05	0.0214 (4)	0.0398 (5)	0.0203 (4)	0.0045 (3)	0.0048 (3)	-0.0065 (3)
O6	0.0160 (3)	0.0298 (4)	0.0192 (3)	0.0026 (3)	0.0060 (3)	0.0009 (3)
N1	0.0155 (4)	0.0234 (4)	0.0175 (4)	0.0012 (3)	0.0025 (3)	-0.0011 (3)
N2	0.0165 (4)	0.0263 (4)	0.0124 (3)	0.0017 (3)	0.0028 (3)	-0.0007 (3)
N3	0.0153 (4)	0.0251 (4)	0.0139 (4)	0.0002 (3)	0.0033 (3)	0.0004 (3)
N4	0.0213 (4)	0.0197 (4)	0.0164 (4)	-0.0022 (3)	0.0070 (3)	-0.0011 (3)
N5	0.0191 (4)	0.0192 (4)	0.0130 (4)	-0.0012 (3)	0.0028 (3)	-0.0003 (3)
N6	0.0271 (4)	0.0253 (4)	0.0133 (4)	-0.0033 (3)	0.0058 (3)	-0.0003(3)
C1	0.0165 (4)	0.0220 (5)	0.0199 (4)	0.0002 (3)	0.0027 (3)	0.0032 (4)
C2	0.0202 (5)	0.0199 (5)	0.0240 (5)	0.0000 (4)	0.0036 (4)	0.0040 (4)
C3	0.0245 (5)	0.0237 (5)	0.0385 (6)	-0.0032 (4)	0.0062 (5)	0.0078 (5)
C4	0.0222 (5)	0.0360 (6)	0.0389 (7)	0.0002 (5)	0.0092 (5)	0.0161 (5)
C5	0.0203 (5)	0.0442 (7)	0.0276 (6)	0.0058 (5)	0.0080 (4)	0.0104 (5)
C6	0.0185 (5)	0.0337 (6)	0.0222 (5)	0.0036 (4)	0.0038 (4)	0.0017 (4)
C7	0.0252 (5)	0.0152 (4)	0.0266 (5)	-0.0019 (4)	0.0048 (4)	0.0014 (4)
C8	0.0402 (7)	0.0314 (6)	0.0322 (6)	-0.0034 (5)	0.0091 (5)	-0.0095 (5)
C9	0.0251 (6)	0.0480 (8)	0.0327 (6)	0.0036 (5)	0.0089 (5)	-0.0129 (6)
C10	0.0163 (4)	0.0229 (5)	0.0180 (4)	-0.0014 (4)	0.0023 (3)	-0.0032 (4)
C11	0.0156 (4)	0.0177 (4)	0.0143 (4)	-0.0022 (3)	0.0031 (3)	-0.0003 (3)
C12	0.0169 (4)	0.0181 (4)	0.0172 (4)	-0.0022 (3)	0.0052 (3)	0.0001 (3)
C13	0.0222 (5)	0.0159 (4)	0.0147 (4)	-0.0042 (3)	0.0054 (3)	-0.0005 (3)
C14	0.0293 (5)	0.0301 (5)	0.0143 (4)	-0.0027 (4)	0.0000 (4)	0.0014 (4)
C15	0.0381 (6)	0.0310 (6)	0.0176 (5)	-0.0032 (5)	0.0131 (4)	-0.0024 (4)
C16	0.0195 (4)	0.0237 (5)	0.0270 (5)	0.0007 (4)	0.0118 (4)	0.0007 (4)
C17	0.0203 (5)	0.0438 (7)	0.0387 (7)	0.0052 (5)	0.0127 (5)	0.0088 (5)
F1	0.0268 (4)	0.0632 (6)	0.0641 (6)	0.0147 (4)	0.0270 (4)	0.0148 (5)
F2	0.0356 (5)	0.0737 (7)	0.0595 (6)	0.0213 (5)	0.0215 (4)	0.0405 (5)
F3	0.0273 (4)	0.0810 (8)	0.0545 (6)	-0.0069 (4)	-0.0011 (4)	-0.0191 (5)

Geometric parameters (Å, °)

<u>\$1</u> _01	1.4274 (9)	С2—С7	1.5020 (16)
S1—O2	1.4337 (8)	C3—C4	1.389 (2)
S1—N1	1.6507 (9)	С3—Н3	0.9500
S1—C1	1.7765 (11)	C4—C5	1.374 (2)
O3—C7	1.2044 (15)	C4—H4	0.9500
O4—C7	1.3385 (14)	C5—C6	1.4016 (17)
O4—C8	1.4444 (16)	С5—Н5	0.9500
O5—C10	1.2094 (13)	C6—C9	1.5076 (19)
O6—C12	1.3381 (12)	C8—H8A	0.9800

