Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 Second monoclinic modification of cyclohexane-1,1-dicarbonitrile

Nurlana D. Sadikhova, ${ }^{\text {a }}$ Ali. N. Khalilov, ${ }^{\text {a }}$ Atash V. Gurbanov ${ }^{a}$ and Iván Brito ${ }^{\text {b* }}$
${ }^{\text {a }}$ Department of Organic Chemistry, Baku State University, Baku, Azerbaijan, and
${ }^{\text {b }}$ Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
Correspondence e-mail: ivanbritob@yahoo.com

Received 22 May 2011; accepted 16 June 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; R factor $=0.040 ; w R$ factor $=0.105$; data-to-parameter ratio $=30.7$.

In the title compound, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2}$, the cyclohexane ring adopts a chair conformation. he crystal structure of the previously reported monoclinic modification have intramolecular $\mathrm{CN} \cdots \mathrm{CN}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions. These types of interaction are not present in this new modification whose crystal structure is built up by van der Waals interactions.

Related literature

For the previously reported monoclinic modification, see: Echeverria et al. (1995). For synthetic methods, see: Tsai et al. (2003); Suissa et al. (1977); Julia \& Maumy (1969). For puckering parameters see: Cremer \& Pople (1975).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2}$
$M_{r}=134.18$
Monoclinic, $P 2_{\mathrm{b}} / n$
$a=8.9300$ (5) A
$b=8.3656$ (5) A
$c=9.8725$ (6) \AA
$\beta=92.662(1)^{\circ}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.978, T_{\text {max }}=0.978$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 \quad 91$ parameters
$w R\left(F^{2}\right)=0.105$
$S=1.03$
2794 reflections
$V=736.73(8) \AA^{3}$
$Z=4$
Mo K α radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.30 \times 0.30 \times 0.30 \mathrm{~mm}$

9584 measured reflections 2794 independent reflections 2236 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are grateful to Baku State University for supporting this study. IB thanks the Spanish Research Council (CSIC) for the provision of a free-of-charge licence for the Cambridge Structural Database.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5170).

References

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Echeverria, G., Punte, G., Rivero, B. E. \& Barón, M. (1995). Acta Cryst. C51, 1020-1023.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Julia, M. \& Maumy, M. (1969). Bull. Soc. Chim. Fr. pp. 2415-2427.
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Suissa, M. R., Romming, C. \& Dale, J. (1977). Chem. Commun. pp. 113-114.
Tsai, T.-Y., Kak-Shan Shia, K.-S. \& Liu, H.-J. (2003). Synlett, pp. 97-101.

supporting information

Acta Cryst. (2011). E67, o1801 [doi:10.1107/S1600536811023592]

Second monoclinic modification of cyclohexane-1,1-dicarbonitrile

Nurlana D. Sadikhova, Ali. N. Khalilov, Atash V. Gurbanov and Iván Brito

S1. Comment

Fig. 1 shows the structure of title compound, (I), which is a positional isomer of a previously reported by (Echeverria et al., 1995), (II). The bond distances and the six C-C-C bond angles in (I) are slightly longer than (II). The crystal structure of (II) have intermolecular $\mathrm{CN} \cdots \mathrm{CN}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions, whereas this kind of interactions are not present in (I). The values of the ring puckering parameters: $\mathrm{Q}_{\mathrm{T}}=0.5665 \AA, \theta=0.72^{\circ}$ and $\varphi=107.4^{\circ}$ (Cremer \& Pople, 1975), indicate that the cyclohexane has a chair conformation. The $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 1-\mathrm{C} 6$ bond distances are more longer than the other $\mathrm{C}-\mathrm{C}$ distances in the cyclohexyl ring. The lengthening of these bonds with increasing ring size may be attributed to steric crowding about C 1 atom. The cyano groups are essentially collinear with C 1 and the $\mathrm{N}-\mathrm{C}-\mathrm{C} 1$ angles is $178.55(10)^{\circ}(\mathrm{mean})$. A σ_{h} plane passing through the CN groups and the C 1 atom which bisects the cyclohexyl ring.

