

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Ethyl-1*H*-imidazol-3-ium hemioxalate oxalic acid monohydrate

Run-Qiang Zhu

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zhurungiang@163.com

Received 25 April 2011; accepted 30 May 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.046; wR factor = 0.115; data-to-parameter ratio = 14.3.

In the title compound, $C_5H_9N_2^{+}\cdot 0.5C_2O_4^{2-}\cdot C_2H_2O_4\cdot H_2O$, the anions, cations and water moleculars are linked by N-H···O and O-H···O hydrogen bonds which define a tightly bound three-dimensional structure. The title compound is a layered structure as viewed along the *a* or *c* axis; one layer contains water and oxalic acid molecules, the other the imidazolium cation. The C atoms of the ethyl group of the 2-ethyl-imidazolium cation are disordered over two positions of equal occupancy.

Related literature

For general background to ferroelectric organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental

Crystal data	
$C_5H_9N_2^+ \cdot 0.5C_2O_4^{2-} \cdot C_2H_2O_4 \cdot H_2O_4$	c = 10.484 (4) Å
$M_2 - 249.20_2$	$\beta = 93.736 (8)^{\circ}$
$M_r = 249.20$	V = 93.730 (8)
Monoclinic, $P2_1/c$	V = 1146.1 (8) Å ³
a = 6.9/1 (3) A	Z = 4
b = 15.716 (7) Å	Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

 $\mu = 0.13 \text{ mm}^{-1}$ T = 293 K

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\rm min} = 0.962, T_{\rm max} = 0.975$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.115$ S = 1.08 2614 reflections 183 parameters3 restraints 12371 measured reflections 2614 independent reflections 2192 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1B \cdot \cdot \cdot O3^{i}$	0.86	2.01	2.855 (2)	166
$N1 - H1B \cdots O1^{i}$	0.86	2.53	3.026 (2)	118
$N2-H2A\cdots O7^{ii}$	0.86	2.17	2.949 (2)	151
$N2 - H2A \cdots O3$	0.86	2.47	3.060 (2)	126
$O1 - H1A \cdots O6^{ii}$	0.82	1.70	2.4800 (16)	159
O4−H4···O7 ⁱⁱ	0.82	1.71	2.5283 (17)	174
$O7 - H7A \cdots O5^{ii}$	0.84 (3)	1.87 (3)	2.7006 (18)	166 (2)
$O7 - H7B \cdots O5^{iii}$	0.88 (3)	1.82 (3)	2.6856 (19)	169 (2)
$O7 - H7B \cdots O6^{iv}$	0.88 (3)	2.47 (3)	2.923 (2)	113 (2)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y, z + 1; (iv) -x + 2, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by Southeast University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2009).

References

- Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.
- Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.
- Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.

supporting information

Acta Cryst. (2011). E67, o1627 [doi:10.1107/S1600536811020733]

2-Ethyl-1H-imidazol-3-ium hemioxalate oxalic acid monohydrate

Run-Qiang Zhu

S1. Comment

The basic method to find potential ferroelectric phase change material is Dielectric constant measurement of compounds with temperature (Fu *et al.*, 2009; Ye *et al.*, 2006; Zhang *et al.*, 2008; Zhang *et al.*, 2010). Unfortunately, the title compound's dielectric dose not appear strange from 80 K to 298 K (m.p.219–229).

By X-ray diffraction analysis in 123 K, we can define the structure of title compound as Fig.1. Title compound, of the formula $[C_5H_9N_2]_2^+[C_2O_4]^2$. $C_2H_2O_4$. $2H_2O_4$, was obtained by 2 - ethyl imidazole, oxalic acid in water in basic aqueous solution and was isolated as colourless crystals. The whole molecules are organized in a three-dimensional structure involving hydrogen bonds, both intercationic and between cations and water molecules. The O…O distances of the hydrogen bonding are observed to be in the range of 2.476 (3)–2.924 (3) Å and the N…O distances of the hydrogen bonding are in the range of 2.054 (2) - 3.059 (2) Å for table1.

S2. Experimental

A mixture of 2 - ethyl imidazole (2.4 g, 25 mmol), oxalic acid (3.15 g, 25 mmol) in water was stirred for several days at ambient temperature, Colourless sheet crystals were obtained.