O6—C16	1.4311 (12)	C8—H8B	0.9800
N1-C10	1.3771 (13)	C8—H8C	0.9800
N1—H1N	0.8800	С9—Н9А	0.9800
N2—C11	1.3753 (13)	С9—Н9В	0.9800
N2—C10	1.3884 (13)	С9—Н9С	0.9800
N2—H2N	0.8800	C14—H14A	0.9800
N3—C12	1.3378 (13)	C14—H14B	0.9800
N3—C11	1.3429 (12)	C14—H14C	0.9800
N4—C12	1.3179 (13)	C15—H15A	0.9800
N4—C13	1 3602 (14)	C15—H15B	0.9800
N5-C11	1 3258 (12)	C15 - H15C	0.9800
N5C13	1.3250(12) 1.3561(13)	C16-C17	1,5000(17)
N6 C13	1.3331(13)	C16 H16A	0.0000 (17)
N6_C15	1.5555 (15)	C16 H16R	0.9900
N6 C14	1.4500 (15)	C17 E2	0.3300
10-14	1.4030(13)	C17 - F3	1.3210 (19)
C1 = C0	1.4090 (16)	C17 - F2	1.3332 (16)
C1 = C2	1.4122 (15)	CI/=FI	1.3449 (15)
C2—C3	1.3906 (16)		
01 01 02	110 56 (5)		100 5
01 - S1 - 02	118.56 (5)	H8A—C8—H8C	109.5
OI—SI—NI	108.54 (5)	H8B—C8—H8C	109.5
02—S1—N1	103.49 (5)	С6—С9—Н9А	109.5
O1—S1—C1	109.68 (5)	С6—С9—Н9В	109.5
O2—S1—C1	108.44 (5)	H9A—C9—H9B	109.5
N1—S1—C1	107.50 (5)	С6—С9—Н9С	109.5
C7—O4—C8	114.32 (10)	Н9А—С9—Н9С	109.5
C12—O6—C16	117.02 (8)	Н9В—С9—Н9С	109.5
C10—N1—S1	122.42 (8)	O5—C10—N1	124.11 (10)
C10—N1—H1N	118.8	O5—C10—N2	120.60 (10)
S1—N1—H1N	118.8	N1—C10—N2	115.29 (9)
C11—N2—C10	130.10 (9)	N5-C11-N3	126.34 (9)
C11—N2—H2N	114.9	N5—C11—N2	120.00 (9)
C10—N2—H2N	114.9	N3—C11—N2	113.67 (8)
C12—N3—C11	112.81 (8)	N4—C12—N3	128.15 (9)
C12—N4—C13	113.58 (9)	N4—C12—O6	119.67 (9)
C11—N5—C13	114.85 (9)	N3—C12—O6	112.18 (9)
C13—N6—C15	122.09 (10)	N6—C13—N5	116.63 (9)
C13 - N6 - C14	119 97 (9)	N6-C13-N4	119 11 (9)
$C_{15} = N_{6} = C_{14}$	117 57 (9)	N5-C13-N4	124 26 (9)
C6-C1-C2	120.93(10)	N6-C14-H14A	109 5
C6-C1-S1	120.55 (10)	N6_C14_H14B	109.5
C_{2} C_{1} S_{1}	117 16 (8)	$H_{14} - C_{14} - H_{14} R$	109.5
$C_{2} = C_{1} = S_{1}$	110 53 (11)	M=C14 $H14C$	109.5
$C_3 = C_2 = C_1$	116.72 (10)	$H_{14A} = C_{14} = H_{14C}$	109.5
$C_{1} = C_{2} = C_{1}$	110.72(10) 122.62(10)	H14D C14 H14C	107.5
$C_1 = C_2 = C_1$	123.02(10) 110.06(12)	$\frac{1114D}{115}$	109.5
$C_4 = C_2 = C_2$	119.90 (12)	NG = C15 = U15D	109.5
$C_4 - C_5 - \Pi_5$	120.0		109.5
U2-U3-H3	120.0	піза—сіз—пізв	109.5