S2. Experimental

A mixture of malonodinitrile ($0.1 \mathrm{~mol}, 6.6 \mathrm{~g}$), 23 gr 1,5-dibromopentane ($0.1 \mathrm{~mol}, 23 \mathrm{~g}$) and $46 \mathrm{gr} \mathrm{K}_{2} \mathrm{CO}_{3}$ in dry DMSO $(50 \mathrm{ml})$, was stirred for 12 h at $70^{\circ} \mathrm{C}$. After cooling down, the reaction mixture was poured into water and extracted with ether. The organic layer was washed several times with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated. The crude product was purified by vacuum distillation yielding $10.5 \mathrm{gr}(87 \%)$ of a solid compound which after recrystallization in hexane gave white crystals: $\mathrm{mp} 65^{\circ} \mathrm{C} . ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCI}_{3}\right) \delta 1.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.72\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.12(\mathrm{t}$, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$); ${ }^{13} \mathrm{CNMR}^{2}\left(75 \mathrm{MHz}, \mathrm{CDCI}_{3}\right) \delta 22.3,23.8,34.7,41.2,117.3$. Analysis, found, \%: C: 71.42, H: 7.78, N: 20.63 $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2}\right)$; calculated, \%: C: 71.61, H: 7.51, $\mathrm{N}: 20.88$

S3. Refinement

One reflection (-713) was omitted of the refinement due to to bad agreement between observed and calculated factors. All H-atoms were placed in calculated positions $\left[\mathrm{C}-\mathrm{H}=0.99 \AA, U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$ and were included in the refinement in the riding model approximation.

Figure 1

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level.

cyclohexane-1,1-dicarbonitrile

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2}$
$M_{r}=134.18$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=8.9300$ (5) \AA
$b=8.3656$ (5) \AA
$c=9.8725$ (6) \AA
$\beta=92.662(1)^{\circ}$
$V=736.73(8) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.978, T_{\text {max }}=0.978$
$F(000)=288$
$D_{\mathrm{x}}=1.210 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation, $\lambda=0.71073 \AA$
Cell parameters from 2571 reflections
$\theta=3.0-33.1^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, colourless
$0.30 \times 0.30 \times 0.30 \mathrm{~mm}$

9584 measured reflections
2794 independent reflections
2236 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=33.2^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-13 \rightarrow 13$
$k=-12 \rightarrow 12$
$l=-15 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.105$
$S=1.03$
2794 reflections
91 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: difference Fourier map
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0492 P)^{2}+0.1357 P\right]$
> \quad where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.31$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.21$ e \AA^{-3}

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.36573(9)$	$-0.12113(9)$	$0.57950(8)$	$0.02114(17)$
N2	$-0.02890(8)$	$0.15605(9)$	$0.63201(8)$	$0.01948(16)$
C1	$0.24232(8)$	$0.16105(9)$	$0.53895(8)$	$0.01226(14)$
C2	$0.23203(9)$	$0.19844(9)$	$0.38467(8)$	$0.01370(15)$
H2A	0.3327	0.1888	0.3476	0.016^{*}
H2B	0.1652	0.1197	0.3376	0.016^{*}
C3	$0.17144(9)$	$0.36675(10)$	$0.35831(9)$	$0.01563(16)$
H3A	0.0672	0.3734	0.3878	0.019^{*}
H3B	0.1701	0.3895	0.2598	0.019^{*}
C4	$0.26762(9)$	$0.49156(9)$	$0.43440(9)$	$0.01663(16)$
H4A	0.2237	0.5990	0.4185	0.020^{*}
H4B	0.3697	0.4915	0.3992	0.020^{*}
C5	$0.27741(9)$	$0.45676(10)$	$0.58644(8)$	$0.01565(16)$
H5A	0.3437	0.5367	0.6326	0.019^{*}
H5B	0.1765	0.4671	0.6230	0.019^{*}
C6	$0.33813(9)$	$0.28925(9)$	$0.61680(8)$	$0.01401(15)$
H6A	0.3367	0.2685	0.7155	0.017^{*}
H6B	0.4433	0.2823	0.5898	0.017^{*}
C7	$0.30994(9)$	$0.00103(10)$	$0.56201(8)$	$0.01494(15)$
C8	$0.08948(9)$	$0.15673(9)$	$0.59186(8)$	$0.01406(15)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0225(3)$	$0.0166(3)$	$0.0245(4)$	$0.0026(3)$	$0.0035(3)$	$0.0023(3)$