S3. Refinement

Positional parameter of all the H atoms except for H7A and H7B were calculated geometrically and the H atoms were set to ride on the C atoms to which they are bonded, with $U_{iso}(H) = 1.2 \text{Ueq}(C)$. The H7A and H7B on the O7 was freely refined.

Figure 1

A partial packing diagram of the title compound, with the displacement ellipsoids were drawn at the 30% probability level.

Figure 2

Packing diagram of the title compound, hydrogen bonds are shown as dashed lines.

2-Ethyl-1H-imidazol-3-ium hemioxalate oxalic acid monohydrate

$C_5H_9N_2{}^+ \cdot 0.5C_2O_4{}^{2-} \cdot C_2H_2O_4 \cdot H_2O$
$M_r = 249.20$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 6.971 (3) Å
b = 15.716 (7) Å
c = 10.484 (4) Å
$\beta = 93.736 \ (8)^{\circ}$
V = 1146.1 (8) Å ³

Data collection

Rigaku SCXmini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator CCD_Profile_fitting scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\min} = 0.962, T_{\max} = 0.975$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.115$ Z = 4 F(000) = 524.0 $D_x = 1.444 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ $\theta = 2.3-27.5^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 293 K Prism, colourless $0.30 \times 0.25 \times 0.20 \text{ mm}$

12371 measured reflections 2614 independent reflections 2192 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 27.5^\circ, \theta_{min} = 2.9^\circ$ $h = -9 \rightarrow 9$ $k = -20 \rightarrow 20$ $l = -13 \rightarrow 13$

S = 1.082614 reflections 183 parameters 3 restraints

Primary atom site location: structure-invariant	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0549P)^{2} + 0.3631P]$
direct methods	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
map	$\Delta \rho_{\text{max}} = 0.35 \text{ e } \text{\AA}^{-3}$
Hydrogen site location: inferred from	$\Delta \rho_{\min} = -0.44 \text{ e A}^{-3}$
neighbouring sites	Extinction correction: <i>SHELXL97</i> (Sheldrick,
H atoms treated by a mixture of independent	2008)
and constrained refinement	Extinction coefficient: 0