05 04 02	120.04 (11)	NG C15 H15C	100 5
C_{3}	120.04 (11)	No-CIS-HISC	109.5
C5—C4—H4	120.0	HI5A—CI5—HI5C	109.5
C3—C4—H4	120.0	H15B—C15—H15C	109.5
C4—C5—C6	122.53 (12)	O6—C16—C17	105.26 (9)
C4—C5—H5	118.7	O6—C16—H16A	110.7
С6—С5—Н5	118.7	C17—C16—H16A	110.7
C5—C6—C1	116.95 (11)	O6—C16—H16B	110.7
C5—C6—C9	117.13 (11)	C17—C16—H16B	110.7
C1—C6—C9	125.92 (11)	H16A—C16—H16B	108.8
O3—C7—O4	124.01 (11)	F3—C17—F2	108.69 (13)
O3—C7—C2	124.89 (11)	F3—C17—F1	107.18 (11)
O4—C7—C2	110.97 (10)	F2—C17—F1	106.45 (11)
O4—C8—H8A	109.5	F3—C17—C16	112.73 (12)
04—C8—H8B	109.5	F_{2} - C17 - C16	112.14 (11)
H8A - C8 - H8B	109.5	$F_1 - C_1 - C_1 = C_1 $	109.34(11)
04 C8 H8C	109.5		109.54 (11)
04-08-1180	109.5		
01 - 81 - N1 - C10	64 66 (10)	S1N1C1005	-7.42 (16)
02-51-N1-C10	-16853(9)	S1N1C10N2	173 18 (8)
$C_1 = S_1 = N_1 = C_{10}$	-53.00(10)	$C_{11} N_2 C_{10} O_5$	-177.04(11)
$C_1 = S_1 = N_1 = C_{10}$	-9.55(11)	$C_{11} = N_2 = C_{10} = 0.5$	177.04(11)
01 = 31 = 01 = 00	-0.33(11)	$C12 \qquad N5 \qquad C11 \qquad N2$	2.36(10)
02 - 51 - C1 - C6	-139.44 (9)	C13 - N5 - C11 - N3	-0.51 (15)
NI—SI—CI—C6	109.28 (9)	C13—N5—C11—N2	179.32 (9)
01—S1—C1—C2	164.73 (8)	C12—N3—C11—N5	0.02 (15)
O2—S1—C1—C2	33.84 (10)	C12—N3—C11—N2	-179.81 (9)
N1—S1—C1—C2	-77.44 (9)	C10—N2—C11—N5	-8.96 (17)
C6—C1—C2—C3	2.50 (16)	C10—N2—C11—N3	170.89 (10)
S1—C1—C2—C3	-170.82 (9)	C13—N4—C12—N3	-0.72 (15)
C6—C1—C2—C7	-173.24 (10)	C13—N4—C12—O6	179.68 (9)
S1—C1—C2—C7	13.44 (14)	C11—N3—C12—N4	0.66 (15)
C1—C2—C3—C4	-0.85 (17)	C11—N3—C12—O6	-179.72 (9)
C7—C2—C3—C4	175.18 (11)	C16—O6—C12—N4	3.04 (14)
C2—C3—C4—C5	-1.03(19)	C16-06-C12-N3	-176.62(9)
C3—C4—C5—C6	1.33 (19)	C15—N6—C13—N5	-177.58 (10)
C4—C5—C6—C1	0.28 (17)	C14—N6—C13—N5	-4.83 (14)
C4—C5—C6—C9	-179.79(12)	C15—N6—C13—N4	1.92 (15)
$C_{2}-C_{1}-C_{6}-C_{5}$	-2.19(16)	C14 - N6 - C13 - N4	174 67 (9)
S1_C1_C6_C5	170 84 (9)	$C_{11} = N_{5} = C_{13} = N_{6}$	179.90 (9)
C_{1}^{2} C_{1}^{1} C_{2}^{6} C_{2}^{0}	170.04(0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	179.90(9)
$C_2 = C_1 = C_0 = C_3$	-0.08(16)	C12 N4 $C12$ N6	-170.22(0)
$S_1 = C_1 = C_0 = C_9$	-9.08(10)	C12 N4 $C12$ N5	-179.33(9)
$C_{0} - 04 - 07 - 03$	-0.35(17)	C_{12} N_4 C_{13} N_3 C_{12} $O(-C_{14}) C_{17}$	0.12(14)
10 - 04 - 07 - 02	-1/0.01(10)	$C_{12} = 00 = C_{10} = C_{17}$	1/0.05 (10)
$C_{3} - C_{2} - C_{1} - C_{3}$	-12/./3(13)	$U_0 - U_1 - U_1 - F_3$	-03.38 (13)
C1 - C2 - C' - O3	48.12 (17)	06-C16-C17-F2	59.68 (14)
C3—C2—C7—O4	48.31 (14)	O6—C16—C17—F1	177.50 (10)
C1—C2—C7—O4	-135.84 (11)		

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1 <i>N</i> ···N5	0.88	1.95	2.6410 (13)	135
N2—H2 N ····N3 ⁱ	0.88	2.03	2.8998 (12)	172
С9—Н9А…О5	0.98	2.42	3.2253 (16)	139
C14—H14 <i>B</i> ···O3	0.98	2.59	3.4363 (16)	145
C14—H14 <i>C</i> ···O5 ⁱⁱ	0.98	2.42	3.2637 (14)	143
C15—H15A…N4	0.98	2.33	2.7695 (15)	107
C16—H16A····O2 ⁱⁱⁱ	0.99	2.55	3.4209 (14)	147
C16—H16B…O1 ^{iv}	0.99	2.32	3.2325 (14)	153

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1, y, -z+3/2; (ii) x, -y+1, z-1/2; (iii) -x+1, -y+1, -z+1; (iv) x+1/2, y-1/2, z.