N2	$0.0181(3)$	$0.0193(3)$	$0.0213(4)$	$-0.0012(3)$	$0.0039(3)$	$-0.0003(3)$
C1	$0.0127(3)$	$0.0109(3)$	$0.0134(3)$	$0.0006(2)$	$0.0021(2)$	$0.0006(2)$
C2	$0.0170(3)$	$0.0128(3)$	$0.0115(3)$	$-0.0012(3)$	$0.0017(3)$	$-0.0003(3)$
C3	$0.0179(3)$	$0.0144(3)$	$0.0145(3)$	$0.0001(3)$	$-0.0010(3)$	$0.0019(3)$
C4	$0.0214(4)$	$0.0116(3)$	$0.0169(4)$	$-0.0007(3)$	$0.0006(3)$	$0.0011(3)$
C5	$0.0188(3)$	$0.0124(3)$	$0.0157(4)$	$0.0003(3)$	$0.0003(3)$	$-0.0021(3)$
C6	$0.0141(3)$	$0.0136(3)$	$0.0141(3)$	$-0.0002(2)$	$-0.0007(3)$	$-0.0009(3)$
C7	$0.0156(3)$	$0.0143(3)$	$0.0152(4)$	$-0.0005(3)$	$0.0032(3)$	$0.0007(3)$
C8	$0.0161(3)$	$0.0125(3)$	$0.0136(3)$	$-0.0002(3)$	$0.0009(3)$	$0.0004(3)$

Geometric parameters ($\AA,{ }^{\circ}$)

N1-C7	1.1465 (11)	C3-H3A	0.9900
N2-C8	1.1462 (11)	C3-H3B	0.9900
C1-C7	1.4818 (11)	$\mathrm{C} 4-\mathrm{C} 5$	1.5275 (12)
C1-C8	1.4843 (11)	C4-H4A	0.9900
C1-C6	1.5530 (11)	C4-H4B	0.9900
C1-C2	1.5535 (11)	C5-C6	1.5272 (11)
C2-C3	1.5265 (11)	C5-H5A	0.9900
C 2 - H 2 A	0.9900	C5-H5B	0.9900
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900	C6-H6A	0.9900
C3-C4	1.5272 (11)	C6-H6B	0.9900
C7- $\mathrm{C} 1-\mathrm{C} 8$	107.39 (6)	C3-C4-H4A	109.4
C7-C1-C6	109.67 (6)	C5-C4-H4A	109.4
C8-C1-C6	109.70 (6)	C3-C4-H4B	109.4
C7-C1-C2	109.73 (6)	C5-C4-H4B	109.4
C8- $\mathrm{C} 1-\mathrm{C} 2$	109.66 (6)	H4A-C4-H4B	108.0
C6-C1-C2	110.63 (6)	C6-C5-C4	111.80 (7)
C3-C2-C1	110.93 (6)	C6-C5-H5A	109.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	C4-C5-H5A	109.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	C6-C5-H5B	109.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	C4-C5-H5B	109.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	H5A-C5-H5B	107.9
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.0	C5-C6-C1	110.74 (6)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	111.10 (6)	C5-C6-H6A	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.4	C1-C6-H6A	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.4	C5-C6-H6B	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.4	C1-C6-H6B	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.4	H6A-C6-H6B	108.1
H3A-C3-H3B	108.0	N1-C7-C1	178.29 (8)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	110.99 (7)	N2-C8-C1	178.83 (8)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-176.59 (6)	C8-C1-C6-C5	-66.44 (8)
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	65.69 (8)	C2-C1-C6-C5	54.66 (8)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-55.45 (8)	C8-C1-C7-N1	-161 (3)
C1-C2-C3-C4	56.61 (9)	C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	-42 (3)
C2-C3-C4-C5	-56.87 (9)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	80 (3)

supporting information

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$56.58(9)$	$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 8-\mathrm{N} 2$	$-179(100)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-55.55(9)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 8-\mathrm{N} 2$	$62(4)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$175.84(7)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{N} 2$	$-60(4)$