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.1308 (3)	0.28168 (12)	0.2483 (2)	0.0343 (4)	
H1	0.0466	0.3066	0.3025	0.041*	
C2	0.1140 (3)	0.20420 (12)	0.1945 (2)	0.0364 (5)	
H2	0.0158	0.1652	0.2044	0.044*	
C3	0.3798 (4)	0.26258 (12)	0.1326 (2)	0.0475 (6)	
C6	0.2852 (2)	0.51305 (9)	0.44765 (14)	0.0159 (3)	
C7	0.1981 (2)	0.55010 (10)	0.56719 (14)	0.0181 (3)	
C8	0.9398 (2)	0.49850 (10)	0.06011 (14)	0.0169 (3)	
N1	0.2691 (3)	0.19373 (9)	0.12234 (15)	0.0358 (4)	
H1B	0.2914	0.1495	0.0774	0.043*	
N2	0.2952 (2)	0.31678 (9)	0.20807 (16)	0.0349 (4)	
H2A	0.3378	0.3666	0.2286	0.042*	
01	0.14141 (16)	0.48966 (7)	0.64012 (10)	0.0203 (3)	
H1A	0.0967	0.5104	0.7036	0.031*	
O2	0.1875 (2)	0.62570 (8)	0.58419 (13)	0.0393 (4)	
03	0.31598 (17)	0.43711 (7)	0.43807 (10)	0.0212 (3)	
O4	0.32172 (16)	0.57027 (7)	0.36275 (10)	0.0201 (3)	
H4	0.3622	0.5469	0.2999	0.030*	
05	0.76442 (16)	0.51317 (9)	0.04421 (11)	0.0278 (3)	
06	1.03061 (15)	0.48204 (8)	0.16451 (10)	0.0218 (3)	
O7	0.54960 (17)	0.51036 (7)	0.82209 (11)	0.0202 (3)	
H7A	0.442 (4)	0.5011 (14)	0.852 (2)	0.042 (6)*	
H7B	0.631 (4)	0.5075 (15)	0.890 (3)	0.054 (7)*	
C4	0.5878 (6)	0.2787 (2)	0.0900 (3)	0.0317 (8)	0.655 (6)
H4A	0.6477	0.3251	0.1390	0.038*	0.655 (6)
H4B	0.6659	0.2281	0.1040	0.038*	0.655 (6)
C5	0.5713 (5)	0.3010(2)	-0.0500 (3)	0.0474 (11)	0.655 (6)
H5A	0.6971	0.3114	-0.0788	0.071*	0.655 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H5B	0.4938	0.3511	-0.0627	0.071*	0.655 (6)	
H5C	0.5126	0.2546	-0.0976	0.071*	0.655 (6)	
C5′	0.6915 (11)	0.2936 (4)	0.0908 (7)	0.0416 (18)	0.345 (6)	
H5'A	0.7855	0.3046	0.0299	0.062*	0.345 (6)	
H5′B	0.7294	0.2445	0.1408	0.062*	0.345 (6)	
H5′C	0.6822	0.3419	0.1459	0.062*	0.345 (6)	
C4′	0.4958 (9)	0.2770 (3)	0.0199 (6)	0.0285 (17)	0.345 (6)	
H4'A	0.4507	0.3258	-0.0301	0.034*	0.345 (6)	
H4′B	0.4980	0.2272	-0.0347	0.034*	0.345 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0365 (10)	0.0252 (9)	0.0430 (11)	0.0018 (7)	0.0161 (9)	-0.0093 (8)
C2	0.0340 (10)	0.0249 (9)	0.0510 (12)	0.0005 (8)	0.0089 (9)	-0.0090 (9)
C3	0.0680 (14)	0.0176 (8)	0.0619 (14)	0.0043 (8)	0.0436 (12)	-0.0004 (9)
C6	0.0147 (7)	0.0181 (7)	0.0152 (7)	-0.0011 (5)	0.0025 (5)	0.0011 (6)
C7	0.0186 (7)	0.0197 (8)	0.0167 (7)	0.0002 (6)	0.0054 (6)	-0.0007 (6)
C8	0.0158 (7)	0.0207 (7)	0.0148 (7)	0.0004 (6)	0.0047 (6)	-0.0005 (6)
N1	0.0606 (11)	0.0176 (7)	0.0312 (8)	0.0073 (6)	0.0169 (8)	-0.0054 (6)
N2	0.0422 (9)	0.0179 (7)	0.0466 (10)	0.0011 (6)	0.0166 (8)	-0.0085 (7)
01	0.0273 (6)	0.0199 (6)	0.0149 (5)	0.0002 (4)	0.0096 (4)	0.0004 (4)
O2	0.0628 (9)	0.0165 (6)	0.0427 (8)	0.0004 (6)	0.0359 (7)	-0.0034 (5)
O3	0.0300 (6)	0.0157 (5)	0.0188 (6)	0.0006 (4)	0.0085 (5)	0.0001 (4)
O4	0.0275 (6)	0.0173 (5)	0.0166 (5)	0.0009 (4)	0.0089 (4)	0.0024 (4)
O5	0.0141 (6)	0.0540 (8)	0.0158 (6)	0.0034 (5)	0.0051 (4)	0.0023 (5)
O6	0.0172 (6)	0.0350 (7)	0.0134 (5)	0.0028 (5)	0.0037 (4)	0.0025 (5)
O 7	0.0159 (6)	0.0284 (6)	0.0168 (6)	0.0005 (5)	0.0046 (5)	-0.0002(5)
C4	0.0362 (17)	0.0220 (15)	0.0368 (16)	0.0076 (14)	0.0020 (19)	-0.0043 (12)
C5	0.051 (2)	0.048 (2)	0.0449 (17)	0.0109 (16)	0.0211 (17)	0.0148 (16)
C5′	0.028 (4)	0.037 (4)	0.059 (4)	-0.001 (3)	-0.001 (3)	-0.014 (3)
C4′	0.036 (3)	0.023 (3)	0.028 (4)	0.002 (2)	0.010 (3)	-0.002 (2)

Geometric parameters (Å, °)

C1—C2	1.344 (3)	N2—H2A	0.8600
C1—N2	1.363 (3)	O1—H1A	0.8200
C1—H1	0.9300	O4—H4	0.8200
C2—N1	1.369 (2)	O7—H7A	0.84 (3)
С2—Н2	0.9300	O7—H7B	0.88 (3)
C3—N1	1.329 (3)	C4—C5	1.505 (5)
C3—N2	1.327 (2)	C4—H4A	0.9700
C3—C4′	1.491 (6)	C4—H4B	0.9700
C3—C4	1.565 (5)	C5—H5A	0.9600
С6—О3	1.2179 (19)	C5—H5B	0.9600
C6—O4	1.3022 (18)	C5—H5C	0.9600
C6—C7	1.542 (2)	C5′—C4′	1.532 (10)
С7—О2	1.204 (2)	С5'—Н5'А	0.9600

1,2970 (19)	C5'—H5'B	0.9600
1.2449 (19)	C5'—H5'C	0.9600
1.2550 (19)	C4'—H4'A	0.9700
1.559 (3)	C4'—H4'B	0.9700
0.8600		
106.81 (16)	C7—O1—H1A	109.5
126.6	С6—О4—Н4	109.5
126.6	H7A—O7—H7B	104 (2)
106.87 (17)	C5—C4—C3	107.6 (3)
126.6	C5—C4—H4A	110.2
126.6	C3—C4—H4A	110.2
106.99 (18)	C5—C4—H4B	110.2
113.7 (3)	C3—C4—H4B	110.2
131.3 (3)	H4A—C4—H4B	108.5
130.74 (19)	С4—С5—Н5А	109.5
121.5 (2)	C4—C5—H5B	109.5
35.9 (3)	H5A—C5—H5B	109.5
125.24 (14)	C4—C5—H5C	109.5
121.20 (13)	H5A—C5—H5C	109.5
113.55 (13)	H5B—C5—H5C	109.5
127.68 (14)	C4'—C5'—H5'A	109.5
121.60 (14)	C4'—C5'—H5'B	109.5
110.71 (13)	Н5'А—С5'—Н5'В	109.5
126.16 (14)	C4′—C5′—H5′C	109.5
117.49 (17)	Н5'А—С5'—Н5'С	109.5
116.35 (16)	H5′B—C5′—H5′C	109.5
109.44 (15)	C3—C4′—C5′	98.8 (5)
125.3	C3—C4′—H4′A	112.0
125.3	C5'—C4'—H4'A	112.0
109.87 (16)	C3—C4′—H4′B	112.0
125.1	C5'—C4'—H4'B	112.0
125.1	H4'A—C4'—H4'B	109.7
	$\begin{array}{c} 1.2970 \ (19) \\ 1.2449 \ (19) \\ 1.2550 \ (19) \\ 1.2550 \ (19) \\ 1.559 \ (3) \\ 0.8600 \\ \hline \\ 106.81 \ (16) \\ 126.6 \\ 126.6 \\ 126.6 \\ 126.6 \\ 126.6 \\ 126.6 \\ 126.6 \\ 126.6 \\ 126.6 \\ 131.3 \ (3) \\ 131.3 \ (3) \\ 130.74 \ (19) \\ 121.5 \ (2) \\ 35.9 \ (3) \\ 125.24 \ (14) \\ 121.20 \ (13) \\ 13.55 \ (13) \\ 127.68 \ (14) \\ 121.60 \ (14) \\ 110.71 \ (13) \\ 126.16 \ (14) \\ 117.49 \ (17) \\ 116.35 \ (16) \\ 109.44 \ (15) \\ 125.3 \\ 125.1 \\ 125.1 \\ 125.1 \\ \hline \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Symmetry code: (i) -x+2, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1 <i>B</i> ···O3 ⁱⁱ	0.86	2.01	2.855 (2)	166
N1—H1 <i>B</i> …O1 ⁱⁱ	0.86	2.53	3.026 (2)	118
N2—H2A····O7 ⁱⁱⁱ	0.86	2.17	2.949 (2)	151
N2—H2A···O3	0.86	2.47	3.060 (2)	126
O1—H1A···O6 ⁱⁱⁱ	0.82	1.70	2.4800 (16)	159
O4—H4···O7 ⁱⁱⁱ	0.82	1.71	2.5283 (17)	174
O7—H7 <i>A</i> ···O5 ⁱⁱⁱ	0.84 (3)	1.87 (3)	2.7006 (18)	166 (2)

Symmetry codes: (ii) x, -y+1/2, z-1/2; (iii) -x+1, -y+1, -z+1; (iv) x, y, z+1; (v) -x+2, -y+1, -z+1.